字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:張懿方
研究生英文姓名:Chang, Yi-Fang
中文論文名稱:探討烏骨雞中糞腸球菌與屎腸球菌盛行率、抗生素抗藥性和生物膜生成特性
英文論文名稱:The prevalence, antibiotic resistance and biofilm formation of Enterococcus faecalis and Enterococcus faecium in silky fowls
指導教授姓名:林泓廷
口試委員中文姓名:教授︰蔡國珍
副教授︰黃崇雄
教授︰鄭光成
教授︰郭建民
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:40942008
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:88
中文關鍵詞:烏骨雞糞腸球菌屎腸球菌抗生素抗藥性生物膜生成特性四環黴素紅黴素卡那黴素
英文關鍵字:Silky fowlsEnterococcus faecalisEnterococcus faeciumAntibiotic resistanceBiofilm formationTetracyclineErythromycinKanamycin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
隨著科技的快速發展,抗生素被廣泛使用在治療人類細菌感染和飼養經濟動物上。其中家禽類因生產成本低,且沒有文化和宗教限制,是全世界消費最廣泛的肉類之一。因需求量逐年上升,養殖朝向密集飼養模式,加上氣候變遷劇烈,造成動物因「熱緊迫」和「冷緊迫」變得虛弱容易生病。因此,大多數國家會在飼料或水中加入不同種類的抗生素飼養家禽,用以預防或阻止疾病在食用動物間傳播,並促進食用動物生長。但有色雞種 (如烏骨雞) 對藥物的代謝率比白肉雞來得慢,再加上烏骨雞有「啄糞」的特性,較難掌控停藥期。而腸球菌 (Enterococcus) 是人和溫血動物胃腸道中的正常菌群,因此為家禽中最常檢出的抗生素抗藥性微生物之一,而臨床上分離率最高的腸球菌屬是糞腸球菌 (Enterococcus faecalis) 與屎腸球菌 (Enterococcus faecium)。另外腸球菌因生物膜形成能力強,可通過物理方式阻擋藥物滲透降低抗生素的敏感性;更可藉由水平基因移轉的方式,將遺傳抗藥性 DNA 片段轉移給其他的菌種,以上皆可提高腸球菌對抗生素耐受性,使抗生素抗藥性腸球菌 (Antibiotic-resistant Enterococci, ARE) 持續於環境中傳播,透過食物鏈轉移到人類生態系統。故本研究主要以臺灣市售烏骨雞作為研究目標,使用選擇性培養基分離樣品中的腸球菌,PCR 對菌種進行鑑定,並以鑑定後的分離株測試對抗生素敏感性和生物膜生成能力,最後針對實驗結果進行探討及分析。實驗結果表明,E. faecalis 和 E. faecium 是市售烏骨雞樣品中最常見的腸球菌菌種,並對於醫學或是動物養殖中使用的抗生素 (如 Tetracycline, Erythromycin 和 Kanamycin) 都具有高度抗藥性;另外在生物膜生成試驗中,83% 分離株皆可產生生物膜,其中更有 3 株 E. faecalis 具有強生物膜生成能力。根據上述得知,醫療及養殖上抗生素的使用,易使本身具有生物膜生成和基因移轉特性的腸球菌增加對抗生素的抗藥性,並透過食物鏈將抗藥性基因傳播到人類生態系統。因此,相關單位更應該制定相關防護措施,如限制或終止食用動物養殖中抗生素的使用,並監測食用肉製品中腸球菌的耐藥率,用以減輕消費性食品中 ARE 的傳播風險,維護從農場到餐桌整體供應鏈的食品安全。
With the rapid development of science and technology, antibiotics are widely used in the treatment of human bacterial infections and in raising economic animals. Among them, poultry is one of the most widely consumed meats in the world due to its low production cost and no cultural and religious restrictions. However, the demand has increased year by year, the farming has moved towards an intensive farming model, and the drastic climate change has caused animals to become weak and susceptible to diseases due to "heat stress" and "cold stress". Therefore, most countries feed poultry with different kinds of antibiotics in feed or water to prevent or stop the spread of disease among food animals and to promote the growth of food animals. But coloured broiler (such as silky fowls) have a slower metabolism than white broiler. In addition, silky chickens have the characteristic of "pecking manure", so it is difficult to control the withdrawal period. But colored chickens metabolized the drug more slowly than white broilers. Enterococcus is the normal flora in the gastrointestinal tract of humans and warm-blooded animals,it is the most commonly detected antibiotic-resistant microorganisms in poultry. Among, Enterococcus faecalis and Enterococcus faecalis are the Enterococcus with the highest clinical isolation rate. In addition, Enterococcus has a strong biofilm forming ability, which can physically block drug penetration to reduce antibiotic sensitivity; it can also transfer genetic drug-resistant DNA fragments to other strains by horizontal gene transfer. All of the above can increase the resistance of enterococci to antibiotics, so that antibiotic-resistant enterococci continue to spread in the environment and transfer to the human ecosystem through the food chain. Therefore, this study mainly took the silky fowls sold in Taiwan as the research target, using selective medium to isolate Enterococcus in the samples, identifying the bacterial species by PCR, and testing the antibiotic susceptibility and biofilm formation ability with the identified isolates, finally discuss and analyze the experimental results. Experimental results show that E. faecalis and E. faecium are the most common Enterococcus species in commercially available silky fowls samples and are highly resistant to antibiotics used in medicine or animal farming (such as Tetracycline, Erythromycin and Kanamycin). In addition, in the biofilm formation test, 83% of the isolates could produce biofilms, and 3 strains of E. faecalis had strong biofilm formation ability. According to the above, the use of antibiotics in medical treatment and animal feeding can easily make Enterococcus, which has the characteristics of biofilm formation and gene transfer, to increase the resistance to antibiotics, and spread the resistance genes to the human ecosystem through the food chain. Therefore, relevant units should formulate relevant protective measures, such as restricting or terminating the use of antibiotics in edible animal breeding, and monitoring the resistance rate of Enterococcus in edible meat products, to reduce the risk of transmission of ARE in consumer foods, and protect food safety across the entire supply chain from farm to fork.
謝誌 I
摘要 II
Abstract III
圖目錄 VII
表目錄 VIII
附錄目錄 IX
縮寫表 X
壹、 前言 1
貳、 文獻回顧 2
2.1抗生素 (Antibiotic) 2
2.1.1抗生素的歷史起源 2
2.1.2抗生素的種類&作用機制 3
2.1.3抗生素抗藥性 (Antimicrobial resistance, AMR) 5
2.1.4抗藥性機制 7
2.1.5抗藥性微生物傳播途徑 8
2.1.6抗藥性食源性微生物 10
2.2腸球菌 (Enterococcus) 13
2.2.1腸球菌歷史起源 13
2.2.2糞腸球菌 (Enterococcus faecalis) 14
2.2.3屎腸球菌 (Enterococcus faecium) 15
2.2.4食品中腸球菌之應用 15
2.2.5作為益生菌的相關風險 16
2.2.6腸球菌抗藥性(Antibiotic-resistant Enterococci, ARE) 18
2.2.7易具抗藥性之抗生素 18
2.2.8生物膜生成特性 22
2.2.9 ARE參與食源性疾病 23
2.3食用動物的養殖 25
2.3.1家禽使用的抗生素類別 25
2.3.2烏骨雞 (Silky fowl) 27
參、 實驗設計 29
肆、 材料與方法 30
4.1實驗材料 30
4.1.1實驗樣品來源 30
4.1.2實驗菌株 30
4.1.3引子對 30
4.1.3.1標準菌株 30
4.1.3.2抗藥性基因 31
4.1.4培養基 31
4.1.5反應緩衝液 32
4.1.6抗生素 33
4.1.7化學藥品 33
4.1.8試劑套組 33
4.1.9酵素 33
4.1.10實驗儀器與耗材 34
4.2實驗方法 35
4.2.1樣品處理 35
4.2.2菌株分離 35
4.2.2.1腸球菌 35
4.2.3菌株保存 35
4.2.4菌株活化 35
4.2.5生長曲線 36
4.2.6菌株鑑定 36
4.2.6.1 DNA萃取 36
4.2.6.2聚合酶鏈反應 37
4.2.6.3 DNA電泳 38
4.2.7 抗生素抗藥性試驗 38
4.2.8抗藥性基因檢測 38
4.2.9生物膜生成能力測試 40
4.2.10統計分析 40
伍、 結果與討論 41
5.1 烏骨雞樣品中腸球菌的盛行率 41
5.2 腸球菌分離株對抗生素的敏感性 42
5.3 腸球菌分離株的多重耐藥性 46
5.4 腸球菌分離株抗生素抗藥性基因 47
5.5 腸球菌分離株生物膜生成能力 48
5.6 腸球菌分離株抗藥性與生物膜生成間關係 49
陸、 結論 51
柒、 參考文獻 52
捌、 圖表 64
玖、 附錄 78
Aarestrup, F. M. (2005). Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic & clinical pharmacology & toxicology, 96(4), 271-281.
Aarestrup, F. M., Kruse, H., Tast, E., Hammerum, A. M., & Jensen, L. B. (2000). Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway. Microb Drug Resist, 6(1), 63-70.
Additives, E. P. o., Feed, P. o. S. u. i. A., Rychen, G., Aquilina, G., Azimonti, G., Bampidis, V., Bastos, M. d. L., Bories, G., Chesson, A., Cocconcelli, P. S., & Flachowsky, G. (2018). Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA Journal, 16(3), e05206.
Agyare, C., Boamah, V. E., Zumbi, C. N., & Osei, F. B. (2018). Antibiotic use in poultry production and its effects on bacterial resistance. Antimicrobial resistance—A global threat, 33-51.
Alzahrani, O. M., Fayez, M., Alswat, A. S., Alkafafy, M., Mahmoud, S. F., Al-Marri, T., Almuslem, A., Ashfaq, H., & Yusuf, S. (2022). Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Antibiotics, 11(3), 380.
Arias, C. A., & Murray, B. E. (2012). The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol, 10(4), 266-278.
Arthur, M., & Courvalin, P. (1993). Genetics and mechanisms of glycopeptide resistance in Enterococci. Antimicrob Agents Chemother, 37(8), 1563-1571.
Ayeni, F. A., Odumosu, B. T., Oluseyi, A. E., & Ruppitsch, W. (2016). Identification and prevalence of tetracycline resistance in enterococci isolated from poultry in Ilishan, Ogun State, Nigeria. Journal of pharmacy & bioallied sciences, 8(1), 69.
Badul, S., Abia, A. L., Amoako, D. G., Perrett, K., Bester, L. A., & Essack, S. Y. (2021). From the farms to the dining table: The distribution and molecular characteristics of antibiotic-resistant Enterococcus spp. in intensive pig farming in South Africa. Microorganisms, 9(5), 882.
Baumgartner, A., Kueffer, M., & Rohner, P. (2001). Occurrence and antibiotic resistance of enterococci in various ready-to-eat foods. Archiv für Lebensmittelhygiene, 52(1), 16-19.
Bertrand, X., Mulin, B., Viel, J., Thouverez, M., & Talon, D. (2000). Common PFGE patterns in antibiotic-resistant Enterococcus faecalis from humans and cheeses. Food Microbiol, 17(5), 543-551.
Bortolaia, V., Espinosa-Gongora, C., & Guardabassi, L. (2016). Human health risks associated with antimicrobial-resistant Enterococci and Staphylococcus aureus on poultry meat. Clin Microbiol Infect, 22(2), 130-140.
Buess, S., Zurfluh, K., Stephan, R., & Guldimann, C. (2019). Quantitative microbiological slaughter process analysis in a large-scale Swiss poultry abattoir. Food Control, 105, 86-93.
Bybee, S., Scorza, A., & Lappin, M. (2011). Effect of the probiotic Enterococcus faecium SF68 on presence of diarrhea in cats and dogs housed in an animal shelter. J Vet Intern Med, 25(4), 856-860.
Capita, R., & Alonso-Calleja, C. (2013). Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci Nutr, 53(1), 11-48.
Carcione, D., Leccese, G., Conte, G., Rossi, E., Intra, J., Bonomi, A., Sabella, S., Moreo, M., Landini, P., & Brilli, M. (2022). Lack of Direct Correlation between Biofilm Formation and Antimicrobial Resistance in Clinical Staphylococcus epidermidis Isolates from an Italian Hospital. Microorganisms, 10(6), 1163.
Castro, A., Santos, C., Meireles, H., Silva, J., & Teixeira, P. (2016). Food handlers as potential sources of dissemination of virulent strains of Staphylococcus aureus in the community. J Infect Public Health, 9(2), 153-160.
Cetinkaya, Y., Falk, P., & Mayhall, C. G. (2000). Vancomycin-resistant enterococci. Clin Microbiol Rev, 13(4), 686-707.
Ch’ng, J.-H., Chong, K. K., Lam, L. N., Wong, J. J., & Kline, K. A. (2019). Biofilm-associated infection by Enterococci. Nat Rev Microbiol, 17(2), 82-94.
Chaillou, S., Chaulot-Talmon, A., Caekebeke, H., Cardinal, M., Christieans, S., Denis, C., Hélène Desmonts, M., Dousset, X., Feurer, C., & Hamon, E. (2015). Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. The ISME journal, 9(5), 1105-1118.
Chajęcka-Wierzchowska, W., Zadernowska, A., & Łaniewska-Trokenheim, Ł. (2017). Virulence factors of Enterococcus spp. presented in food. LWT, 75, 670-676.
Chajęcka-Wierzchowska, W., Zarzecka, U., & Zadernowska, A. (2021). Enterococci isolated from plant-derived food-Analysis of antibiotic resistance and the occurrence of resistance genes. LWT, 139, 110549.
Chajęcka‐Wierzchowska, W., Zadernowska, A., & Łaniewska‐Trokenheim, Ł. (2016). Diversity of antibiotic resistance genes in Enterococcus strains isolated from ready‐to‐eat meat products. J Food Sci, 81(11), M2799-M2807.
Chang, S., Sievert, D. M., Hageman, J. C., Boulton, M. L., Tenover, F. C., Downes, F. P., Shah, S., Rudrik, J. T., Pupp, G. R., & Brown, W. J. (2003). Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med, 348(14), 1342-1347.
Chen, C. R., Malik, M., Snyder, M., & Drlica, K. (1996). DNA gyrase and topoisomerase IV on the bacterial chromosome: Quinolone-induced DNA cleavage. J Mol Biol, 258(4), 627-637. https://doi.org/DOI 10.1006/jmbi.1996.0274.
Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev, 65(2), 232-260.
Chow, J. W. (2000). Aminoglycoside resistance in enterococci. Clin Infect Dis, 31(2), 586-589.
Clarke, L., Fodey, T. L., Crooks, S. R., Moloney, M., O'Mahony, J., Delahaut, P., O'Kennedy, R., & Danaher, M. (2014). A review of coccidiostats and the analysis of their residues in meat and other food. Meat Science, 97(3), 358-374.
Comerlato, C. B., Resende, M. C. C. d., Caierão, J., & d'Azevedo, P. A. (2013). Presence of virulence factors in Enterococcus faecalis and Enterococcus faecium susceptible and resistant to vancomycin. Mem Inst Oswaldo Cruz, 108, 590-595.
Courvalin, P., Carlier, C., & Collatz, E. (1980). Plasmid-mediated resistance to aminocyclitol antibiotics in group D Streptococci. J Bacteriol, 143(2), 541-551.
Cusumano, J., Daffinee, K., Luther, M., Lopes, V., Caffrey, A., & LaPlante, K. (2018). Relationship Between Klebsiella pneumoniae Antimicrobial Resistance and Biofilm Formation. Open Forum Infectious Diseases (Vol. 5, p. S252): Oxford University Press.
Davis, R., & Brown, P. D. (2016). Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microbiol, 65(4), 261-271.
De Leener, E., Martel, A., De Graef, E., Top, J., Butaye, P., Haesebrouck, F., Willems, R., & Decostere, A. (2005). Molecular analysis of human, porcine, and poultry Enterococcus faecium isolates and their erm (B) genes. Applied and environmental microbiology, 71(5), 2766-2770.
Diaz, L., Kiratisin, P., Mendes, R. E., Panesso, D., Singh, K. V., & Arias, C. A. (2012). Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother, 56(7), 3917-3922.
Donadu, M. G., Ferrari, M., Mazzarello, V., Zanetti, S., Kushkevych, I., Rittmann, S. K.-M., Stájer, A., Baráth, Z., Szabó, D., & Urbán, E. (2022). No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens, 11(4), 471.
Dougherty, T. J., & Pucci, M. J. (2011). Antibiotic discovery and development: Springer Science & Business Media.
Elkins, C. A., & Nikaido, H. (2002). Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops. J Bacteriol, 184(23), 6490-6498.
European Food Safety Authority. (2008). Report from the Task Force on Zoonoses Data Collection including guidance for harmonized monitoring and reporting of antimicrobial resistance in commensal Escherichia coli and Enterococcus spp. from food animals. EFSA journal, 6(4), 141r.
Falagas, M. E., Rafailidis, P. I., & Matthaiou, D. K. (2010). Resistance to polymyxins: Mechanisms, frequency and treatment options. Drug Resist Updates, 13(4-5), 132-138. https://doi.org/10.1016/j.drup.2010.05.002.
FAO/WHO. (2001). Report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. FAO/WHO Cordoba, Argentina.
FONTANA, R., LIGOZZI, M., PITTALUGA, F., & SATTA, G. (1996). Intrinsic penicillin resistance in Enterococci. Microb Drug Resist, 2(2), 209-213.
Food and Drug Administration. (2015). Antimicrobials sold or distributed for use in food-producing animals. US Food and Drug Administration: Silver Spring, MD, USA.
Franz, C. M., Holzapfel, W. H., & Stiles, M. E. (1999). Enterococci at the crossroads of food safety? International journal of food microbiology, 47(1-2), 1-24.
Franz, C. M., Stiles, M. E., Schleifer, K. H., & Holzapfel, W. H. (2003). Enterococci in foods—a conundrum for food safety. International journal of food microbiology, 88(2-3), 105-122.
Frye, J., & Jackson, C. (2013). Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol, 4(135). https://doi.org/10.3389/fmicb.2013.00135.
Frye, J. G., & Jackson, C. R. (2013). Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from US food animals. Front Microbiol, 4, 135.
Furuya, E. Y., & Lowy, F. D. (2006). Antimicrobial-resistant bacteria in the community setting. Nat Rev Microbiol, 4(1), 36-45.
Galimand, M., Schmitt, E., Panvert, M., Desmolaize, B., Douthwaite, S., Mechulam, Y., & Courvalin, P. (2011). Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA, 17(2), 251-262.
García-Solache, M., & Rice, L. B. (2019). The Enterococcus: a model of adaptability to its environment. Clin Microbiol Rev, 32(2), e00058-00018.
Garrido, A. M., Gálvez, A., & Pulido, R. P. (2014). Antimicrobial resistance in enterococci. Journal of Infectious Diseases and Therapy.
Ghai, I., & Ghai, S. (2018). Understanding antibiotic resistance via outer membrane permeability. Infect Drug Resist, 11, 523.
Ghosh, A., Borst, L., Stauffer, S. H., Suyemoto, M., Moisan, P., Zurek, L., & Gookin, J. L. (2013). Mortality in kittens is associated with a shift in ileum mucosa-associated Enterococci from Enterococcus hirae to biofilm-forming Enterococcus faecalis and adherent Escherichia coli. J Clin Microbiol, 51(11), 3567-3578.
Giguere, S., Prescott, J., & Dowling, P. (2013). Antimicrobial drug use in poultry. IV Antimicrobial drug use in selected animal species. Antimicrobial Therapy in Veterinary Medicine John Wiley & Sons, Inc, Hoboken, NJ, 569-589.
Gilbert, P., Das, J., & Foley, I. (1997). Biofilm susceptibility to antimicrobials. Adv Dent Res, 11(1), 160-167.
Giraffa, G. (2002). Enterococci from foods. FEMS Microbiol Rev, 26(2), 163-171.
Goetting, V., Lee, K., & Tell, L. A. (2011). Pharmacokinetics of veterinary drugs in laying hens and residues in eggs: a review of the literature. J Vet Pharmacol Ther, 34(6), 521-556.
Gousia, P., Economou, V., Bozidis, P., & Papadopoulou, C. (2015). Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin. Foodborne Pathog Dis, 12(3), 214-220.
Guarcello, R., De Angelis, M., Settanni, L., Formiglio, S., Gaglio, R., Minervini, F., Moschetti, G., & Gobbetti, M. (2016). Selection of amine-oxidizing dairy lactic acid bacteria and identification of the enzyme and gene involved in the decrease of biogenic amines. Applied and Environmental Microbiology, 82(23), 6870-6880.
Guignard, B., Entenza, J. M., & Moreillon, P. (2005). β-lactams against methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol, 5(5), 479-489.
Gurung, J., Khyriem, A. B., Banik, A., Lyngdoh, W. V., Choudhury, B., & Bhattacharyya, P. (2013). Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, 17(4), 214.
Haag, S. R. (2014). FDA Industry Guidance Targeting Antibiotics Used in Livestock Will Not Result in Judicious Use or Reduction in Antibiotic-Resistant Bacteria. Fordham Envtl L Rev, 26, 313.
Hanchi, H., Mottawea, W., Sebei, K., & Hammami, R. (2018). The genus Enterococcus: between probiotic potential and safety concerns—an update. Front Microbiol, 9, 1791.
Hershberger, E., Donabedian, S., Konstantinou, K., Zervos, M. J., & Eliopoulos, G. M. (2004). Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology. Clin Infect Dis, 38(1), 92-98.
Hollenbeck, B. L., & Rice, L. B. (2012). Intrinsic and acquired resistance mechanisms in enterococcus. Virulence, 3(5), 421-569.
Hutchison, M., Taylor, M., Tchorzewska, M., Ford, G., Madden, R., & Knowles, T. (2017). Modelling‐based identification of factors influencing campylobacters in chicken broiler houses and on carcasses sampled after processing and chilling. J Appl Microbiol, 122(5), 1389-1401.
Huttner, A., Harbarth, S., Carlet, J., Cosgrove, S., Goossens, H., Holmes, A., Jarlier, V., Voss, A., & Pittet, D. (2013). Antimicrobial resistance: a global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrobial resistance and infection control, 2(1), 1-13.
Huycke, M. M., Sahm, D. F., & Gilmore, M. S. (1998). Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis, 4(2), 239.
Huys, G., D'Haene, K., Collard, J.-M., & Swings, J. (2004). Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Applied and environmental microbiology, 70(3), 1555-1562.
Jackson, C., Fedorka‐Cray, P., Davis, J., Barrett, J., Brousse, J., Gustafson, J., & Kucher, M. (2010). Mechanisms of antimicrobial resistance and genetic relatedness among enterococci isolated from dogs and cats in the United States. J Appl Microbiol, 108(6), 2171-2179.
Jacoby, G. A. (2005). Mechanisms of resistance to quinolones. Clin Infect Dis, 41(Supplement_2), S120-S126.
Jaglic, Z., Vlkova, H., Bardon, J., Michu, E., Cervinkova, D., & Babak, V. (2012). Distribution, characterization and genetic bases of erythromycin resistance in staphylococci and enterococci originating from livestock. Zoonoses and Public Health, 59(3), 202-211.
Josephine, H. R., Kumar, I., & Pratt, R. F. (2004). The perfect penicillin? Inhibition of a bacterial DD-peptidase by peptidoglycan-mimetic beta-lactams. J Am Chem Soc, 126(26), 8122-8123. https://doi.org/10.1021/ja048850s.
Kahne, D., Leimkuhler, C., Wei, L., & Walsh, C. (2005). Glycopeptide and lipoglycopeptide antibiotics. Chem Rev, 105(2), 425-448. https://doi.org/10.1021/cr030103a.
Kariyama, R., Mitsuhata, R., Chow, J. W., Clewell, D. B., & Kumon, H. (2000). Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant Enterococci. J Clin Microbiol, 38(8), 3092-3095.
Kim, Y. B., Seo, K. W., Son, S. H., Noh, E. B., & Lee, Y. J. (2019). Genetic characterization of high-level aminoglycoside-resistant Enterococcus faecalis and Enterococcus faecium isolated from retail chicken meat. Poult Sci, 98(11), 5981-5988.
Komba, E. V., Mdegela, R. H., Msoffe, P., Nielsen, L. N., & Ingmer, H. (2015). Prevalence, antimicrobial resistance and risk factors for thermophilic Campylobacter infections in symptomatic and asymptomatic humans in Tanzania. Zoonoses and Public Health, 62(7), 557-568.
Kumar, S., & Varela, M. F. (2012). Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci, 13(4), 4484-4495.
Lappin, M. R., Veir, J. K., Satyaraj, E., & Czarnecki-Maulden, G. (2009). Pilot study to evaluate the effect of oral supplementation of Enterococcus faecium SF68 on cats with latent feline herpesvirus 1. Journal of feline medicine and surgery, 11(8), 650-654.
Leach, K. L., Swaney, S. M., Colca, J. R., McDonald, W. G., Blinn, J. R., Thomasco, L. M., Gadwood, R. C., Shinabarger, D., Xiong, L., & Mankin, A. S. (2007). The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell, 26(3), 393-402.
Leverstein‐van Hall, M., Dierikx, C., Cohen Stuart, J., Voets, G., Van Den Munckhof, M., van Essen‐Zandbergen, A., Platteel, T., Fluit, A., Van de Sande‐Bruinsma, N., & Scharinga, J. (2011). Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin Microbiol Infect, 17(6), 873-880.
Lim, E.-S. (2016). Inhibitory effect of bacteriocin-producing lactic acid bacteria against histamine-forming bacteria isolated from Myeolchi-jeot. Fisheries and Aquatic Sciences, 19(1), 1-10.
Liu, Y.-Y., Wang, Y., Walsh, T. R., Yi, L.-X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., & Huang, X. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 16(2), 161-168.
Livermore, D. M. (2001). Of Pseudomonas, porins, pumps and carbapenems. Journal of Antimicrobial Chemotherapy, 47(3), 247-250.
Llewellyn, A., & Foey, A. (2017). Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients, 9(10), 1156.
Lodemann, U., Hübener, K., Jansen, N., & Martens, H. (2006). Effects of Enterococcus faecium NCIMB 10415 as probiotic supplement on intestinal transport and barrier function of piglets. Arch Anim Nutr, 60(1), 35-48.
Maasjost, J., Mühldorfer, K., de Jäckel, S. C., & Hafez, H. (2015). Antimicrobial susceptibility patterns of Enterococcus faecalis and Enterococcus faecium isolated from poultry flocks in Germany. Avian Dis, 59(1), 143-148.
Maddison, J. E., Page, S. W., & Church, D. B. (2008). Small animal clinical pharmacology: Elsevier Health Sciences.
Mąka, Ł., Maćkiw, E., Ścieżyńska, H., Pawłowska, K., & Popowska, M. (2014). Antimicrobial susceptibility of Salmonella strains isolated from retail meat products in Poland between 2008 and 2012. Food Control, 36(1), 199-204.
Mannu, L., Paba, A., Daga, E., Comunian, R., Zanetti, S., Duprè, I., & Sechi, L. A. (2003). Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. International journal of food microbiology, 88(2-3), 291-304.
Manson, A. L., Van Tyne, D., Straub, T. J., Clock, S., Crupain, M., Rangan, U., Gilmore, M. S., & Earl, A. M. (2019). Chicken meat-associated enterococci: influence of agricultural antibiotic use and connection to the clinic. Applied and environmental microbiology, 85(22), e01559-01519.
Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23(4), 795.
Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev, 24(4), 718-733.
Meibom, K. L., Blokesch, M., Dolganov, N. A., Wu, C.-Y., & Schoolnik, G. K. (2005). Chitin induces natural competence in Vibrio cholerae. Science, 310(5755), 1824-1827.
Mohamed, J. A., Huang, W., Nallapareddy, S. R., Teng, F., & Murray, B. E. (2004). Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect Immun, 72(6), 3658-3663.
Moore, J. E., Barton, M. D., Blair, I. S., Corcoran, D., Dooley, J. S., Fanning, S., Kempf, I., Lastovica, A. J., Lowery, C. J., & Matsuda, M. (2006). The epidemiology of antibiotic resistance in Campylobacter. Microbes and infection, 8(7), 1955-1966.
Moreno, M. F., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). The role and application of Enterococci in food and health. International journal of food microbiology, 106(1), 1-24.
National Chicken Council. (2020). Per capita consumption of poultry and livestock, 1960 to forecast 2021, in pounds.
Nielsen, K. M. (1998). Barriers to horizontal gene transfer by natural transformation in soil bacteria. APMIS Suppl, 84, 77-84.
Nilsson, O., Greko, C., & Bengtsson, B. (2009). Environmental contamination by vancomycin resistant Enterococci (VRE) in Swedish broiler production. Acta Vet Scand, 51(1), 1-6.
Nissen, P., Hansen, J., Ban, N., Moore, P. B., & Steitz, T. A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science, 289(5481), 920-930.
Onwuezobe, I. A., Oshun, P. O., & Odigwe, C. C. (2012). Antimicrobials for treating symptomatic non‐typhoidal Salmonella infection. Cochrane Db Syst Rev(11).
Page, S. (2006). Current use of antimicrobial growth promoters in food animals: The benefits. Antimicrobial growth promoters: where do we go from here, 136, 19-51.
Paterson, D. L. (2004). “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis, 38(Supplement_4), S341-S345.
Patterson, J., & Burkholder, K. (2003). Application of prebiotics and probiotics in poultry production. Poult Sci, 82(4), 627-631.
Portillo, A., Ruiz-Larrea, F., Zarazaga, M., Alonso, A., Martinez, J. L., & Torres, C. (2000). Macrolide resistance genes in Enterococcus spp. Antimicrob Agents Chemother, 44(4), 967-971.
Quednau, M., Ahrne, S., Petersson, A., & Molin, G. (1998). Antibiotic-resistant strains of Enterococcus isolated from Swedish and Danish retailed chicken and pork. J Appl Microbiol, 84(6), 1163-1170.
Quiloan, M. L., Vu, J., & Carvalho, J. (2012). Enterococcus faecalis can be distinguished from Enterococcus faecium via differential susceptibility to antibiotics and growth and fermentation characteristics on mannitol salt agar. Frontiers in Biology, 7(2), 167-177.
Ray, C. G., & Ryan, K. J. (2004). Sherris medical microbiology: an introduction to infectious diseases: McGraw-Hill NY.
Ray, C. G., & Ryan, K. J. (2014). Sherris Medical Microbiology: McGraw-Hill Education/Medical.
Rice, L. B. (1998). Tn 916 family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob Agents Chemother, 42(8), 1871-1877.
Roos, R. (2015). Consumer Reports Finds Bacteria Common on Chicken Breasts. Center for Infectious Disease Research and Policy University of Minnesota, diakses pada tanggal, 26.
Rouger, A., Tresse, O., & Zagorec, M. (2017). Bacterial contaminants of poultry meat: sources, species, and dynamics. Microorganisms, 5(3), 50.
Ruiz-Moyano, S., Martín, A., Benito, M. J., Casquete, R., Serradilla, M. J., & de Guía Córdoba, M. (2009). Safety and functional aspects of pre-selected lactobacilli for probiotic use in Iberian dry-fermented sausages. Meat science, 83(3), 460-467.
Russell, S. (2008). The effect of an acidic, copper sulfate-based commercial sanitizer on indicator, pathogenic, and spoilage bacteria associated with broiler chicken carcasses when applied at various intervention points during poultry processing. Poult Sci, 87(7), 1435-1440.
Růžičková, M., Vítězová, M., & Kushkevych, I. (2020). The characterization of Enterococcus genus: resistance mechanisms and inflammatory bowel disease. Open Medicine, 15(1), 211-224.
Sørensen, T. L., Blom, M., Monnet, D. L., Frimodt-Møller, N., Poulsen, R. L., & Espersen, F. (2001). Transient intestinal carriage after ingestion of antibiotic-resistant Enterococcus faecium from chicken and pork. N Engl J Med, 345(16), 1161-1166.
Sanlibaba, P., Tezel, B. U., & Senturk, E. (2018). Antimicrobial resistance of Enterococcus species isolated from chicken in Turkey. Korean journal for food science of animal resources, 38(2), 391.
Sanseverino, I., Navarro Cuenca, A., Loos, R., Marinov, D., & Lettieri, T. (2018). State of the Art on the Contribution of Water to Antimicrobial Resistance. Brussels: European Union.
Schleifer, K. H., & Kilpper-Bälz, R. (1984). Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Evol Microbiol, 34(1), 31-34.
Schwarz, F. V., Perreten, V., & Teuber, M. (2001). Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid, 46(3), 170-187.
Sherman, J. M. (1937). The Streptococci. Bacteriol Rev, 1(1), 3-97.
Sifaoui, F., Arthur, M., Rice, L., & Gutmann, L. (2001). Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob Agents Chemother, 45(9), 2594-2597.
Soonthornchaikul, N., & Garelick, H. (2009). Antimicrobial resistance of Campylobacter species isolated from edible bivalve molluscs purchased from Bangkok markets, Thailand. Foodborne Pathog Dis, 6(8), 947-951.
Talaro, K., Chess, B., Wiersema, D. S., & Sen, P. (2013). Foundations in Microbiology, 2012: McGraw-Hill.
Teuber, M., Meile, L., & Schwarz, F. (1999). Acquired antibiotic resistance in lactic acid bacteria from food. Lactic acid bacteria: Genetics, metabolism and applications, 115-137.
Thiercelin, M., & Jouhaud, L. (1899). Sur un diplocoque saprophyte de l'intestin susceptible de devenir pathogene. CR Soc Biol, 5(26971.2).
Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol, 3(9), 711-721.
Tian, Y., Xie, M., Wang, W., Wu, H., Fu, Z., & Lin, L. (2007). Determination of carnosine in Black-Bone Silky Fowl (Gallus gallus domesticus Brisson) and common chicken by HPLC. Eur Food Res Technol, 226(1), 311-314.
Tian, Y., Yu, H., & Wang, Z. (2019). Distribution of acquired antibiotic resistance genes among Enterococcus spp. isolated from a hospital in Baotou, China. BMC research notes, 12(1), 1-5.
Toledo-Arana, A., Valle, J., Solano, C., Arrizubieta, M. a. J., Cucarella, C., Lamata, M., Amorena, B., Leiva, J., Penadés, J. R., & Lasa, I. (2001). The Enterococcal surface protein, Esp, is involved in Enterococcus faecalis biofilm formation. Applied and environmental microbiology, 67(10), 4538-4545.
Tseng, B. S., Zhang, W., Harrison, J. J., Quach, T. P., Song, J. L., Penterman, J., Singh, P. K., Chopp, D. L., Packman, A. I., & Parsek, M. R. (2013). The extracellular matrix protects P seudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environmental microbiology, 15(10), 2865-2878.
Varela, M. F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L. M., Hernandez, A. J., Parvathi, A., & Kumar, S. H. (2021). Bacterial Resistance to Antimicrobial Agents. Antibiotics, 10(5), 593. https://www.mdpi.com/2079-6382/10/5/593.
Veluz, G., Pitchiah, S., & Alvarado, C. (2012). Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts. Poult Sci, 91(8), 2004-2010.
Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther, 40(4), 277.
Verraes, C., Van Boxstael, S., Van Meervenne, E., Van Coillie, E., Butaye, P., Catry, B., De Schaetzen, M.-A., Van Huffel, X., Imberechts, H., & Dierick, K. (2013). Antimicrobial resistance in the food chain: a review. International journal of environmental research and public health, 10(7), 2643-2669.
Wagman, G. H. (1980). Antibiotics from micromonospora. Annual Reviews in Microbiology, 34(1), 537-558.
Webber, M., & Piddock, L. (2003). The importance of efflux pumps in bacterial antibiotic resistance. Journal of antimicrobial chemotherapy, 51(1), 9-11.
Weiner, L. M., Webb, A. K., Limbago, B., Dudeck, M. A., Patel, J., Kallen, A. J., Edwards, J. R., & Sievert, D. M. (2016). Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol, 37(11), 1288-1301.
Werner, G., Coque, T. M., Franz, C. M., Grohmann, E., Hegstad, K., Jensen, L., van Schaik, W., & Weaver, K. (2013). Antibiotic resistant enterococci—tales of a drug resistance gene trafficker. Int J Med Microbiol, 303(6-7), 360-379.
Witte, W. (2000). Selective pressure by antibiotic use in livestock. Int J Antimicrob Agents, 16, 19-24.
Woźniak-Biel, A., Bugla-Płoskońska, G., Burdzy, J., Korzekwa, K., Ploch, S., & Wieliczko, A. (2019). Antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from humans and turkeys in Poland. Microb Drug Resist, 25(2), 277-286.
Wright, G. D. (2005). Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliver Rev, 57(10), 1451-1470.
Wyres, K. L., & Holt, K. E. (2018). Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr Opin Microbiol, 45, 131-139.
Yang, S.-C., Lin, C.-H., Sung, C. T., & Fang, J.-Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol, 5, 241.
Zheng, J.-x., Bai, B., Lin, Z.-w., Pu, Z.-y., Yao, W.-m., Chen, Z., Li, D.-y., Deng, X.-b., Deng, Q.-w., & Yu, Z.-j. (2018). Characterization of biofilm formation by Enterococcus faecalis isolates derived from urinary tract infections in China. J Med Microbiol, 67(1), 60.
(此全文20270807後開放外部瀏覽)
電子全文
全文檔開放日期:2027/08/07
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *