字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:何宥緗
研究生英文姓名:HE,YOU-SIANG
中文論文名稱:穀物乳酸菌發酵飲料的製備及其抗氧化活性評估
英文論文名稱:Preparation of fermented crop drink by lactic acid bacteria and evaluation of the anti- oxidant activity of the fermented product
指導教授姓名:蔡國珍
口試委員中文姓名:副教授︰吳建輝
副教授︰吳冠政
助理教授︰陳建利
教授︰蔡國珍
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:40842006
請選擇論文為:應用型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:83
中文關鍵詞:黑豆胚芽米漿酵素水解乳酸菌發酵抗氧化活性
英文關鍵字:Black bean germ rice milkenzymatic hydrolysislactic acid bacteriafermentationantioxidant activity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
黑豆富含蛋白質、大豆異黃酮與花青素,胚芽米蛋白質含量高且含多種維生素。本研究以胚芽米與黑豆混合原料,進行酵素水解與乳酸菌發酵,以開發富含蛋白質且抗氧化活性高的穀物乳酸菌發酵飲品。
以glucoamylase水解黑豆胚芽米混合漿的建議條件如下,黑豆漿與胚芽米漿比例為75:25,以10 Unit/mL glucoamylase 於60℃、水解5小時所得還原糖與游離胺基態氮 (Free amino-nitrogen, FAN) 含量分別為 31.99 mg/mL與 0.39 mg/mL。藉由6株乳酸菌 (Lactobacillus sp. FPP 2509、FPS 2520、FKR 3739、FPA 3709、FPP 3711和FKR 3737) 分別於37℃發酵此酵素水解液48小時,篩選出生長快速、生長適中及生長最慢的3株菌株 FPP 2509、FPA 3709和FKR 3737 。此3株菌株以起始菌量為7 log CFU/mL、於 37℃分別發酵混合穀物酵素水解液24小時,所得菌數均高於 9 Log CFU/mL以上,發酵液pH 值為3.50–3.68,FAN、胜肽與總多酚含量分別為1.25–1.88 mg/mL、36.07–37.20 mg/mL與0.27–0.39 mg GAE/mL。3株菌發酵上清液經10倍稀釋後對DPPH與ABTS‧+ 自由基清除能力分別為72–78%,與54–59%,其還原力相當於238.11–296.49 μg/mL Vitamin C,以 FPP 2509 最高,其次為 FPA 3709 及 FKR 3737,其均明顯高於未發酵酵之原料混合漿液及酵素水解液。此外,此三株菌發酵液之總多酚含量與其DPPH與ABTS‧+ 自由基清除能力,以及還原力間的相關係數 (r) 分別為0.9497、0.9433及0.9602。
綜言之,以黑豆胚芽米混合漿經酵素水解與乳酸菌發酵,可有效釋出原料活性成份,可開發出高營養之抗氧化活性飲品。
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
縮寫表 VII
壹、前言 1
貳、文獻回顧 3
一、 黑豆 3
(一) 黑豆簡介 3
(二) 黑豆的營養組成分 3
(三) 黑豆之機能性成分與功能 7
1 稻米 8
(一) 米之簡介 8
(二) 稻米之結構 9
(三) 稻米之成分與種類 10
(四) 發芽米之特性與機能性成分 11
(五) 胚芽米之營養成份 12
(六) 胚芽米之功能性 14
(七) 米胚芽油 15
(八) 發酵稻米提升其營養價值 15
三、澱粉酶 16
(一) 澱粉酶之簡介 16
(二) 澱粉酶之分類 16
(三) 對於澱粉酶產量、活性和穩定性的影響 18
(四) 葡萄糖澱粉酶之簡介與水解機制 19
(五) 葡萄糖澱粉酶之應用 19
四、乳酸菌 20
(一) 乳酸菌發酵簡介 20
(二) 乳酸菌的生理機能 21
參、實驗架構 23
肆、材料與方法 24
一、實驗材料 24
二、儀器設備 25
三、實驗方法 25
(一) 黑豆漿及胚芽米漿的製備 25
(二) 黑豆胚芽米漿酵素水解 25
(三) 豆米漿酵素水解液之乳酸菌發酵 26
(四) 乳酸菌發酵液抗氧化活性及可溶性固形物含量探討 27
(五) 分析方法 27
伍、結果與討論 33
陸、結論 42
(一) 黑豆胚芽米漿之酵素處理條件 42
(二) 豆米漿乳酸發酵液之最適培養條件與發酵期間之變化 42
(三) 最終發酵產品之抗氧化活性、總可溶性固形物及相關性分析 42
柒、參考文獻 44
捌、圖表 59
59
59

圖目錄
圖 一、葡萄糖標準曲線 (A) 及以glucoamylase於60℃水解不同比例之黑豆胚芽米漿之還原糖變化 (B) 58
圖 二、以glucoamylase於60℃水解不同比例之黑豆胚芽米漿之胺基態氮變化 59
圖 三、六株乳酸菌株分別在未水解 (A) 及酵素水解 (B) 之黑豆胚芽米漿於37°C發酵48小時之菌數變化 60
圖 四、六株乳酸菌株分別在未水解 (A) 及酵素水解 (B) 之黑豆胚芽米漿於37°C發酵48小時之pH值變化 61
圖 五、六株乳酸菌株分別在未水解 (A) 及酵素水解 (B) 之黑豆胚芽米漿於37°C發酵48小時之可滴定酸度變化 62
圖 六、六株乳酸菌株分別在未水解 (A) 及酵素水解 (B) 之黑豆胚芽米漿於37°C發酵48小時之胺基態氮變化 63
圖 七、不同接菌量對三株乳酸菌發酵對豆米漿水解液所得菌數 (A)、pH值 (B)、可滴定酸度 (C)、胺基態氮 (D)、胜肽 (E)、與總酚 (F) 含量之影響 64
圖 八、不同培養溫度對三株乳酸菌發酵對豆米漿水解液所得菌數 (A)、pH值 (B)、可滴定酸度 (C)、胺基態氮 (D)、胜肽 (E)、與總酚 (F) 含量之影響 65
圖 九、乳酸菌FPP 2509培養於最適豆米漿水解液於37℃下培養24小時,於0、6、12、18及24小時所得乳酸菌菌數、pH值、可滴定酸、游離胺基態氮、胜肽及總多酚含量 66
圖 十、乳酸菌FPA 3709培養於最適豆米漿水解液於37℃下培養24小時,於0、6、12、18及24小時所得乳酸菌菌數、pH值、可滴定酸、游離胺基態氮、胜肽及總多酚含量 67
圖 十一、乳酸菌FKR 3737培養於最適豆米漿水解液於37℃下培養24小時,於0、6、12、18及24小時所得乳酸菌菌數、pH值、可滴定酸、游離胺基態氮、胜肽及總多酚含量 68
圖 十二、抗壞血酸標準曲線 (A) 及10倍稀釋後之乳酸菌發酵上清液 (B) 之DPPH自由基清除能力 69
圖 十三、Trolox標準曲線 (A) 及10倍稀釋後之乳酸菌發酵上清液 (B) 之ABTS•+自由基清除能力 70
圖 十四、抗壞血酸標準曲線 (A) 及10倍稀釋後之乳酸菌發酵上清液 (B) 之還原力 71
圖 十五、乳酸菌發酵液之可溶性固形物含量 72
圖 十六、乳酸菌發酵液之總多酚與其DPPH自由基清除活性 (A)、ABTS•+自由基清除能力 (B) 及還原力 (C) 之相關性 73
圖 十七、乳酸菌發酵液之胜肽與其DPPH自由基清除活性 (A)、ABTS•+自由基清除能力 (B) 及還原力 (C) 之相關性 74 



中華民國國家標準(CNS) 3441。2007。乳品檢驗法。經濟部標準檢驗局。
王良峡、刘若颖、林福鸿、刘娟、夏志。2015。支链氨基酸在运动中的作用研究进展。氨基酸和生物资源(1):7-12。
王艳、兰向东、陈钊、桑井艳、谢文军、宋善武、张鹏、朱。2016。糙米、胚芽米和精白米营养成分分析。食品科技。41(11):156-159。
朱礸英。2002。富含γ—胺基丁酸發芽糙米之研製。
行政院農業委員會農糧署統計室。2020。台灣地區農產統計報告。
宋勳、洪梅珠、許愛娜。1991。臺灣稻米品質之研究。
林玉婷。2018。以為只有蛋白質?大豆功能多到超乎想像!
林素汝、吳永培。2013。國產機能米營養成分及保健功能研究。農業生技產業季刊(36):44-51。
柯智元。2010。乳酸菌發酵黑豆奶最適產 γ-胺基丁酸條件及以強迫游泳試驗探討其抗憂鬱效果。碩士論文。國立臺灣海洋大學。基隆市。
洪梅珠、楊嘉凌、許志聖、劉瑋婷。1999。稻米蛋白質含量之變異。臺中區農業改良場研究彙報(65):1-11。
胡國鍵。2010。魚腸道乳酸菌之篩選及其抑制巨噬細胞 RAW 264.7 一氧化氮產生及模擬腸胃道耐受性之探討。碩士論文。國立臺灣海洋大學。基隆市。
連大進。1995。談黑豆栽培與利用。台南區農業專訊(12)。
連大進、游添榮、吳昭慧。2001。黑豆台南 5 號之育成. 臺南區農業改良場研究彙報(38):1-19。
陳書豪。2006。探討樟芝的溫度變化對液態發酵與固態發酵生產三萜類與多醣體之影響。國立中央大學。桃園市。
陳國誠。1989。酵素工程學。第 26 頁。
陳智強。2004。培養條件對乳酸菌胞外多醣生產及抗氧化性之影響。碩士論文。國立臺灣大學。台北市。
曾慶瀛、黃士禮、洪沄利。1993。即溶烏豆粉及烏豆簽之製造與特性之探討。中華生質能源學會會誌 12:171-8。
葉建成。2021。黑豆與黑豆芽多醣 -蛋白結合物之分子性質與 體外膽鹽結合功能分析。碩士論文。天主教輔仁大學。新北市。
龍湘美。(2004)。乳酸菌細菌素抗菌作用及其在食品上應用之回顧。碩士論文。國立臺灣海洋大學。基隆市。
Abdou, A. M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., & Yokogoshi, H. (2006). Relaxation and immunity enhancement effects of γ‐aminobutyric acid (GABA) administration in humans. Biofactors, 26(3), 201-208.
Ackland, M. L., & Michalczyk, A. A. (2016). Zinc and infant nutrition. Archives of biochemistry and biophysics, 611, 51-57.
Adewale, B. M., O, A. K., Kafayat, B., & Nosimot, B. (2013). Rice- Coconut Yoghurt: Preparation, Nutritional and Sensory Qualities. Asian Journal of Agriculture and Rural Development, 3(12), 924-928.
Ahsan, S., Khaliq, A., Chughtai, M. F. J., Nadeem, M., Tahir, A. B., Din, A. A., Ntsefong, G. N., Shariati, M. A., Rebezov, M., Yessimbekov, Z., & Thiruvengadam, M. (2022). Technofunctional quality assessment of soymilk fermented with Lactobacillus acidophilus and Lactobacillus casei. Biotechnology and Applied Biochemistry, 69(1), 172-182. doi:https://doi.org/10.1002/bab.2094
Al-Doury, M. K. W., Hettiarachchy, N. S., & Horax, R. (2018). Rice-Endosperm and Rice-Bran Proteins: A Review. Journal of the American Oil Chemists' Society, 95(8), 943-956. doi:https://doi.org/10.1002/aocs.12110
Amoozegar, M. A., Malekzadeh, F., & Malik, K. A. (2003). Production of amylase by newly isolated moderate halophile, Halobacillus sp. strain MA-2. Journal of microbiological methods, 52(3), 353-359.
Mahmood-Ur- Rahman Ansari. (2021). Recent Advances in Rice Research.
AOAC (1984). Official Methods of Analysis. Association of Official Analytical Chemists. AOAC, Arlington, 14th Edition.
Arteaga, V. G., Leffler, S., Muranyi, I., Eisner, P., & Schweiggert-Weisz, U. (2021). Sensory profile, functional properties and molecular weight distribution of fermented pea protein isolate. Current research in Food Science, 4, 1-10.
Ashokkumar, K., Govindaraj, M., Vellaikumar, S., Shobhana, V. G., Karthikeyan, A., Akilan, M., & Sathishkumar, J. (2020). Comparative profiling of volatile compounds in popular south Indian traditional and modern rice varieties by gas chromatography–mass spectrometry analysis. Frontiers in Nutrition, 7, 599119.
Bai, X., Byun, B. Y., & Mah, J.-H. (2013). Formation and destruction of biogenic amines in Chunjang (a black soybean paste) and Jajang (a black soybean sauce). Food Chemistry, 141(2), 1026-1031. doi:https://doi.org/10.1016/j.foodchem.2013.03.054
Battistini, C., Gullón, B., Ichimura, E. S., Gomes, A. M. P., Ribeiro, E. P., Kunigk, L., Moreira, J. U. V., & Jurkiewicz, C. (2018). Development and characterization of an innovative synbiotic fermented beverage based on vegetable soybean. Brazilian Journal of Microbiology, 49, 303-309.
Benincasa, C., Muccilli, S., Amenta, M., Perri, E., & Romeo, F. V. (2015). Phenolic trend and hygienic quality of green table olives fermented with Lactobacillus plantarum starter culture. Food Chemistry, 186, 271-276.
Bergman, C. J., & Xu, Z. (2003). Genotype and environment effects on tocopherol, tocotrienol, and γ‐oryzanol contents of Southern US rice. Cereal Chemistry, 80(4), 446-449.
Bouchenak, M., & Lamri-Senhadji, M. (2013). Nutritional Quality of Legumes, and Their Role in Cardiometabolic Risk Prevention: A Review. Journal of Medicinal Food, 16(3), 185-198. doi:10.1089/jmf.2011.0238
Brandam, C., Fahimi, N., & Taillandier, P. (2016). Mixed cultures of Oenococcus oeni strains: a mathematical model to test interaction on malolactic fermentation in winemaking. Lebensmittel-Wissenschaft & Technologie - Food Science and Technology, 69, 211-216.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie - Food Science and Technology, 28(1), 25-30. doi:https://doi.org/10.1016/S0023-6438(95)80008-5
Burlando, B., & Cornara, L. (2014). Therapeutic properties of rice constituents and derivatives (Oryza sativa L.): A review update. Trends in Food Science & Technology, 40(1), 82-98. doi:https://doi.org/10.1016/j.tifs.2014.08.002
Cardador-Martínez, A., Martínez-Tequitlalpan, Y., Gallardo-Velazquez, T., Sánchez-Chino, X. M., Martínez-Herrera, J., Corzo-Ríos, L. J., & Jiménez-Martínez, C. (2020). Effect of Instant Controlled Pressure-Drop on the Non-Nutritional Compounds of Seeds and Sprouts of Common Black Bean (Phaseolus vulgaris L.). Molecules, 25(6), 1464. doi:https://doi.org/10.3390/molecules25061464
Chawla, R., & Patil, G. R. (2010). Soluble Dietary Fiber. Comprehensive Reviews in Food Science and Food Safety, 9(2), 178-196. doi:https://doi.org/10.1111/j.1541-4337.2009.00099.x
Chen, D.-L., Tong, X., Chen, S.-W., Chen, S., Wu, D., Fang, S.-G., Wu, J., & Chen, J. (2010). Heterologous expression and biochemical characterization of α-glucosidase from Aspergillus niger by Pichia pastroris. Journal of Agricultural and Food Chemistry, 58(8), 4819-4824.
Chen, J., Wu, Y., Yang, C., Xu, X., & Meng, Y. (2017). Antioxidant and hypolipidemic effects of soymilk fermented via Lactococcus acidophilus MF204. Food & Function, 8(12), 4414-4420.
Chilibeck, P. D., Vatanparast, H., Pierson, R., Case, A., Olatunbosun, O., Whiting, S. J., Beck, T. J., Pahwa, P., & Biem, H. J. (2013). Effect of exercise training combined with isoflavone supplementation on bone and lipids in postmenopausal women: A randomized clinical trial. Journal of Bone and Mineral Research, 28(4), 780-793. doi:10.1002/jbmr.1815
Chávez-Santoscoy, R. A., Tovar, A. R., Serna-Saldivar, S. O., Torres, N., & Gutiérrez-Uribe, J. A. (2014). Conjugated and free sterols from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors and their effect on lipid metabolism and cholesterol transport in rat primary hepatocytes. Genes Nutrition, 9(1), 367. doi:10.1007/s12263-013-0367-1
Choung, M.-G., Baek, I.-Y., Kang, S.-T., Han, W.-Y., Shin, D.-C., Moon, H.-P., & Kang, K.-H. (2001). Isolation and Determination of Anthocyanins in Seed Coats of Black Soybean (Glycine max (L.) Merr.). Journal of Agricultural and Food Chemistry, 49(12), 5848-5851. doi:10.1021/jf010550w
Church, F. C., Swaisgood, H. E., Porter, D. H., & Catignani, G. L. (1983). Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science, 66(6), 1219-1227.
Constantino, A., Rodrigues, B., Leon, R., Barros, R., & Raposo, S. (2021). Alternative chemo-enzymatic hydrolysis strategy applied to different microalgae species for bioethanol production. Algal Research, 56, 102329.
Costa, K. K. F. D., Soares Júnior, M. S., Rosa, S. I. R., Caliari, M., & Pimentel, T. C. (2017). Changes of probiotic fermented drink obtained from soy and rice byproducts during cold storage. Lebensmittel-Wissenschaft & Technologie, 78, 23-30. doi:https://doi.org/10.1016/j.lwt.2016.12.017
Cullumbine, H., Basnayake, V., & Wickramanayake, T. W. (1950).
Mineral Metabolism on Rice Diets. British Journal of Nutrition, 4(2-3),
101-111. doi:10.1079/BJN19500025
Dahl, W. J., & Stewart, M. L. (2015). Position of the Academy of Nutrition and Dietetics: Health implications of dietary fiber. Journal of the Academy of Nutrition and Dietetics, 115(11), 1861-1870.
Dajanta, K., Apichartsrangkoon, A., & Chukeatirote, E. (2011). Antioxidant properties and total phenolics of Thua Nao (a Thai fermented soybean) as affected by Bacillus-fermentation. Journal of Microbial Biochem Technology, 3, 56-59.
Damián-Medina, K., Salinas-Moreno, Y., Milenkovic, D., Figueroa-Yáñez, L., Marino-Marmolejo, E., Higuera-Ciapara, I., Vallejo-Cardona, A., & Lugo-Cervantes, E. (2020). In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon, 6(3), e03632. doi:https://doi.org/10.1016/j.heliyon.2020.e03632
Das, D., & Goyal, A. (2015). Antioxidant activity and γ-aminobutyric acid (GABA) producing ability of probiotic Lactobacillus plantarum DM5 isolated from Marcha of Sikkim. Lebensmittel-Wissenschaft & Technologie - Food Science and Technology, 61(1), 263-268. doi:https://doi.org/10.1016/j.lwt.2014.11.013
Davalos, B. H.-L. A., Bartolome, B., & Amigo, L. (2005). Preparation of antioxidant enzymatic hydrolysates from alpha-lactalbumin and beta-actoglobulin. Identification of active peptides by HPLC–MS/MS. Journal of Agricultural and Food Chemistry, 53, 588-593.
de Boer, J., Schösler, H., & Aiking, H. (2017). Towards a reduced meat diet: Mindset and motivation of young vegetarians, low, medium and high meat-eaters. Appetite, 113, 387-397.
Declerck, N., Machius, M., Wiegand, G., Huber, R., & Gaillardin, C. (2000). Probing structural determinants specifying high thermostability in Bacillus licheniformis α-amylase. Journal of Molecular Biology, 301(4), 1041-1057.
Elias, R. J., Kellerby, S. S., & Decker, E. A. (2008). Antioxidant activity of proteins and peptides. Critical Reviews in Food Science and Nutrition, 48(5), 430-441.
Ellaiah, P., Adinarayana, K., Bhavani, Y., Padmaja, P., & Srinivasulu, B. (2002). Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochemistry, 38(4), 615-620.
Fetriyuna, F. (2015). The potential of darmo black soybean varieties as an alternative of a promising food for future. International Journal on Advanced Science, Engineering and Information Technology, 5(1), 44-46.
Friedman, M., & Brandon, D. L. (2001). Nutritional and Health Benefits of Soy Proteins. Journal of Agricultural and Food Chemistry, 49(3), 1069-1086. doi:10.1021/jf0009246
García, F. C., Bestion, E., Warfield, R., & Yvon-Durocher, G. J. P. o. t. N. A. o. S. (2018). Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proceedings of the National Academy of Sciences, 115(43), 10989-10994.
Ghanghas, N., M. T, M., Sharma, S., & Prabhakar, P. K. (2022). Classification, Composition, Extraction, Functional Modification and Application of Rice (Oryza sativa) Seed Protein: A Comprehensive Review. Food Reviews International, 38(4), 354-383. doi:10.1080/87559129.2020.1733596
Ghosh, K., Ray, M., Adak, A., Dey, P., Halder, S. K., Das, A., Jana, A., Parua, S., Mohapatra, P. K. D., & Pati, B. R. (2015). Microbial, saccharifying and antioxidant properties of an Indian rice based fermented beverage. Food Chemistry, 168, 196-202.
Gueguen, Y., Chemardin, P., Janbon, G., Arnaud, A., & Galzy, P. (1998). Investigation of the β-glucosidases potentialities of yeast strains and application to bound aromatic terpenols liberation. In Studies in Organic Chemistry (Vol. 53, 149-157). Elsevier.
Helland, M. H., Wicklund, T., & Narvhus, J. A. (2004). Growth and metabolism of selected strains of probiotic bacteria, in maize porridge with added malted barley. International Journal of Food Microbiology, 91(3), 305-313.
Ho, S. C., Woo, J., Lam, S., Chen, Y., Sham, A., & Lau, J. (2003). Soy protein consumption and bone mass in early postmenopausal Chinese women. Osteoporosis International, 14(10), 835-842.
Hose, H., & Sozzi, T. (1991). Probiotics, fact or fiction. Journal of Chemical Technology & Biotechnology, 51(4), 540-544.
doi:https://doi.org/10.1002/jctb.280510412
Huang, R.-Y., & Chou, C.-C. (2008). Heating affects the content and distribution profile of isoflavones in steamed black soybeans and black soybean koji. Journal of Agricultural and Food Chemistry, 56(18), 8484-8489.
Hur, S. J., Lee, S. Y., Kim, Y.-C., Choi, I., & Kim, G.-B. (2014). Effect of fermentation on the antioxidant activity in plant-based foods. Food Chemistry, 160, 346-356.
Hyun, Y. J., Kim, J. G., Jung, S. K., & Kim, J. Y. (2021). Fermented Rice Germ Extract Ameliorates Abnormal Glucose Metabolism via Antioxidant Activity in Type 2 Diabetes Mellitus Mice. Applied Sciences, 11(7). doi:10.3390/app11073091
Izmirlioglu, G., & Demirci, A. (2012). Ethanol production from waste potato mash by using Saccharomyces cerevisiae. Applied Sciences, 2(4), 738-753.
Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota, Y., & Kikuchi, M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. Journal of Nutrition, 130(7), 1695-1699.
Jeng, T. L., Shih, Y. J., Wu, M. T., & Sung, J. M. (2010). Comparisons of flavonoids and anti-oxidative activities in seed coat, embryonic axis and cotyledon of black soybeans. Food Chemistry, 123(4), 1112-1116.
Juliano, B. O. (1985a). Criteria and Tests for Rice Grain Qualities. In: Rice Chemistry and Technology. 2nd Edition. American Association of Cereal Chemists, 443-524.
Juliano, B. O. (1985b). Polysaccharides, protein, and lipids of rice. Rice Chemistry and Technology, American Association of Cereal Chemist, Saint Paul, 59-174.
Juliano, B. O. (1993a). Nutritional value of rice and rice diets Rice in human nutrition. (International Rice Research Institute (IRRI) Philippines and Food and Agriculture Organization of the United Nations), Rome. 61-84.
Juliano, B. O. (1993b). Grain structure, composition and consumers. In: Rice in human Nutrition. (International Rice Research Institute (IRRI) Philippines and Food and Agriculture Organization of the United Nations), Rome. No. 26.
Juliano, C., Cossu, M., Alamanni, M. C., & Piu, L. (2005). Antioxidant activity of gamma-oryzanol: Mechanism of action and its effect on oxidative stability of pharmaceutical oils. International Journal of Pharmaceutics, 299(1-2), 146-154.
Kandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58-63. doi:https://doi.org/10.1016/j.cofs.2015.11.012
Kaur, I. P., Chopra, K., & Saini, A. (2002). Probiotics: potential pharmaceutical applications. European Journal of Pharmaceutical Sciences, 15(1), 1-9. doi:10.1016/s0928-0987(01)00209-3
Kim, I.-H., Kim, C.-J., You, J.-M., Lee, K.-W., Kim, C.-T., Chung, S.-H., & Tae, B.-S. (2002). Effect of roasting temperature and time on the chemical composition of rice germ oil. Journal of the American Oil Chemists' Society, 79(5), 413-418.
Kim, J. A., Jung, W. S., Chun, S. C., Yu, C. Y., Ma, K. H., Gwag, J. G., & Chung, I. M. (2006). A correlation between the level of phenolic compounds and the antioxidant capacity in cooked-with-rice and vegetable soybean (Glycine max L.) varieties. European Food Research and Technology, 224(2), 259-270.
Kostadinović Veličkovska, S., Brühl, L., Mitrev, S., Mirhosseini, H., Matthäus, B. J. E. j. o. l. s., & technology. (2015). Quality evaluation of cold‐pressed edible oils from Macedonia. European Journal of Lipid Science and Technology, 117(12), 2023-2035.
Krishnanunni, K., Senthilvel, P., Ramaiah, S., & Anbarasu, A. (2015). Study of chemical composition and volatile compounds along with in-vitro assay of antioxidant activity of two medicinal rice varieties: Karungkuravai and Mappilai samba. Journal of Food Science and Technology, 52(5), 2572-2584.
Kudre, T., Benjakul, S., & Kishimura, H. (2013). Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. Journal of the Science of Food and Agriculture, 93. doi:10.1002/jsfa.6052
Kumar, P., & Satyanarayana, T. (2009). Microbial glucoamylases: characteristics and applications. Critical Reviews in Biotechnology, 29(3), 225-255. doi:10.1080/07388550903136076
Kwaw, E., Ma, Y., Tchabo, W., Apaliya, M. T., Wu, M., Sackey, A. S., Xiao, L., & Tahir, H. E. (2018). Effect of lactobacillus strains on phenolic profile, color attributes and antioxidant activities of lactic-acid-fermented mulberry juice. Food Chemistry, 250, 148-154. doi:https://doi.org/10.1016/j.foodchem.2018.01.009
Lara-Díaz, V. J., Gaytán-Ramos, A. A., Dávalos-Balderas, A. J., Santos-Guzmán, J., Mata-Cárdenas, B. D., Vargas-Villarreal, J., Barbosa-Quintana, A., Sanson, M., López-Reyes, A. G., & Moreno-Cuevas, J. E. (2009). Microbiological and toxicological effects of Perla black bean (Phaseolus vulgaris L.) extracts: In vitro and in vivo studies. Basic & Clinical Pharmacology & Toxicology, 104(2), 81-86. doi:10.1111/j.1742-7843.2008.00330.x
Lee, A.-L., Yu, Y.-P., Hsieh, J.-F., Kuo, M.-I., Ma, Y.-S., & Lu, C.-P. (2018). Effect of germination on composition profiling and antioxidant activity of the polysaccharide-protein conjugate in black soybean [Glycine max (L.) Merr.]. International Journal of Biological Macromolecules, 113, 601-606. doi:https://doi.org/10.1016/j.ijbiomac.2018.02.145
Liao, H. F., Chou, C. J., Wu, S. H., Khoo, K. H., Chen, C. F., & Wang, S. Y. (2001). Isolation and characterization of an active compound from black soybean [Glycine max (L.) Merr.] and its effect on proliferation and differentiation of human leukemic U937 cells. Anti-Cancer Drugs, 12(10), 841-846. doi:10.1097/00001813-200111000-00008
Lin, H., Rao, J., Shi, J., Hu, C., Cheng, F., Wilson, Z. A., Zhang, D., & Quan, S. (2014). Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars. Journal of Integrative Plant Biology, 56(9), 826-836. doi:https://doi.org/10.1111/jipb.12228
Lin, M.-Y., & Yen, C.-L. (1999). Antioxidative Ability of Lactic Acid Bacteria. Journal of Agricultural and Food Chemistry, 47(4), 1460-1466. doi:10.1021/jf981149l
Ma, Y., & Li, D. (2011). Impact of enzymatic hydrolysis on the crystal structure, and thermal and textural properties of corn starch. African Journal of Biotechnology, 10(17), 3430-3435.
Makras, L., Triantafyllou, V., Fayol-Messaoudi, D., Adriany, T., Zoumpopoulou, G., Tsakalidou, E., Servin, A., & De Vuyst, L. (2006). Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Research Microbiol, 157(3), 241-247. doi:10.1016/j.resmic.2005.09.002
Mao, X.-B., Eksriwong, T., Chauvatcharin, S., & Zhong, J.-J. (2005). Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris.
Process Biochemistry, 40(5), 1667-1672.
doi:https://doi.org/10.1016/j.procbio.2004.06.046
Martins S, Mussatto SI, Martı´nez-Avila G, et al. (2011). Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnology Advances, 29, 365–73.
Meagher, M. M., & Reilly, P. J. (1989). Kinetics of the hydrolysis of di‐and trisaccharides with Aspergillus niger glucoamylases I and II. Biotechnology and Bioengineering, 34(5), 689-693.
Mehta, D., & Satyanarayana, T. (2016). Bacterial and archaeal α-amylases: diversity and amelioration of the desirable characteristics for industrial applications. Frontiers in Microbiology, 7, 1129.
Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. doi:10.1021/ac60147a030
Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science (London, England: 1979), 84(4), 407-412.
Montalto, M., Curigliano, V., Santoro, L., Vastola, M., Cammarota, G., Manna, R., Gasbarrini, A., & Gasbarrini, G. (2006). Management and treatment of lactose malabsorption. World Journal of Gastroenterology, 12(2), 187-191. doi:10.3748/wjg.v12.i2.187
Moscon, J. M., Priamo, W. L., Bilibio, D., Silva, J. R. F., Souza, M., Lunelli, F., Foletto, E. L., Kuhn, R. C., Cancelier, A., & Mazutti, M. A. (2014). Comparison of conventional and alternative technologies for the enzymatic hydrolysis of rice hulls to obtain fermentable sugars. Biocatalysis and Agricultural Biotechnology, 3(4), 149-154. doi:https://doi.org/10.1016/j.bcab.2014.07.008
Ng'andwe, C. C. (2008). Free amino nitrogen improvement in sorghum grain brewing. University of Pretoria, MSc (Agric) Food Science and Technology.
Nguyen Thai, H., Van Camp, J., Smagghe, G., & Raes, K. (2014). Improved release and metabolism of flavonoids by steered fermentation processes: A review. International Journal of Molecular Sciences, 15(11), 19369-19388.
Nisa, K., Rosyida, V. T., Nurhayati, S., Indrianingsih, A. W., Darsih, C., & Apriyana, W. (2019). Total phenolic contents and antioxidant activity of rice bran fermented with lactic acid bacteria. IOP Conference Series Earth and Environmental Science 251. doi:10.1088/1755-1315/251/1/011004
Nur, Y., Dang, L., Anisah, J., Shaiful, A. S., & Long, K. (2015). Bioactive compounds and antioxidant activity of rice bran fermented with lactic acid bacteria. Malaysian Journal of Microbiology, 11(2 Special Issue), 156-162.
Oktay, M., Gülçin, İ., & Küfrevioğlu, Ö. İ. (2003). Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Lebensmittel - Wissenschaft & Technologie - Food Science and Technology, 36(2), 263-271.
doi:https://doi.org/10.1016/S0023-6438(02)00226-8
Padhye, V. W., & Salunkhe, D. K. (1978). BIOCHEMICAL STUDIES ON BLACK GRAM (PHASEOLUS MUNGO L.) 111. FERMENTATION OF THE BLACK GRAM AND RICE BLEND AND ITS INFLUENCE ON THE IN VITRO DIGESTIBILITY OF THE PROTEINS. Journal of Food Biochemistry, 2(4), 327-347. doi:https://doi.org/10.1111/j.1745-4514.1978.tb00626.x
Palmer, L. M., Schulz, J. M., Murphy, S. C., Ledergerber, D., Murayama, M., & Larkum, M. E. (2012). The cellular basis of GABAB-mediated interhemispheric inhibition. Science, 335(6071), 989-993.
Paul, J. S., Gupta, N., Beliya, E., Tiwari, S., & Jadhav, S. K. (2021). Aspects and Recent Trends in Microbial α-Amylase: A Review. Applied Biochemistry and Biotechnology, 193(8), 2649-2698. doi:10.1007/s12010-021-03546-4
Peña‐Rosas, J. P., Mithra, P., Unnikrishnan, B., Kumar, N., De‐Regil, L. M., Nair, N. S., Garcia‐Casal, M. N., & Solon, J. A. (2019). Fortification of rice with vitamins and minerals for addressing micronutrient malnutrition. Cochrane Database of Systematic Reviews(10).
Pourhassan, M., Angersbach, B., Lueg, G., Klimek, C. N., & Wirth, R. (2019). Blood thiamine level and cognitive function in older hospitalized patients. Journal of geriatric psychiatry and neurology, 32(2), 90-96.
Qian, B., Shen, S., Zhang, J., & Jing, P. (2017). Effects of vitamin B6 deficiency on the composition and functional potential of T cell populations. Journal of immunology research, 2017.
Rani, M. R. S., & Bhattacharya, K. R. J. J. o. T. S. (1989). Slurry viscosity as a possible indicator of rice quality. Journal of Texture Studies, 20, 139-149.
Ray, B., & Bhunia, A. (2013). Fundamental food microbiology: Fifth edition.
Ray, M., Hor, P. K., Ojha, D., Soren, J. P., Singh, S. N., & Mondal, K. C. (2018). Bifidobacteria and its rice fermented products on diet induced obese mice: Analysis of physical status, serum profile and gene expressions. Beneficial Microbes, 9(3), 441-452.
Robbins, R. J., & Bean, S. R. (2004). Development of a quantitative high-performance liquid chromatography-photodiode array detection measurement system for phenolic acids. Journal Chromatography A, 1038(1-2), 97-105. doi:10.1016/j.chroma.2004.03.009
Rosés, R. P., & Guerra, N. P. (2009). Optimization of amylase production by Aspergillus niger in solid-state fermentation using sugarcane bagasse as solid support material. World Journal of Microbiology and Biotechnology, 25(11), 1929-1939.
Roy, J. K., Borah, A., Mahanta, C. L., & Mukherjee, A. K. (2013). Cloning and overexpression of raw starch digesting α-amylase gene from Bacillus subtilis strain AS01a in Escherichia coli and application of the purified recombinant α-amylase (AmyBS-I) in raw starch digestion and baking industry. Journal of Molecular Catalysis B: Enzymatic, 97, 118-129.
Ruiz-Larrea, M. B., Mohan, A. R., Paganga, G., Miller, N. J., Bolwell, G. P., & Rice-Evans, C. A. (1997). Antioxidant activity of phytoestrogenic isoflavones. Free Radical Research, 26(1), 63-70. doi:10.3109/10715769709097785
Saleh, A. S. M., Wang, P., Wang, N., Yang, L., & Xiao, Z. (2019). Brown Rice Versus White Rice: Nutritional Quality, Potential Health Benefits, Development of Food Products, and Preservation Technologies. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1070-1096.
Sharma, H. P., Patel, H., science, S. J. C. r. i. f., & nutrition. (2017). Enzymatic added extraction and clarification of fruit juices–A review. Critical Reviews in Food Science and Nutrition, 57(6), 1215-1227.
Sindhu, S. C., & Khetarpaul, N. (2002). Effect of probiotic fermentation on antinutrients and in vitro protein and starch digestibilities of indigenously developed RWGT food mixture. Nutrition and Health, 16(3), 173-181.
Souza, P. M. d. (2010). Application of microbial α-amylase in industry-A review. Brazilian Journal of Microbiology, 41(4), 850-861.
Stiles, M. E., & Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. International Journal of Food Microbiology, 36(1), 1-29. doi:10.1016/s0168-1605(96)01233-0
Suckling, C. J. (1990). Enzyme Chemistry. p.311.
Suneja, P., Yadav, S., Mandal, S., Negi, K. S., Muneem, K. C., & Mishra, S. K. J. I. J. o. P. G. R. (2010). Oil and Protein Quality of Black Seeded Soybean Germplasm. Indian Journal of Plant Genetic Resources, 23, 34-39.
Taslimi, P., Aslan, H. E., Demir, Y., Oztaskin, N., Maraş, A., Gulçin, İ., Beydemir, S., & Goksu, S. (2018). Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. International Journal of Biological Macromolecules, 119, 857-863. doi:https://doi.org/10.1016/j.ijbiomac.2018.08.004
Taylor, D. P., & Bernstein, E. R. (1995). On the low lying excited states of methyl amine. The Journal of Chemical Physics, 103(24), 10453-10464. doi:10.1063/1.469895
Thompson, M. D., & Thompson, H. J. (2009). Biomedical agriculture: A systematic approach to food crop improvement for chronic disease prevention. Advances in Agronomy, 102, 1-54.
Tinaysp, A. H. E., Mahdi, Z. M. E., & Soubki, A. E. (1985). Supplementation of fermented sorghum Kisra bread with legume protein isolates. International Journal of Food Science & Technology, 20(6), 679-687.
doi:https://doi.org/10.1111/j.1365-2621.1985.tb01965.x
Tong, L., Zheng, J., Wang, X., Wang, X., Huang, H., Yang, H., Tu, T., Wang, Y., Bai, Y., & Yao, B. (2021). Improvement of thermostability and catalytic efficiency of glucoamylase from Talaromyces leycettanus JCM12802 via site-directed mutagenesis to enhance industrial saccharification applications. Biotechnology for Biofuels, 14(1), 1-9.
Tsai, Y. T., Cheng, P. C., & Pan, T. M. (2012). The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Applied Microbiology and Biotechnology, 96(4), 853-862. doi:10.1007/s00253-012-4407-3
Umemoto, T., Aoki, N., Lin, H., Nakamura, Y., Inouchi, N., Sato, Y., Yano, M., Hirabayashi, H., & Maruyama, S. (2004). Natural variation in rice starch synthase IIa affects enzyme and starch properties. Functional Plant Biology, 31(7), 671-684.
Valipour, M. (2015). Land use policy and agricultural water management of the previous half of century in Africa. Applied Water Science, 5(4), 367-395.
Wang, D., Ma, Y., Zhang, C., & Zhao, X. (2014). Thermal characterization of the anthocyanins from black soybean (Glycine max L.) exposed to thermogravimetry. Lebensmittel - Wissenschaft & Technologie - Food Science and Technology, 55(2), 645-649. doi:https://doi.org/10.1016/j.lwt.2013.10.007
Wang, K., Niu, M. M., Song, D. W., Liu, Y., Wu, Y., Zhao, J., Li, S. Z., & Lu, B. X. (2020). Evaluation of biochemical and antioxidant dynamics during the co-fermentation of dehusked barley with Rhizopus oryzae and Lactobacillus plantarum. Journal of Food Biochemistry, 44(2), 11. doi:10.1111/jfbc.13106
Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021). Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengineering and Biotechnology, 378.
Xu, B., & Chang, S. K. C. (2008). Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavones. Journal of Agricultural and Food Chemistry, 56(18), 8365-8373.
Yousif, N. E., & El Tinay, A. H. (2000). Effect of fermentation on protein fractions and in vitro protein digestibility of maize. Food Chemistry, 70(2), 181-184. doi:https://doi.org/10.1016/S0308-8146(00)00069-8
Yuan, X.-L., van der Kaaij, R. M., van den Hondel, C. A., Punt, P. J., van der Maarel, M. J. E. C., Dijkhuizen, L., & Ram, A. F. J. (2008). Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Molecular Genetics and Genomics, 279(6), 545-561.
Zhang, B., Guo, K., Lin, L., & Wei, C. (2018). Comparison of structural and functional properties of starches from the rhizome and bulbil of Chinese Yam (Dioscorea opposita Thunb.). Molecules, 23(2), 427.
Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science, 8, 33-42.
Zhang, R. F., Zhang, F. X., Zhang, M. W., Wei, Z. C., Yang, C. Y., Zhang, Y., Tang, X. J., Deng, Y. Y., & Chi, J. W. (2011). Phenolic composition and antioxidant activity in seed coats of 60 Chinese black soybean (Glycine max L. Merr.) varieties. Journal of Agricultural and Food Chemistry, 59(11), 5935-5944.
Zhao, D., & Shah, N. P. (2014). Changes in antioxidant capacity, isoflavone profile, phenolic and vitamin contents in soymilk during extended fermentation.
Lebensmittel - Wissenschaft & Technologie - Food Science and Technology,
58(2), 454-462. doi:https://doi.org/10.1016/j.lwt.2014.03.029
Zhou, Y., Wang, R., Zhang, Y., Yang, Y., Sun, X., Zhang, Q., & Yang, N. (2020). Biotransformation of phenolics and metabolites and the change in antioxidant activity in kiwifruit induced by Lactobacillus plantarum fermentation. Journal of the Science of Food and Agriculture, 100(8), 3283-3290. doi:https://doi.org/10.1002/jsfa.10272
Zhou, Z., Blanchard, C., Helliwell, S., & Robards, K. (2003). Fatty Acid Composition of Three Rice Varieties Following Storage. Journal of Cereal Science, 37(3), 327-335. doi:https://doi.org/10.1006/jcrs.2002.0502
Zhu, F., Bertoft, E., & Seetharaman, K. (2013). Characterization of internal structure of maize starch without amylose and amylopectin separation. Carbohydrate polymers, 97(2), 475-481.
Zong, X., Wen, L., Wang, Y., & Li, L. (2022). Research progress of glucoamylase with industrial potential. Journal of Food Biochemistry, e14099.
doi:https://doi.org/10.1111/jfbc.14099
Zou, P. (2016). Traditional Chinese medicine, food therapy, and hypertension control: A narrative review of Chinese literature. The American Journal of Chinese Medicine, 44(08), 1579-1594.
Zubik, L., & Meydani, M. (2003). Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. American Journal Clinical Nutrition, 77(6), 1459-1465. doi:10.1093/ajcn/77.6.1459

電子全文
全文檔開放日期:2022/08/08
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *