字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:史羽含
研究生英文姓名:Shih, Yu-Han
中文論文名稱:金柑副產物軟糖產品開發及抗氧化能力之分析
英文論文名稱:Product Development and Antioxidant Capacity Analysis of Gummy Candies with Kumquat (Fortunella margarita (Lour.) Swingle) By-products
指導教授姓名:張祐維
口試委員中文姓名:教授︰徐國強
教授︰徐慶琳
教授︰楊登傑
副教授︰陳與國
教授︰張祐維
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:40942006
請選擇論文為:應用型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:56
中文關鍵詞:金柑副產物果膠明膠軟糖抗氧化能力
英文關鍵字:kumquatby-productpectingelatingummy candyantioxidant activity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏收藏:0
金柑 (Kumquat) 為芸香科 (Rutaceae) 金柑屬 (Fortunella) 為最小的柑橘果實,果皮味甜而果肉酸經常加工製作成蜜餞等休閒食品,近年來休閒食品市場發展急遽增加,消費者選購產品時愈來愈注重食品成分,水果副產物因飽含許多營養成分適合開發、生產滿足消費者期望的食品。本次實驗使用頭城農場-藏酒酒莊所提供之金柑,經破碎榨汁後剩餘之果渣副產物,探討使用不同膠體:果膠及明膠製作金柑軟糖之抗氧化能力成果、物化性質、感官喜好。金柑副產物其水分 83.37%、無氮萃取物 14.86% 為材料主要成分,製作成果膠軟糖其成分為無氮萃取物 80.77%、水分含量 18.87%、水活性 0.54 為低度水活性食品、pH 值 2.37 保持低 pH 值對於高甲氧基果膠的凝膠作用是必要條件;明膠軟糖為無氮萃取物 61.49%、水分含量 32.34%、水活性為 0.67 屬於中度水活性、pH 值 2.92,兩者無氮萃取物比例均最高。金柑副產物製成軟糖產品外觀變化 L*、a*、b* 值均顯著下降 (p<0.05),果膠與明膠軟糖相比,明膠軟糖較明亮,而果膠軟糖較接近紅色及黃色色度較顯著,故可了解色澤呈現會受加工方式及加熱時間影響。抗氧化成分與抗氧化能力分析顯示,總酚含量 0.67-1.31 mg GAE/g、總類黃酮含量 0.15-0.47 mg QE/g、類胡蘿蔔素0.28-0.40 μg/g、DPPH 自由基清除力 0.52-0.70 mg ascorbic acid/g、鐵離子還原能力 0.90-2.68 mM,果膠軟糖有較高的總酚含量且鐵離子還原能力也顯著大於 (p<0.05) 明膠軟糖。在物性分析結果中,果膠軟糖硬度較高為 8.67 N,而明膠軟糖彈性較大 0.96,因膠體不同物理特性相距甚遠。9分制的感官品評結果顯示,明膠軟糖在硬度、彈性及整體接受度上較果膠軟糖高且皆獲得 6 分以上,而多數受試者給予明膠軟糖表面裹蔗糖粉或蔗糖粉 85% + 檸檬酸粉 15% 的組別有最高評價,明膠軟糖可經由此加工步驟達到遮掩特殊氣味的效果。綜合上述結果,不同膠體其軟糖成品因配方比例及製程差異,無論成分、色澤及物性分析皆有顯著差異,但兩者在抗氧化成分及能力方面皆有一定效果,使用明膠添加金柑副產物製作軟糖在本研究展現應用上的可行性且擁有較高消費者吸引力,不僅提高農產品商業價值促進全果利用還能使農業資源永續發展,在食品工業上具發展潛力。
Kumquat (Fortunella margarita (Lour.) Swingle) is the smallest fruit of the Rutaceae family and Fortunella genus. The peel is sweet and the pulp is sour. It is often processed into preserved fruit and other snacks. In recent years, the food industry has increased rapidly. Consumers pay more and more attention to food composition when purchasing products. Fruit by-products are suitable for the development of the industry, and the production meets consumers’ expectations for its abundant nutrients. In this experiment, the kumquat which provided by Toucheng Leisure Farm-Cang Jiu Winery were the by-products from crushing and juicing during the process of winemaking. This study investigated the differences of antioxidant capacity, physical properties and sensory analysis of kumquat gummies which were made respectively with pectin and gelatin. The main components of kumquat by-products were 83.37% moisture and 14.86% carbohydrates. The main composition of kumquat pectin gummies were 80.77% carbohydrates, 18.87% moisture content, water activity 0.54, pH 2.37. Maintaining low pH is necessary for gelation of high methoxyl pectins. The main components of kumquat gelatin gummies were 61.49% carbohydrates, 32.34% moisture content, 0.67 water activity. The highest ratio in both types of gummies were carbohydrate. The color value of soft candies which was made from kumquat by-products decreased significantly (p<0.05). Gelatin gummies were brighter than pectin gummies, while pectin gummies were closer to red and yellow. Therefore, the appearance was affected in color by the processing method and heating time. Antioxidant composition and antioxidant capacity analysis showed the total phenolic content 0.67-1.31 mg GAE/g, total flavonoid content 0.15-0.47 mg QE/g、total carotenoids content 0.28-0.40 μg/g. DPPH free radical-scavenging activity and ferric reducing antioxidant levels were 0.52-0.70 mg ascorbic acid/g and 0.90-2.68 mM. Pectin gummies had higher total phenolic content and also significantly better ferric reducing antioxidant power than gelatin gummies (p<0.05). In the physical property analysis results, pectin gummies had higher hardness level 8.67 N, while gelatin gummies had higher springiness level 0.96. Due to the different colloids the physical properties were far apart. 9-point sensory evaluation results showed that gelatin gummies scored higher than pectin gummies in hardness, elasticity and overall acceptability with more than 6 points at each properties. Most subjects gave the highest score to the gelatin gummies which were coated with sugar powder or with 85% sugar powder + 15% citric acid powder. In summary, both pectin gummies and gelatin gummies display differently in the composition, color and physical properties. Both have certain effects in terms of antioxidant components and abilities. In this study, kumquat gelatin gummies demonstrated feasibility and high consumer attraction. Therefore, it not only improves the commercial value of agricultural products and the utilization of whole fruits, but also enables the sustainable development of agricultural resources, which has development potential in the food industry.
壹、 前言 1
貳、 文獻回顧 2
一、 金柑資料 2
(一)、 金柑簡介 2
(二)、 金柑分類 2
(三)、 台灣金柑種植狀況 3
(四)、 金柑之生理活性成分 4
二、 軟糖定義 7
三、 食用膠的特性及應用 8
(一)、 果膠 (pectin) 8
1. 果膠的來源 8
2. 果膠的組成和結構 9
3. 果膠的凝膠作用 10
4. 果膠凝膠的影響因子 10
5. 柑橘類中的果膠 11
(二)、 明膠 (gelatin) 11
1. 明膠的來源 11
2. 明膠的組成和結構 11
3. 明膠的凝膠作用 12
4. 明膠凝膠的影響因子 13
四、 質地剖面分析 14
參、 實驗架構 16
肆、 實驗材料與方法 17
一、 實驗樣品與副原料 17
(一)、 實驗樣品 17
(二)、 副原料 17
二、 實驗藥品 17
三、 儀器設備 18
四、 實驗方法 18
(一)、 金柑副產物軟糖製備 18
(二)、 一般成分分析 18
(三)、 水活性 19
(四)、 pH 值 19
(五)、 色差分析 19
(六)、 總酚含量及抗氧化能力分析 19
(七)、 物性分析 21
(八)、 感官品評 21
(九)、 統計分析 22
伍、 結果與討論 23
一、 金柑副產物製成軟糖產品之成分變化 23
二、 金柑副產物製成軟糖產品之外觀變化 25
三、 不同膠體之金柑軟糖成品抗氧化成分與能力分析 26
四、 不同膠體之金柑軟糖成品物性分析 27
五、 金柑軟糖之感官品評 28
陸、 結論 29
柒、 未來發展 30
捌、 參考文獻 31
玖、 圖表 40
壹拾、 附錄 53
台灣優良食品管理技術規範專則2.1版【糖果】 (2020) 台灣優良食品發展協會。
行政院農業委員會農糧署 (2020) 農情報告資源網。檢自https://agr.afa.gov.tw/afa/afa_frame.jsp (Jun. 11, 2021)。
李國明 (2001) 宜蘭地區金柑病毒病現況及因應對策。花蓮區農業專訊。35:20-23。
柳豔、李磊、趙鴻雁 (2006) 丹酚酸B清除DPPH有機自由基活性及影響因素研究。時珍國醫國藥。17(12):2406
陳右人、邱祝櫻、阮素芬、李文豪 (2017) 柑橘類的產期調節。臺中區農業改良場特刊。134:59-89。
陳任芳、巫宣毅、林立、蔡依真、賴信順 (2012) 金柑健康管理病蟲害防治技術手冊。行政院農業委員會花蓮區農業改良場。花蓮,臺灣。
陳瑋倫 (2018) 即食粉圓製程之改善。國立中正大學化學工程研究所碩士論文。嘉義,臺灣。
陳建浩 (2020) 零嘴市場與成長趨勢。工商時報名家評論周報。檢自https://view.ctee.com.tw/business/13476.html (Jun. 11, 2021)。
陶俊、張上隆、徐建國、劉春榮 (2003) 柑橘果實主要類胡蘿蔔素成分及含量分析。中國農業科學。36 (10):1202-1208。
黃阿賢、陳祈男 (2011) 金柑的種類與形態。技術服務。22 (3):9-12。
廖國英、徐信次、吳啓智、郭長生、李金龍、林金和 (1999) 台灣的小果柑橘。中國園藝。45 (1):37-41。
衛生福利部食品藥物管理署 (2021)。食品營養成分資料庫 (新版) 檢自https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178 (Apr. 24, 2022)。
應紹舜 (1998) 金橘屬。台灣高等植物彩色圖誌。第六卷:111-115。
AOAC. (2005). Official methods of analysis, 18th edn. AOAC International, Maryland.
Abdulmola, N. A., Hember, M. W. N., Richardson, R. K., & Morris, E. R. (1996). Application of polymer blending laws to starch-gelatin composites. Carbohydrate Polymers, 31(1-2), 53-63.
Abeysinghe, D. C., Li, X., Sun, C. D., Zhang, W. S., Zhou, C. H., & Chen, K. S. (2007). Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food Chemistry, 104(4), 1338-1344.
Addepalli, V., & Suryavanshi, S. V. (2018). Catechin attenuates diabetic autonomic neuropathy in streptozotocin induced diabetic rats. Biomedicine & Pharmacotherapy, 108, 1517-1523.
Agunloye, O. M., Oboh, G., Ademiluyi, A. O., Ademosun, A. O., Akindahunsi, A. A., Oyagbemi, A. A., Adedapo, A. A. (2019). Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomedicine & Pharmacotherapy, 109, 450-458.
Ahn, S., Halake, K., & Lee, J. (2017). Antioxidant and ion-induced gelation functions of pectins enabled by polyphenol conjugation. International Journal of Biological Macromolecules, 101, 776-782.
Akwetey, W. Y., & Knipe, C. L. (2012). Sensory attributes and texture profile of beef burgers with gari. Meat Science, 92(4), 745-748.
Al-Ruqaie, I. M., Kasapis, S., & Abeysekera, R. (1997). Structural properties of pectin-gelatin gels. Part II: effect of sucrose/glucose syrup. Carbohydrate Polymers, 34(4), 309-321.
Ali, F., Rahul, Jyoti, S., Naz, F., Ashafaq, M., Shahid, M., & Siddique, Y. H. (2019). Therapeutic potential of luteolin in transgenic Drosophila model of Alzheimer's disease. Neuroscience Letters, 692, 90-99.
Asami, D. K., Hong, Y. J., Barrett, D. M., & Mitchell, A. E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51(5), 1237-1241.
Barreca, D., Bellocco, E., Caristi, C., Leuzzi, U., & Gattuso, G. (2011). Kumquat (Fortunella japonica Swingle) juice: flavonoid distribution and antioxidant properties. Food Research International, 44(7), 2190-2197.
Behera, B. C., Mishra, R., & Mohapatra, S. (2021). Microbial citric acid: Production, properties, application, and future perspectives. Food Frontiers, 2(1), 62-76.
Belitz, H. D., & Grosch, W. (1999). Food chemistry. New York: Springer Verlag.
Benzie, I. F. F., & Szeto, Y. T. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 47(2), 633-636.
Bourne, M. (2002). Food texture and viscosity: concept and measurement. New York: Academic Press.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lwt-Food Science and Technology, 28(1), 25-30.
Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317-333.
Burey, P., Bhandari, B. R., Rutgers, R. P. G., Halley, P. J., & Torley, P. J. (2009). Confectionery Gels: A Review on Formulation, Rheological and Structural Aspects. International Journal of Food Properties, 12(1), 176-210.
Caffall, K. H., & Mohnen, D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research, 344(14), 1879-1900.
Cappa, C., Lavelli, V., & Mariotti, M. (2015). Fruit candies enriched with grape skin powders: physicochemical properties. Lwt-Food Science and Technology, 62(1), 569-575.
Chen, X., McClements, D. J., Zhu, Y. Q., Chen, Y., Zou, L. Q., Liu, W., Liu, C. M. (2018). Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions. Food Research International, 114, 30-37.
Cheynier, V. (2005). Polyphenols in foods are more complex than often thought. American Journal of Clinical Nutrition, 81(1), 223S-229S.
Chirife, J., & María del Buera, P. (1994). Water activity, glass transition and microbial stability in concentrated/semimoist food systems. Journal of Food Science, 59(5), 921-927.
Chirug, L., Okun, Z., Ramon, O., & Shpigelman, A. (2018). Iron ions as mediators in pectin-flavonols interactions. Food Hydrocolloids, 84, 441-449.
Christiaens, S., Van Buggenhout, S., Houben, K., Kermani, Z. J., Moelants, K. R. N., Ngouemazong, E. D., Hendrickx, M. E. G. (2016). Process-structure-function relations of pectin in food. Critical Reviews in Food Science and Nutrition, 56(6), 1021-1042.
Clark, A., & Ross-Murphy, S. (1990). Polymers and gels. London: Elsevier Science.
Colodel, C., Vriesmann, L. C., & Petkowicz, C. L. D. (2019). Rheological characterization of a pectin extracted from ponkan (Citrus reticulata blanco cv. ponkan) peel. Food Hydrocolloids, 94, 326-332.
Cook, N. C., & Samman, S. (1996). Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of Nutritional Biochemistry, 7(2), 66-76.
Costa, F., Cappellin, L., Longhi, S., Guerra, W., Magnago, P., Porro, D., Gasperi, F. (2011). Assessment of apple (Malus x domestica Borkh.) fruit texture by a combined acoustic-mechanical profiling strategy. Postharvest Biology and Technology, 61(1), 21-28.
Cui, J. F., Ren, W. B., Zhao, C. Y., Gao, W., Tian, G. F., Bao, Y. M., Zheng, J. K. (2020). The structure-property relationships of acid- and alkali-extracted grapefruit peel pectins. Carbohydrate Polymers, 229.
Cuppo, F., Venuti, M., & Cesaro, A. (2001). Kinetics of gelatin transitions with phase separation: T-jump and step-wise DSC study. International Journal of Biological Macromolecules, 28(4), 331-341.
da Silva, L. B., Queiroz, M. B., Fadini, A. L., da Fonseca, R. C. C., Germer, S. P. M., & Efraim, P. (2016). Chewy candy as a model system to study the influence of polyols and fruit pulp (acai) on texture and sensorial properties. Lwt-Food Science and Technology, 65, 268-274.
Daood, H. G., Vinkler, M., Markus, F., Hebshi, E., & Biacs, P. (1996). Antioxidant vitamin content of spice red pepper (paprika) as affected by technological and varietal factors. Food Chemistry, 55(4), 365-372.
Djabourov, M. (1991). Gelation—a review. Polymer International, 25(3), 135-143.
Domínguez Avila, J. A., Villegas Ochoa, M. A., Alvarez Parrilla, E., Montalvo González, E., & González Aguilar, G. A. (2018). Interactions between four common plant-derived phenolic acids and pectin, and its effect on antioxidant capacity. Journal of Food Measurement and Characterization, 12(2), 992-1004.
Durazzo, A., Lucarini, M., Souto, E. B., Cicala, C., Caiazzo, E., Izzo, A. A., Santini, A. (2019). Polyphenols: A concise overview on the chemistry, occurrence, and human health. Phytotherapy Research, 33(9), 2221-2243.
Edwards, S., Lillford, P., & Blanshard, J. (1987). Food structure and behaviour. London: Academic Press.
Ergun, R., Lietha, R., & Hartel, R. W. (2010). Moisture and Shelf Life in Sugar Confections. Critical Reviews in Food Science and Nutrition, 50(2), 162-192.
Fan, S. L., Gao, X., Chen, P., & Li, X. (2018). Myricetin ameliorates glucocorticoid-induced osteoporosis through the ERK signaling pathway. Life Sciences, 207, 205-211.
Farias, D. D., Neri-Numa, I. A., de Araujo, F. F., & Pastore, G. M. (2020). A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chemistry, 306, 125630.
Fei, J., Liang, B., Jiang, C., Ni, H., & Wang, L. (2019). Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomedicine pharmacotherapy, 109, 1586-1592.
Finer, E., Franks, F., Phillips, M., & Suggett, A. (1975). Gel formation from solutions of single‐chain gelatin. Biopolymers, 14(10), 1995-2005.
Fraeye, I., Duvetter, T., Doungla, E., Van Loey, A., & Hendrickx, M. (2010). Fine-tuning the properties of pectin calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends in Food Science & Technology, 21(5), 219-228.
Gómez-Caravaca, A. M., Verardo, V., Segura-Carretero, A., Fernández-Gutiérrez, A., & Caboni, M. F. (2014). Phenolic compounds and saponins in plants grown under different irrigation regimes. In R. R. Watson (Ed.), Polyphenols in Plants (pp. 37-52): Elsevier.
Garcia-Viguera, C., Zafrilla, P., Romero, F., Abellan, P., Artes, F., & Tomas-Barberan, F. A. (1999). Color stability of strawberry jam as affected by cultivar and storage temperature. Journal of Food Science, 64(2), 243-247.
Glickman, M. (1969). Food industry. New York: Academic Press.
Gong, M. Y., & Bassi, A. (2016). Carotenoids from microalgae: a review of recent developments. Biotechnology Advances, 34(8), 1396-1412.
Harbornne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481-504.
Ho, S. C., & Lin, C. C. (2008). Investigation of heat treating conditions for enhancing the anti-inflammatory activity of citrus fruit (Citrus reticulata) peels. Journal of Agricultural and Food Chemistry, 56(17), 7976-7982.
Hu, W. W., Chen, S. G., Wu, D. M., Zhu, K., & Ye, X. Q. (2021). Physicochemical and macromolecule properties of RG-I enriched pectin from citrus wastes by manosonication extraction. International Journal of Biological Macromolecules, 176, 332-341.
Huang, B. X., Liu, J. X., Ma, D. X., Chen, G. X., Wang, W., & Fu, S. P. (2018). Myricetin prevents dopaminergic neurons from undergoing neuroinflammation-mediated degeneration in a lipopolysaccharide-induced Parkinson's disease model. Journal of Functional Foods, 45, 452-461.
Hui, Y. H. (2006). Handbook of food science, technology, and engineering. London: CRC press.
Hwang, H., & Sorensen, C. M. (1996). Shear effects during the gelation of aqueous gelatin. Physical Review E, 53(5), 5075-5078.
Jeffery, M. S. (2001). Grained and ungrained confections. Manufact. Conf (Vol. 73, pp. 47-48).
Johnston-Banks, F. A. (1990). Food gels. London: Elsevier Applied Science Publishers.
Jomova, K., & Valko, M. (2013). Health protective effects of carotenoids and their interactions with other biological antioxidants. European Journal of Medicinal Chemistry, 70, 102-110.
Kasapis, S., Al-Marhoobi, I. M., Deszczynski, M., Mitchell, J. R., & Abeysekera, R. (2003). Gelatin vs polysaccharide in mixture with sugar. Biomacromolecules, 4(5), 1142-1149.
Kealy, T. (2006). Application of liquid and solid rheological technologies to the textural characterisation of semi-solid foods. Food Research International, 39(3), 265-276.
Kelebek, H. (2010). Sugars, organic acids, phenolic compositions and antioxidant activity of Grapefruit (Citrus paradisi) cultivars grown in Turkey. Industrial Crops and Products, 32(3), 269-274.
Kim, E. H. J., Corrigan, V. K., Wilson, A. J., Waters, I. R., Hedderley, D. I., & Morgenstern, M. P. (2012). Fundamental Fracture Properties Associated with Sensory Hardness of Brittle Solid Foods. Journal of Texture Studies, 43(1), 49-62.
Kiokias, S., Proestos, C., & Varzakas, T. (2016). A review of the structure, biosynthesis, absorption of carotenoids-analysis and properties of their common natural extracts. Current Research in Nutrition Food Science, 4(Special Issue Carotenoids March 2016), 25-37.
Konopacka, D., & Plocharski, W. J. (2004). Effect of storage conditions on the relationship between apple firmness and texture acceptability. Postharvest Biology and Technology, 32(2), 205-211.
Koyasako, A., & Bernhard, R. (1983). Volatile constituents of the essential oil of kumquat. Journal of Food Science, 48(6), 1807-1812.
Laura, A., Moreno-Escamilla, J. O., Rodrigo-García, J., & Alvarez-Parrilla, E. (2019). Phenolic compounds. In Postharvest physiology and biochemistry of fruits and vegetables (pp. 253-271): Elsevier.
Lee, H. S. (2001). Characterization of carotenoids in juice of red navel orange (Cara cara). Journal of Agricultural and Food Chemistry, 49(5), 2563-2568.
Liu, R. H. (2003). Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. American Journal of Clinical Nutrition, 78(3), 517S-520S.
Lootens, D., Capel, F., Durand, D., Nicolai, T., Boulenguer, P., & Langendorff, V. (2003). Influence of pH, Ca concentration, temperature and amidation on the gelation of low methoxyl pectin. Food Hydrocolloids, 17(3), 237-244.
Mandalari, G., Bennett, R. N., Bisignano, G., Saija, A., Dugo, G., Lo Curto, R. B., Waldron, K. W. (2006). Characterization of flavonoids and Pectins from bergamot (Citrus bergamia Risso) peel, a major byproduct of essential oil extraction. Journal of Agricultural and Food Chemistry, 54(1), 197-203.
Mercado-Mercado, G., Laura, A., & Alvarez-Parrilla, E. (2020). Effect of pectin on the interactions among phenolic compounds determined by antioxidant capacity. Journal of Molecular Structure, 1199, 126967.
Michon, C., Cuvelier, G., Relkin, P., & Launay, B. (1997). Influence of thermal history on the stability of gelatin gels. International Journal of Biological Macromolecules, 20(4), 259-264.
Minifie, B. (2012). Chocolate, cocoa and confectionery: science and technology. NY: Springer Science & Business Media.
Mualikrishna, G., & Tharanathan, R. N. (1994). Characterization of pectic polysaccharides from pulse husks. Food Chemistry, 50(1), 87-89.
Normand, V., Muller, S., Ravey, J. C., & Parker, A. (2000). Gelation kinetics of gelatin: a master curve and network modeling. Macromolecules, 33(3), 1063-1071.
Nowacka, M., Sledz, M., Wiktor, A., & Witrowa-Rajchert, D. (2014). Changes of Radical Scavenging Activity and Polyphenols Content During Storage of Dried Apples. International Journal of Food Properties, 17(6), 1317-1331.
Oberholster, R., Cowan, K., Molnar, P., & Toth, G. (2001). Biochemical basis of color as an aesthetic quality in citrus sinensis. Journal of Agricultural and Food Chemistry, 49(1), 303-307.
Oey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review. Trends in Food Science & Technology, 19(6), 320-328.
Okenfull, D. G. (1991). The chemistry and technology of pectin. New York: Academic Press.
Olcay, N., & Demir, M. K. (2021). Effect of kumquat (Fortunella margarita) powders dried by different methods on some physical and chemical properties of cake. Journal of Food Measurement and Characterization, 15(6), 5360-5368.
Papoutsis, K., Pristijono, P., Golding, J. B., Stathopoulos, C. E., Bowyer, M. C., Scarlett, C. J., & Vuong, Q. V. (2018). Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous citrus pomace extracts. Food Bioscience, 21, 20-26.
Pawelczyk, A., Zwawiak, J., & Zaprutko, L. (2021). Kumquat Fruits as an Important Source of Food Ingredients and Utility Compounds. Food Reviews International.
Periche, A., Heredia, A., Escriche, I., Andres, A., & Castello, M. L. (2014). Optical, mechanical and sensory properties of based-isomaltulose gummy confections. Food Bioscience, 7, 37-44.
Peyrelasse, J., Lamarque, M., Habas, J., & El Bounia, N. (1996). Rheology of gelatin solutions at the sol-gel transition. Physical Review E, 53(6), 6126-6133.
Pinheiro-Sant'Ana, H. M., Anunciacao, P. C., Souza, C. S. E., de Paula, G. X., Salvo, A., Dugo, G., & Giuffrida, D. (2019). Quali-quantitative profile of native carotenoids in kumquat from brazil by HPLC-DAD-APCI/MS. Foods, 8(5), 166-167.
Poiana, M. A., Munteanu, M. F., Bordean, D. M., Gligor, R., & Alexa, E. (2013). Assessing the effects of different pectins addition on color quality and antioxidant properties of blackberry jam. Chemistry Central Journal, 7.
Porayanee, M., Katemake, P., & Duangmal, K. (2015). Effect of gelatin concentrations and glucose syrup to sucroseratios on textural and opticalproperties of gelatin gel. Journal of Food Science and Agricultural Technology, 1, 26-30.
Privalov, P. L., & Gill, S. J. (1989). The hydrophobic effect: a reappraisal. Pure and Applied Chemistry, 61(6), 1097-1104.
Prokopowich, D. J., & Biliaderis, C. G. (1995). A Comparative-Study of the Effect of Sugars on the Thermal and Mechanical-Properties of Concentrated Waxy Maize, Wheat, Potato and Pea Starch Gels. Food Chemistry, 52(3), 255-262.
Queiroz, G. d. C., Rego, R., & Jardim, D. (2014). Brasil Bakery & Confectionery Trends 2020. São Paulo: ITAL, pp. 159-195.
Quiros-Sauceda, A. E., Ayala-Zavala, J. F., Sayago-Ayerdi, S. G., Velez-de la Rocha, R., Sanudo-Barajas, J. A., & Gonzalez-Aguilar, G. A. (2014). Added dietary fiber affects antioxidant capacity and phenolic compounds content extracted from tropical fruit. Journal of Applied Botany and Food Quality, 87, 227-233.
Rahman, M. S., & Labuza, T. P. (2007). Water activity and food preservation. In Handbook of food preservation (pp. 465-494): CRC Press.
Ramful, D., Tarnus, E., Aruoma, O. I., Bourdon, E., & Bahorun, T. (2011). Polyphenol composition, vitamin C content and antioxidant capacity of Mauritian citrus fruit pulps. Food Research International, 44(7), 2088-2099.
Ridley, B. L., O'Neill, M. A., & Mohnen, D. A. (2001). Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry, 57(6), 929-967.
Rix, A. (1990). Sugar confectionery manufacture. New York: Van Nostrand Reinhold.
Rodriguez-Amaya, D. B. (1999). A guide to carotenoid analysis. Washington DC: ILDI Press.
Sadek, E. S., Makris, D. P., & Kefalas, P. (2009). Polyphenolic composition and antioxidant characteristics of kumquat (Fortunella margarita) peel fractions. Plant Foods for Human Nutrition, 64(4), 297-302.
Sagar, N. A., Pareek, S., Sharma, S., Yahia, E. M., & Lobo, M. G. (2018). Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Comprehensive Reviews in Food Science and Food Safety, 17(3), 512-531.
Saini, R. K., Nile, S. H., & Park, S. W. (2015). Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International, 76, 735-750.
Santos, M. D., de Lima, J. J., Petkowicz, C. L. D., & Candido, L. M. B. (2013). Chemical characterization and evaluation of the antioxidant potential of gabiroba jam (Campomanesia xanthocarpa Berg). Acta Scientiarum-Agronomy, 35(1), 73-82.
Schirra, M., Palma, A., D'Aquino, S., Angioni, A., Minello, E. V., Melis, M., & Cabras, P. (2008). Influence of postharvest hot water treatment on nutritional and functional properties of kumquat (Fortunella japonica Lour. Swingle Cv. Ovale) fruit. Journal of Agricultural and Food Chemistry, 56(2), 455-460.
Ścibisz, I., & Mitek, M. (2005). Aktywność przeciwutleniajaca i zawartość związków fenolowych w dżemach otrzymanych z owoców borówki wysokiej (Vaccinium corymbosum L.) oraz ich zmiany podczas przechowywania. Żywność: nauka-technologia-jakość, 12(2 (43), Supl.), 210-221.
Sembiring, E. N., Elya, B., & Sauriasari, R. (2018). Phytochemical screening, total flavonoid and total phenolic content and antioxidant activity of different parts of Caesalpinia bonduc (L.) roxb. Pharmacognosy journal, 10(1).
Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International journal of molecular sciences, 16(10), 24673-24706.
Stejskal, V., Vejsada, P., Cepak, M., Spicka, J., Vacha, F., Kouril, J., & Policar, T. (2011). Sensory and textural attributes and fatty acid profiles of fillets of extensively and intensively farmed Eurasian perch (Perca fluviatilis L.). Food Chemistry, 129(3), 1054-1059.
Stippl, V., Delgado, A., & Becker, T. (2004). Development of a method for the optical in-situ determination of pH value during high-pressure treatment of fluid food. Innovative Food Science & Emerging Technologies, 5(3), 285-292.
Sudha, M. L., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chemistry, 104(2), 686-692.
Suutarinen, J., Konkapaa, K., Heinio, R. L., Autio, K., Mustranta, A., Karppinen, S., . . . Mokkila, M. (2002). Effects of calcium chloride-based prefreezing treatments on the quality factors of strawberry jams. Journal of Food Science, 67(2), 884-894.
Szakaly, Z., Szente, V., Kover, G., Polereczki, Z., & Szigeti, O. (2012). The influence of lifestyle on health behavior and preference for functional foods. Appetite, 58(1), 406-413.
Taniwaki, M., & Kohyama, K. (2012). Mechanical and acoustic evaluation of potato chip crispness using a versatile texture analyzer. Journal of Food Engineering, 112(4), 268-273.
Thakur, B. R., Singh, R. K., & Handa, A. K. (1997). Chemistry and uses of pectin - a review. Critical Reviews in Food Science and Nutrition, 37(1), 47-73.
Tireki, S., Sumnu, G., & Sahin, S. (2021). Correlation between physical and sensorial properties of gummy confections with different formulations during storage. Journal of Food Science and Technology-Mysore, 58(9), 3397-3408.
Tosh, S. M., Marangoni, A. G., Hallett, F. R., & Britt, I. J. (2003). Aging dynamics in gelatin gel microstructure. Food Hydrocolloids, 17(4), 503-513.
Vega-Mercado, H., Gongora-Nieto, M. M., & Barbosa-Canovas, G. V. (2001). Advances in dehydration of foods. Journal of Food Engineering, 49(4), 271-289.
Veis, A. (1964). The macromolecular chemistry of gelatin. New York: Academic Press.
Vincken, J. P., Schols, H. A., Oomen, R., McCann, M. C., Ulvskov, P., Voragen, A. G. J., & Visser, R. G. F. (2003). If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiology, 132(4), 1781-1789.
Voragen, A. G. J., Coenen, G. J., Verhoef, R. P., & Schols, H. A. (2009). Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20(2), 263-275.
Vuolo, M. M., Lima, V. S., & Junior, M. R. M. (2019). Phenolic compounds: structure, classification, and antioxidant power. In Bioactive compounds (pp. 33-50): Elsevier.
Wang, Y. C., Chuang, Y. C., & Ku, Y. H. (2007). Quantitation of bioactive compounds in citrus fruits cultivated in Taiwan. Food Chemistry, 102(4), 1163-1171.
Waterhouse, A. L. (2002). Determination of total phenolics. Current Protocols in Food Analytical Chemistry, 6(1), I1. 1.1-I1. 1.4.
Willats, W. G. T., McCartney, L., Mackie, W., & Knox, J. P. (2001). Pectin: cell biology and prospects for functional analysis. Plant Molecular Biology, 47(1-2), 9-27.
Wilson, L., & Fry, J. (1986). Extensin—a major cell wall glycoprotein. Plant Cell Environment, 9(4), 239-260.
Zakynthinos, G., & Varzakas, T. (2016). Carotenoids: from plants to food industry. Current Research in Nutrition Food Science, 4(Special Issue), 38-51.
Zhang, Y. C., & Barringer, S. (2018). Effect of hydrocolloids, sugar, and citric acid on strawberry volatiles in a gummy candy. Journal of Food Processing and Preservation, 42(1).
Zhen, L., & Opara, U. L. (2013). Approaches to analysis and modeling texture in fresh and processed foods - A review. Journal of Food Engineering, 119(3), 497-507.

電子全文
全文檔開放日期:2022/07/26
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *