|
Aarestrup, F. M. (2005). Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic & clinical pharmacology & toxicology, 96(4), 271-281. Aarestrup, F. M., Kruse, H., Tast, E., Hammerum, A. M., & Jensen, L. B. (2000). Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway. Microb Drug Resist, 6(1), 63-70. Additives, E. P. o., Feed, P. o. S. u. i. A., Rychen, G., Aquilina, G., Azimonti, G., Bampidis, V., Bastos, M. d. L., Bories, G., Chesson, A., Cocconcelli, P. S., & Flachowsky, G. (2018). Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA Journal, 16(3), e05206. Agyare, C., Boamah, V. E., Zumbi, C. N., & Osei, F. B. (2018). Antibiotic use in poultry production and its effects on bacterial resistance. Antimicrobial resistance—A global threat, 33-51. Alzahrani, O. M., Fayez, M., Alswat, A. S., Alkafafy, M., Mahmoud, S. F., Al-Marri, T., Almuslem, A., Ashfaq, H., & Yusuf, S. (2022). Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Antibiotics, 11(3), 380. Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol, 10(4), 266-278. Arthur, M., & Courvalin, P. (1993). Genetics and mechanisms of glycopeptide resistance in Enterococci. Antimicrob Agents Chemother, 37(8), 1563-1571. Ayeni, F. A., Odumosu, B. T., Oluseyi, A. E., & Ruppitsch, W. (2016). Identification and prevalence of tetracycline resistance in enterococci isolated from poultry in Ilishan, Ogun State, Nigeria. Journal of pharmacy & bioallied sciences, 8(1), 69. Badul, S., Abia, A. L., Amoako, D. G., Perrett, K., Bester, L. A., & Essack, S. Y. (2021). From the farms to the dining table: The distribution and molecular characteristics of antibiotic-resistant Enterococcus spp. in intensive pig farming in South Africa. Microorganisms, 9(5), 882. Baumgartner, A., Kueffer, M., & Rohner, P. (2001). Occurrence and antibiotic resistance of enterococci in various ready-to-eat foods. Archiv für Lebensmittelhygiene, 52(1), 16-19. Bertrand, X., Mulin, B., Viel, J., Thouverez, M., & Talon, D. (2000). Common PFGE patterns in antibiotic-resistant Enterococcus faecalis from humans and cheeses. Food Microbiol, 17(5), 543-551. Bortolaia, V., Espinosa-Gongora, C., & Guardabassi, L. (2016). Human health risks associated with antimicrobial-resistant Enterococci and Staphylococcus aureus on poultry meat. Clin Microbiol Infect, 22(2), 130-140. Buess, S., Zurfluh, K., Stephan, R., & Guldimann, C. (2019). Quantitative microbiological slaughter process analysis in a large-scale Swiss poultry abattoir. Food Control, 105, 86-93. Bybee, S., Scorza, A., & Lappin, M. (2011). Effect of the probiotic Enterococcus faecium SF68 on presence of diarrhea in cats and dogs housed in an animal shelter. J Vet Intern Med, 25(4), 856-860. Capita, R., & Alonso-Calleja, C. (2013). Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci Nutr, 53(1), 11-48. Carcione, D., Leccese, G., Conte, G., Rossi, E., Intra, J., Bonomi, A., Sabella, S., Moreo, M., Landini, P., & Brilli, M. (2022). Lack of Direct Correlation between Biofilm Formation and Antimicrobial Resistance in Clinical Staphylococcus epidermidis Isolates from an Italian Hospital. Microorganisms, 10(6), 1163. Castro, A., Santos, C., Meireles, H., Silva, J., & Teixeira, P. (2016). Food handlers as potential sources of dissemination of virulent strains of Staphylococcus aureus in the community. J Infect Public Health, 9(2), 153-160. Cetinkaya, Y., Falk, P., & Mayhall, C. G. (2000). Vancomycin-resistant enterococci. Clin Microbiol Rev, 13(4), 686-707. Ch’ng, J.-H., Chong, K. K., Lam, L. N., Wong, J. J., & Kline, K. A. (2019). Biofilm-associated infection by Enterococci. Nat Rev Microbiol, 17(2), 82-94. Chaillou, S., Chaulot-Talmon, A., Caekebeke, H., Cardinal, M., Christieans, S., Denis, C., Hélène Desmonts, M., Dousset, X., Feurer, C., & Hamon, E. (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. The ISME journal, 9(5), 1105-1118. Chajęcka-Wierzchowska, W., Zadernowska, A., & Łaniewska-Trokenheim, Ł. (2017). Virulence factors of Enterococcus spp. presented in food. LWT, 75, 670-676. Chajęcka-Wierzchowska, W., Zarzecka, U., & Zadernowska, A. (2021). Enterococci isolated from plant-derived food-Analysis of antibiotic resistance and the occurrence of resistance genes. LWT, 139, 110549. Chajęcka‐Wierzchowska, W., Zadernowska, A., & Łaniewska‐Trokenheim, Ł. (2016). Diversity of antibiotic resistance genes in Enterococcus strains isolated from ready‐to‐eat meat products. J Food Sci, 81(11), M2799-M2807. Chang, S., Sievert, D. M., Hageman, J. C., Boulton, M. L., Tenover, F. C., Downes, F. P., Shah, S., Rudrik, J. T., Pupp, G. R., & Brown, W. J. (2003). Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med, 348(14), 1342-1347. Chen, C. R., Malik, M., Snyder, M., & Drlica, K. (1996). DNA gyrase and topoisomerase IV on the bacterial chromosome: Quinolone-induced DNA cleavage. J Mol Biol, 258(4), 627-637. https://doi.org/DOI 10.1006/jmbi.1996.0274. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev, 65(2), 232-260. Chow, J. W. (2000). Aminoglycoside resistance in enterococci. Clin Infect Dis, 31(2), 586-589. Clarke, L., Fodey, T. L., Crooks, S. R., Moloney, M., O'Mahony, J., Delahaut, P., O'Kennedy, R., & Danaher, M. (2014). A review of coccidiostats and the analysis of their residues in meat and other food. Meat Science, 97(3), 358-374. Comerlato, C. B., Resende, M. C. C. d., Caierão, J., & d'Azevedo, P. A. (2013). Presence of virulence factors in Enterococcus faecalis and Enterococcus faecium susceptible and resistant to vancomycin. Mem Inst Oswaldo Cruz, 108, 590-595. Courvalin, P., Carlier, C., & Collatz, E. (1980). Plasmid-mediated resistance to aminocyclitol antibiotics in group D Streptococci. J Bacteriol, 143(2), 541-551. Cusumano, J., Daffinee, K., Luther, M., Lopes, V., Caffrey, A., & LaPlante, K. (2018). Relationship Between Klebsiella pneumoniae Antimicrobial Resistance and Biofilm Formation. Open Forum Infectious Diseases (Vol. 5, p. S252): Oxford University Press. Davis, R., & Brown, P. D. (2016). Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microbiol, 65(4), 261-271. De Leener, E., Martel, A., De Graef, E., Top, J., Butaye, P., Haesebrouck, F., Willems, R., & Decostere, A. (2005). Molecular analysis of human, porcine, and poultry Enterococcus faecium isolates and their erm (B) genes. Applied and environmental microbiology, 71(5), 2766-2770. Diaz, L., Kiratisin, P., Mendes, R. E., Panesso, D., Singh, K. V., & Arias, C. A. (2012). Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother, 56(7), 3917-3922. Donadu, M. G., Ferrari, M., Mazzarello, V., Zanetti, S., Kushkevych, I., Rittmann, S. K.-M., Stájer, A., Baráth, Z., Szabó, D., & Urbán, E. (2022). No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens, 11(4), 471. Dougherty, T. J., & Pucci, M. J. (2011). Antibiotic discovery and development: Springer Science & Business Media. Elkins, C. A., & Nikaido, H. (2002). Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops. J Bacteriol, 184(23), 6490-6498. European Food Safety Authority. (2008). Report from the Task Force on Zoonoses Data Collection including guidance for harmonized monitoring and reporting of antimicrobial resistance in commensal Escherichia coli and Enterococcus spp. from food animals. EFSA journal, 6(4), 141r. Falagas, M. E., Rafailidis, P. I., & Matthaiou, D. K. (2010). Resistance to polymyxins: Mechanisms, frequency and treatment options. Drug Resist Updates, 13(4-5), 132-138. https://doi.org/10.1016/j.drup.2010.05.002. FAO/WHO. (2001). Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. FAO/WHO Cordoba, Argentina. FONTANA, R., LIGOZZI, M., PITTALUGA, F., & SATTA, G. (1996). Intrinsic penicillin resistance in Enterococci. Microb Drug Resist, 2(2), 209-213. Food and Drug Administration. (2015). Antimicrobials sold or distributed for use in food-producing animals. US Food and Drug Administration: Silver Spring, MD, USA. Franz, C. M., Holzapfel, W. H., & Stiles, M. E. (1999). Enterococci at the crossroads of food safety? International journal of food microbiology, 47(1-2), 1-24. Franz, C. M., Stiles, M. E., Schleifer, K. H., & Holzapfel, W. H. (2003). Enterococci in foods—a conundrum for food safety. International journal of food microbiology, 88(2-3), 105-122. Frye, J., & Jackson, C. (2013). Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol, 4(135). https://doi.org/10.3389/fmicb.2013.00135. Frye, J. G., & Jackson, C. R. (2013). Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from US food animals. Front Microbiol, 4, 135. Furuya, E. Y., & Lowy, F. D. (2006). Antimicrobial-resistant bacteria in the community setting. Nat Rev Microbiol, 4(1), 36-45. Galimand, M., Schmitt, E., Panvert, M., Desmolaize, B., Douthwaite, S., Mechulam, Y., & Courvalin, P. (2011). Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA, 17(2), 251-262. García-Solache, M., & Rice, L. B. (2019). The Enterococcus: a model of adaptability to its environment. Clin Microbiol Rev, 32(2), e00058-00018. Garrido, A. M., Gálvez, A., & Pulido, R. P. (2014). Antimicrobial resistance in enterococci. Journal of Infectious Diseases and Therapy. Ghai, I., & Ghai, S. (2018). Understanding antibiotic resistance via outer membrane permeability. Infect Drug Resist, 11, 523. Ghosh, A., Borst, L., Stauffer, S. H., Suyemoto, M., Moisan, P., Zurek, L., & Gookin, J. L. (2013). Mortality in kittens is associated with a shift in ileum mucosa-associated Enterococci from Enterococcus hirae to biofilm-forming Enterococcus faecalis and adherent Escherichia coli. J Clin Microbiol, 51(11), 3567-3578. Giguere, S., Prescott, J., & Dowling, P. (2013). Antimicrobial drug use in poultry. IV Antimicrobial drug use in selected animal species. Antimicrobial Therapy in Veterinary Medicine John Wiley & Sons, Inc, Hoboken, NJ, 569-589. Gilbert, P., Das, J., & Foley, I. (1997). Biofilm susceptibility to antimicrobials. Adv Dent Res, 11(1), 160-167. Giraffa, G. (2002). Enterococci from foods. FEMS Microbiol Rev, 26(2), 163-171. Goetting, V., Lee, K., & Tell, L. A. (2011). Pharmacokinetics of veterinary drugs in laying hens and residues in eggs: a review of the literature. J Vet Pharmacol Ther, 34(6), 521-556. Gousia, P., Economou, V., Bozidis, P., & Papadopoulou, C. (2015). Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin. Foodborne Pathog Dis, 12(3), 214-220. Guarcello, R., De Angelis, M., Settanni, L., Formiglio, S., Gaglio, R., Minervini, F., Moschetti, G., & Gobbetti, M. (2016). Selection of amine-oxidizing dairy lactic acid bacteria and identification of the enzyme and gene involved in the decrease of biogenic amines. Applied and Environmental Microbiology, 82(23), 6870-6880. Guignard, B., Entenza, J. M., & Moreillon, P. (2005). β-lactams against methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol, 5(5), 479-489. Gurung, J., Khyriem, A. B., Banik, A., Lyngdoh, W. V., Choudhury, B., & Bhattacharyya, P. (2013). Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, 17(4), 214. Haag, S. R. (2014). FDA Industry Guidance Targeting Antibiotics Used in Livestock Will Not Result in Judicious Use or Reduction in Antibiotic-Resistant Bacteria. Fordham Envtl L Rev, 26, 313. Hanchi, H., Mottawea, W., Sebei, K., & Hammami, R. (2018). The genus Enterococcus: between probiotic potential and safety concerns—an update. Front Microbiol, 9, 1791. Hershberger, E., Donabedian, S., Konstantinou, K., Zervos, M. J., & Eliopoulos, G. M. (2004). Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology. Clin Infect Dis, 38(1), 92-98. Hollenbeck, B. L., & Rice, L. B. (2012). Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, 3(5), 421-569. Hutchison, M., Taylor, M., Tchorzewska, M., Ford, G., Madden, R., & Knowles, T. (2017). Modelling‐based identification of factors influencing campylobacters in chicken broiler houses and on carcasses sampled after processing and chilling. J Appl Microbiol, 122(5), 1389-1401. Huttner, A., Harbarth, S., Carlet, J., Cosgrove, S., Goossens, H., Holmes, A., Jarlier, V., Voss, A., & Pittet, D. (2013). Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrobial resistance and infection control, 2(1), 1-13. Huycke, M. M., Sahm, D. F., & Gilmore, M. S. (1998). Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis, 4(2), 239. Huys, G., D'Haene, K., Collard, J.-M., & Swings, J. (2004). Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Applied and environmental microbiology, 70(3), 1555-1562. Jackson, C., Fedorka‐Cray, P., Davis, J., Barrett, J., Brousse, J., Gustafson, J., & Kucher, M. (2010). Mechanisms of antimicrobial resistance and genetic relatedness among enterococci isolated from dogs and cats in the United States. J Appl Microbiol, 108(6), 2171-2179. Jacoby, G. A. (2005). Mechanisms of resistance to quinolones. Clin Infect Dis, 41(Supplement_2), S120-S126. Jaglic, Z., Vlkova, H., Bardon, J., Michu, E., Cervinkova, D., & Babak, V. (2012). Distribution, characterization and genetic bases of erythromycin resistance in staphylococci and enterococci originating from livestock. Zoonoses and Public Health, 59(3), 202-211. Josephine, H. R., Kumar, I., & Pratt, R. F. (2004). The perfect penicillin? Inhibition of a bacterial DD-peptidase by peptidoglycan-mimetic beta-lactams. J Am Chem Soc, 126(26), 8122-8123. https://doi.org/10.1021/ja048850s. Kahne, D., Leimkuhler, C., Wei, L., & Walsh, C. (2005). Glycopeptide and lipoglycopeptide antibiotics. Chem Rev, 105(2), 425-448. https://doi.org/10.1021/cr030103a. Kariyama, R., Mitsuhata, R., Chow, J. W., Clewell, D. B., & Kumon, H. (2000). Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant Enterococci. J Clin Microbiol, 38(8), 3092-3095. Kim, Y. B., Seo, K. W., Son, S. H., Noh, E. B., & Lee, Y. J. (2019). Genetic characterization of high-level aminoglycoside-resistant Enterococcus faecalis and Enterococcus faecium isolated from retail chicken meat. Poult Sci, 98(11), 5981-5988. Komba, E. V., Mdegela, R. H., Msoffe, P., Nielsen, L. N., & Ingmer, H. (2015). Prevalence, antimicrobial resistance and risk factors for thermophilic Campylobacter infections in symptomatic and asymptomatic humans in Tanzania. Zoonoses and Public Health, 62(7), 557-568. Kumar, S., & Varela, M. F. (2012). Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci, 13(4), 4484-4495. Lappin, M. R., Veir, J. K., Satyaraj, E., & Czarnecki-Maulden, G. (2009). Pilot study to evaluate the effect of oral supplementation of Enterococcus faecium SF68 on cats with latent feline herpesvirus 1. Journal of feline medicine and surgery, 11(8), 650-654. Leach, K. L., Swaney, S. M., Colca, J. R., McDonald, W. G., Blinn, J. R., Thomasco, L. M., Gadwood, R. C., Shinabarger, D., Xiong, L., & Mankin, A. S. (2007). The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell, 26(3), 393-402. Leverstein‐van Hall, M., Dierikx, C., Cohen Stuart, J., Voets, G., Van Den Munckhof, M., van Essen‐Zandbergen, A., Platteel, T., Fluit, A., Van de Sande‐Bruinsma, N., & Scharinga, J. (2011). Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect, 17(6), 873-880. Lim, E.-S. (2016). Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot. Fisheries and Aquatic Sciences, 19(1), 1-10. Liu, Y.-Y., Wang, Y., Walsh, T. R., Yi, L.-X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., & Huang, X. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 16(2), 161-168. Livermore, D. M. (2001). Of Pseudomonas, porins, pumps and carbapenems. Journal of Antimicrobial Chemotherapy, 47(3), 247-250. Llewellyn, A., & Foey, A. (2017). Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients, 9(10), 1156. Lodemann, U., Hübener, K., Jansen, N., & Martens, H. (2006). Effects of Enterococcus faecium NCIMB 10415 as probiotic supplement on intestinal transport and barrier function of piglets. Arch Anim Nutr, 60(1), 35-48. Maasjost, J., Mühldorfer, K., de Jäckel, S. C., & Hafez, H. (2015). Antimicrobial susceptibility patterns of Enterococcus faecalis and Enterococcus faecium isolated from poultry flocks in Germany. Avian Dis, 59(1), 143-148. Maddison, J. E., Page, S. W., & Church, D. B. (2008). Small animal clinical pharmacology: Elsevier Health Sciences. Mąka, Ł., Maćkiw, E., Ścieżyńska, H., Pawłowska, K., & Popowska, M. (2014). Antimicrobial susceptibility of Salmonella strains isolated from retail meat products in Poland between 2008 and 2012. Food Control, 36(1), 199-204. Mannu, L., Paba, A., Daga, E., Comunian, R., Zanetti, S., Duprè, I., & Sechi, L. A. (2003). Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. International journal of food microbiology, 88(2-3), 291-304. Manson, A. L., Van Tyne, D., Straub, T. J., Clock, S., Crupain, M., Rangan, U., Gilmore, M. S., & Earl, A. M. (2019). Chicken meat-associated enterococci: influence of agricultural antibiotic use and connection to the clinic. Applied and environmental microbiology, 85(22), e01559-01519. Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23(4), 795. Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev, 24(4), 718-733. Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C.-Y., & Schoolnik, G. K. (2005). Chitin induces natural competence in Vibrio cholerae. Science, 310(5755), 1824-1827. Mohamed, J. A., Huang, W., Nallapareddy, S. R., Teng, F., & Murray, B. E. (2004). Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect Immun, 72(6), 3658-3663. Moore, J. E., Barton, M. D., Blair, I. S., Corcoran, D., Dooley, J. S., Fanning, S., Kempf, I., Lastovica, A. J., Lowery, C. J., & Matsuda, M. (2006). The epidemiology of antibiotic resistance in Campylobacter. Microbes and infection, 8(7), 1955-1966. Moreno, M. F., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). The role and application of Enterococci in food and health. International journal of food microbiology, 106(1), 1-24. National Chicken Council. (2020). Per capita consumption of poultry and livestock, 1960 to forecast 2021, in pounds. Nielsen, K. M. (1998). Barriers to horizontal gene transfer by natural transformation in soil bacteria. APMIS Suppl, 84, 77-84. Nilsson, O., Greko, C., & Bengtsson, B. (2009). Environmental contamination by vancomycin resistant Enterococci (VRE) in Swedish broiler production. Acta Vet Scand, 51(1), 1-6. Nissen, P., Hansen, J., Ban, N., Moore, P. B., & Steitz, T. A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science, 289(5481), 920-930. Onwuezobe, I. A., Oshun, P. O., & Odigwe, C. C. (2012). Antimicrobials for treating symptomatic non‐typhoidal Salmonella infection. Cochrane Db Syst Rev(11). Page, S. (2006). Current use of antimicrobial growth promoters in food animals: The benefits. Antimicrobial growth promoters: where do we go from here, 136, 19-51. Paterson, D. L. (2004). “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis, 38(Supplement_4), S341-S345. Patterson, J., & Burkholder, K. (2003). Application of prebiotics and probiotics in poultry production. Poult Sci, 82(4), 627-631. Portillo, A., Ruiz-Larrea, F., Zarazaga, M., Alonso, A., Martinez, J. L., & Torres, C. (2000). Macrolide resistance genes in Enterococcus spp. Antimicrob Agents Chemother, 44(4), 967-971. Quednau, M., Ahrne, S., Petersson, A., & Molin, G. (1998). Antibiotic-resistant strains of Enterococcus isolated from Swedish and Danish retailed chicken and pork. J Appl Microbiol, 84(6), 1163-1170. Quiloan, M. L., Vu, J., & Carvalho, J. (2012). Enterococcus faecalis can be distinguished from Enterococcus faecium via differential susceptibility to antibiotics and growth and fermentation characteristics on mannitol salt agar. Frontiers in Biology, 7(2), 167-177. Ray, C. G., & Ryan, K. J. (2004). Sherris medical microbiology: an introduction to infectious diseases: McGraw-Hill NY. Ray, C. G., & Ryan, K. J. (2014). Sherris Medical Microbiology: McGraw-Hill Education/Medical. Rice, L. B. (1998). Tn 916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob Agents Chemother, 42(8), 1871-1877. Roos, R. (2015). Consumer Reports Finds Bacteria Common on Chicken Breasts. Center for Infectious Disease Research and Policy University of Minnesota, diakses pada tanggal, 26. Rouger, A., Tresse, O., & Zagorec, M. (2017). Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms, 5(3), 50. Ruiz-Moyano, S., Martín, A., Benito, M. J., Casquete, R., Serradilla, M. J., & de Guía Córdoba, M. (2009). Safety and functional aspects of pre-selected lactobacilli for probiotic use in Iberian dry-fermented sausages. Meat science, 83(3), 460-467. Russell, S. (2008). The effect of an acidic, copper sulfate-based commercial sanitizer on indicator, pathogenic, and spoilage bacteria associated with broiler chicken carcasses when applied at various intervention points during poultry processing. Poult Sci, 87(7), 1435-1440. Růžičková, M., Vítězová, M., & Kushkevych, I. (2020). The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Medicine, 15(1), 211-224. Sørensen, T. L., Blom, M., Monnet, D. L., Frimodt-Møller, N., Poulsen, R. L., & Espersen, F. (2001). Transient intestinal carriage after ingestion of antibiotic-resistant Enterococcus faecium from chicken and pork. N Engl J Med, 345(16), 1161-1166. Sanlibaba, P., Tezel, B. U., & Senturk, E. (2018). Antimicrobial resistance of Enterococcus species isolated from chicken in Turkey. Korean journal for food science of animal resources, 38(2), 391. Sanseverino, I., Navarro Cuenca, A., Loos, R., Marinov, D., & Lettieri, T. (2018). State of the Art on the Contribution of Water to Antimicrobial Resistance. Brussels: European Union. Schleifer, K. H., & Kilpper-Bälz, R. (1984). Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Evol Microbiol, 34(1), 31-34. Schwarz, F. V., Perreten, V., & Teuber, M. (2001). Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid, 46(3), 170-187. Sherman, J. M. (1937). The Streptococci. Bacteriol Rev, 1(1), 3-97. Sifaoui, F., Arthur, M., Rice, L., & Gutmann, L. (2001). Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob Agents Chemother, 45(9), 2594-2597. Soonthornchaikul, N., & Garelick, H. (2009). Antimicrobial resistance of Campylobacter species isolated from edible bivalve molluscs purchased from Bangkok markets, Thailand. Foodborne Pathog Dis, 6(8), 947-951. Talaro, K., Chess, B., Wiersema, D. S., & Sen, P. (2013). Foundations in Microbiology, 2012: McGraw-Hill. Teuber, M., Meile, L., & Schwarz, F. (1999). Acquired antibiotic resistance in lactic acid bacteria from food. Lactic acid bacteria: Genetics, metabolism and applications, 115-137. Thiercelin, M., & Jouhaud, L. (1899). Sur un diplocoque saprophyte de l'intestin susceptible de devenir pathogene. CR Soc Biol, 5(26971.2). Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol, 3(9), 711-721. Tian, Y., Xie, M., Wang, W., Wu, H., Fu, Z., & Lin, L. (2007). Determination of carnosine in Black-Bone Silky Fowl (Gallus gallus domesticus Brisson) and common chicken by HPLC. Eur Food Res Technol, 226(1), 311-314. Tian, Y., Yu, H., & Wang, Z. (2019). Distribution of acquired antibiotic resistance genes among Enterococcus spp. isolated from a hospital in Baotou, China. BMC research notes, 12(1), 1-5. Toledo-Arana, A., Valle, J., Solano, C., Arrizubieta, M. a. J., Cucarella, C., Lamata, M., Amorena, B., Leiva, J., Penadés, J. R., & Lasa, I. (2001). The Enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Applied and environmental microbiology, 67(10), 4538-4545. Tseng, B. S., Zhang, W., Harrison, J. J., Quach, T. P., Song, J. L., Penterman, J., Singh, P. K., Chopp, D. L., Packman, A. I., & Parsek, M. R. (2013). The extracellular matrix protects P seudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environmental microbiology, 15(10), 2865-2878. Varela, M. F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L. M., Hernandez, A. J., Parvathi, A., & Kumar, S. H. (2021). Bacterial Resistance to Antimicrobial Agents. Antibiotics, 10(5), 593. https://www.mdpi.com/2079-6382/10/5/593. Veluz, G., Pitchiah, S., & Alvarado, C. (2012). Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts. Poult Sci, 91(8), 2004-2010. Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther, 40(4), 277. Verraes, C., Van Boxstael, S., Van Meervenne, E., Van Coillie, E., Butaye, P., Catry, B., De Schaetzen, M.-A., Van Huffel, X., Imberechts, H., & Dierick, K. (2013). Antimicrobial resistance in the food chain: a review. International journal of environmental research and public health, 10(7), 2643-2669. Wagman, G. H. (1980). Antibiotics from micromonospora. Annual Reviews in Microbiology, 34(1), 537-558. Webber, M., & Piddock, L. (2003). The importance of efflux pumps in bacterial antibiotic resistance. Journal of antimicrobial chemotherapy, 51(1), 9-11. Weiner, L. M., Webb, A. K., Limbago, B., Dudeck, M. A., Patel, J., Kallen, A. J., Edwards, J. R., & Sievert, D. M. (2016). Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol, 37(11), 1288-1301. Werner, G., Coque, T. M., Franz, C. M., Grohmann, E., Hegstad, K., Jensen, L., van Schaik, W., & Weaver, K. (2013). Antibiotic resistant enterococci—tales of a drug resistance gene trafficker. Int J Med Microbiol, 303(6-7), 360-379. Witte, W. (2000). Selective pressure by antibiotic use in livestock. Int J Antimicrob Agents, 16, 19-24. Woźniak-Biel, A., Bugla-Płoskońska, G., Burdzy, J., Korzekwa, K., Ploch, S., & Wieliczko, A. (2019). Antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from humans and turkeys in Poland. Microb Drug Resist, 25(2), 277-286. Wright, G. D. (2005). Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliver Rev, 57(10), 1451-1470. Wyres, K. L., & Holt, K. E. (2018). Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol, 45, 131-139. Yang, S.-C., Lin, C.-H., Sung, C. T., & Fang, J.-Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol, 5, 241. Zheng, J.-x., Bai, B., Lin, Z.-w., Pu, Z.-y., Yao, W.-m., Chen, Z., Li, D.-y., Deng, X.-b., Deng, Q.-w., & Yu, Z.-j. (2018). Characterization of biofilm formation by Enterococcus faecalis isolates derived from urinary tract infections in China. J Med Microbiol, 67(1), 60.
|