字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:楊政忠
研究生英文姓名:Yang, Cheng-Chung
中文論文名稱:複合菌株發酵南瓜子仁及產品抗氧化活性評估
英文論文名稱:Fermentation of pumpkin seed kernel by mixed strains and evaluation of the antioxidant activity of the fermented product
指導教授姓名:蔡國珍
口試委員中文姓名:副教授︰吳建輝
副教授︰吳冠政
教授︰林泓廷
教授︰蔡國珍
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:40742010
請選擇論文為:應用型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:68
中文關鍵詞:南瓜子仁;酵母菌; 乳酸菌 ;混株發酵; 抗氧化活性
英文關鍵字:Pumpkin seed kernel, Yeast, Lactic acid bacteria, Mixed strain fermentation, Antioxidant activity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
摘要
本研究旨以酵母菌與乳酸菌組合菌發酵南瓜子仁懸浮液,並分析發酵產品抗氧化活性。5株酵母菌株於25℃及5株乳酸菌株於37℃培養48小時,所得酵母菌菌數與乳酸菌菌數均分別達8 log cfu/mL與9 log cfu/mL以上;酵母菌株發酵液pH值5.04~6.1、乳酸菌株則為pH值3.75~4.0,皆低於控制組的 6.57。酵母菌株及乳酸菌株發酵液可滴定酸度分別為0.19%~0.32%與0.365%~0.396%,皆高於控制組的 0.09%,顯示酵母菌株與乳酸菌株可於南瓜子液中生長良好。擇優選出酵母菌及乳酸菌各2株,於30℃進行酵母菌與乳酸菌混株發酵南瓜子液48小時,各組發酵液總酚含量(約290 g/100 mL)皆顯著高於各單株菌發酵液所得(約190 g/100 mL)。南瓜子液添加黃糖、白糖、紅糖之培養液培養4組混合菌株,顯示添加黃糖所得總酚含量高於紅糖所得(約10 g/100 mL差異),後者又高於白糖所得。由酵母菌+乳酸菌的4種組合測試不同黃糖濃度及發酵溫度的影響,建立發酵南瓜子液的發酵條件如下:10% (w/v)南瓜子液添加5%(v/v)黃糖,以酵母菌SC21686與乳酸菌FKR2526混株於30℃發酵72 hr,所得總酚含量為298.24 g/100 mL,高於單株酵母菌(266.43 g/100 mL)或乳酸菌(285.23 g/100 mL)發酵液所得。酵母菌SC21686與乳酸菌FKR2526混株發酵南瓜子液乾燥粉末之乙醇萃取物對DPPH清除率的IC50 為1.95 mg/mL,於 5 mg/mL濃度時所得清除率為94.4%。



關鍵詞:南瓜子仁;酵母菌; 乳酸菌 ;混株發酵; 抗氧化活性
Abstract
The purpose of this study was to ferment the pumpkin seed kernel (PSK) suspension with yeast and lactic acid bacteria (LAB) combination, and to analyze the antioxidant activity of the fermented product. After incubation of 5 yeast strains 25℃ and 5 LAB strains at 37℃ in PSK suspension for 48 hours, and counts for yeast and LAB were above 8 log cfu/mL and 9 log cfu/mL, respectively. The pH value of the fermentation broth of yeast strains was 5.04~6.1, and the pH value of LAB strains was 3.75~4.0, which were both lower than 6.57 of the control group. The titratable acidity of the fermentation broth of yeast strains and LAB strains was 0.19%~0.32% and 0.365%~0.396% respectively, which were higher than 0.09% of the control group. These data indicated that yeast strains and LAB strains could grow well in PSK suspension. Two strains of yeast and LAB were selected, and the mixed strains of yeast plus LAB were fermented at 30°C for 48 hours. The total phenolic content (about 290 g/100 mL) of each combination group of fermented PSK broth was significantly higher than that of each single strain fermented PSK broth (about 190 g/100 mL). Four groups of mixed strains were cultured in the PSK suspension added with 3 type sugars of light brown sugar, white sugar and brown sugar. It was shown that the total phenolic content obtained by adding light brown sugar was higher than that obtained by brown sugar (about 10 g/100 mL difference), and the latter was higher than that obtained by white sugar. The effects of different light brown sugar concentrations and fermentation temperatures were tested by four combinations of yeast + LAB, and the fermentation conditions for PSK suspension were established as follows: 10% (w/v) PSK suspension was added with 5% light brown sugar, and the mixed strain of yeast SC21686 and lactic acid bacteria FKR2526 was fermented at 30°C for 72 hr, and the total phenolic content obtained was 298.24 g/100mL, which was higher than that (266.43 g/100mL) from single yeast strain SC21686 and that (285.23 g/100mL)from single LAB strain FKR2526. The IC50 value of the ethanol extract of the fermented PSK powders from the mixed strains of yeast SC21686 and LAB FKR2526 for DPPH radical scavenging activity was 1.95 mg/mL. The scavenging activity at 5 mg/mL of the ethanol extract of fermented PSK was 94.4%.


Key words: Pumpkin seed kernel, Yeast, Lactic acid bacteria, Mixed strain fermentation, Antioxidant activity

目錄
壹、前言 1
貳、文獻整理 2
一、南瓜介紹 2
1.南瓜的起源 2
2.南瓜的品種 2
3.南瓜的組成分 2
3.1南瓜皮 3
3.2南瓜果肉 3
3.3南瓜子 3
3.3.1南瓜子油 4
3.3.2南瓜子蛋白質 4
二、自由基 6
1.自由基的產生 6
2.自由基的種類 6
3.自由基對人體的影響 7
4.自由基的預防 8
三、抗氧化劑 9
四、活性胜肽 10
1.活性胜肽的產生 10
2.活性胜肽的功能 11
五、乳酸菌 12
1.乳酸菌的種類 12
2.乳酸菌對碳水化合物的代謝 12
3.乳酸菌發酵期間影響蛋白酶活性之因子 13
3.1發酵菌種 13
3.2發酵溫度 13
3.3發酵時間 14
4.乳酸菌之生理功能 14
4.1抑制致病菌、維持腸道菌相平衡 14
4.2改善乳糖不耐症 14
4.3降低血中膽固醇 15
4.4抗癌作用 15
4.5提升食物之營養價值 15
4.6抗氧化活性 15
4.7強化免疫系統 16
六、酵母菌 16
1.酵母菌營養源 17
1.1碳源 17
1.2氮源 17
1.3礦物質 18
1.4維生素 18
2.酵母菌發酵 19
參、實驗設計及材料與方法 20
一、實驗流程 20
二、材料與方法 21
(一)、材料 21
1.原料 21
2.菌株 21
3.化學藥品 21
3.1可滴定酸測定 21
3.2游離胺基酸測定 21
4.南瓜子發酵液微生物檢測 21
5.抗氧化測試 22
5.1總酚測定 22
5.2清除DPPH試驗 22
(二)、儀器設備 23
(三)、實驗方法 24
1.南瓜子粉 24
2.南瓜子懸浮液 24
3.菌株保存 24
3.1酵母菌株保存 24
3.2乳酸菌保存 24
4.菌株活化 24
4.1酵母菌株活化 24
4.2乳酸菌株活化 24
5.菌株篩選 24
5.1酵母菌 24
5.2乳酸菌 25
5.3乳酸菌與酵母菌組合菌株 25
6.活化菌液探討 25
6.1酵母菌 25
6.2乳酸菌 25
7.組合菌株發酵條件探討 25
7.1外加蔗糖的影響 25
7.1.1蔗糖種類 26
7.1.2蔗糖濃度 26
7.2發酵溫度 26
8.分析 26
8.1成份分析 26
8.1.1酸鹼值 26
8.1.2可滴定酸分析 26
8.1.3游離胺基態氮分析 26
8.2微生物分析 27
8.2.1好氣性總生菌數 27
8.2.2乳酸菌檢測 27
8.2.3酵母菌檢測 28
8.3抗氧化活性分析 28
8.3.1樣品萃取 28
8.3.2總酚之定量 28
8.3.3清除DPPH試驗 28
(四)、統計 29
肆、結果與討論 30
一、 單一菌株篩選 30
1. 酵母菌株篩選 30
2. 乳酸菌株篩選 32
二、 混合菌株發酵條件探討 33
1. 不同糖類對混株發酵南瓜子仁懸浮液的影響 33
2. 不同蔗糖濃度對混株發酵南瓜子仁懸浮液的影響 35
3. 不同培養溫度對混株發酵南瓜子仁懸浮液的影響 36
三、不同體積10%(w/v)南瓜子仁懸浮液混株發酵理化分析 38
四、單株酵母菌及乳酸菌及混合菌株發酵南瓜子仁懸浮液理化分析 39
五、混株發酵南瓜子仁懸浮液之抗氧化活性分析 40
伍、結論 42
陸、參考文獻 43
陸、參考文獻
CNS, 3058發酵乳
CNS, 10891食品微生物檢驗法-金黃色葡萄球菌之檢驗
CNS, 12925 食品微生物檢驗法-黴菌及酵母菌數之檢驗
行政院農業委員會農民學院。2017。 https://academy.coa.gov.tw/theme
李昕升。2015。南瓜在中國的引種和本土化研究。南京農業大學。
林昭雄。1995。南瓜。台灣農家要覽 農作篇(二)。豐年社。台灣:台北。
p.411-414
林天送。2008。自由基化學與醫學。
林宗翰。2011。認識糖的製造流程。台糖通訊 11月號。
吳志鴻。2006。林產研究新思維-抗氧化活性物質之利用潛能。林業研究專
訊。第十三卷第四期。
常偉。2004。南瓜(Cucurbita spp.)成分分析及加工技术的研究。西北農林大
學。
廖啟成。1998。乳酸菌之分類及應用。 食品工業月刊。30: p.1-10。
鄭巧惠。2008。鳳梨果皮乳酸發酵液之製備及其抗氧化活性探討。國立臺灣
海洋大學食品科學研究所碩士學位論文。基隆。台灣。
蔣永正。農業藥物毒物試驗所。2011。
鎮清和。2016。食品微生物學。復文圖書有限公司。
薛銘童、游滄洲、蘇炳鐸。2013。南瓜棚架式有機栽培技術。
臺東區農技報導第24期。
鐘昀峰。2016。複合菌株發酵黃豆製品開發功能性魚類飼料添加劑。國立臺灣
海洋大學食品科學研究所碩士學位論文。基隆。台灣。

Abuelgassim, A. O., & Al-Showayman, S. I. (2012). The effect of pumpkin (Cucurbita pepo L) seeds and L-arginine supplementation on serum lipid concentrations in atherogenic rats. African Journal of Traditional, Complementary Alternative Medicines 9(1), 131-137.
Al-zuhair, H., ABD EL-FATTAH, A. A., & ABD EL LATIF, H. A. (1997). Efficacy of simvastatin and pumpkin-seed oil in the management of dietary-induced hypercholesterolemia. Pharmacological research 35(5), 403-408.
Al Zuhair, H., Abd El-Fattah, A. A., & El-Sayed, M. I. (2000). Pumpkin-seed oil modulates the effect of felodipine and captopril in spontaneously hypertensive rats. Pharmacological Research 41(5), 555-563.
Aluko, R. (2015). Amino acids, peptides, and proteins as antioxidants for food preservation. In Handbook of antioxidants for food preservation (pp. 105-140): Elsevier.
A. O. A. C. O. m. o. (1984). Official methods of analysis. Association of official analytical chemists,14th,Washington,D.C.,USA., 281-312.
Applequist, W. L., Avula, B., Schaneberg, B. T., Wang, Y.-H., & Khan, I. A. (2006). Comparative fatty acid content of seeds of four Cucurbita species grown in a common (shared) garden. Journal of Food Composition Analysis 19(6-7), 606-611.
Archibald, F. S., & Fridovich, I. (1981). Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. Journal of Bacteriology 146(3), 928-936.
Bahramsoltani, R., Farzaei, M. H., Abdolghaffari, A. H., Rahimi, R., Samadi, N., Heidari, M., . . . Abdollahi, M. (2017). Evaluation of phytochemicals, antioxidant and burn wound healing activities of Cucurbita moschata Duchesne fruit peel. Iranian journal of basic medical sciences 20(7), 798.
Barefoot, S. F., & Nettles, C. G. (1993). Antibiosis revisited: bacteriocins produced by dairy starter cultures. Journal of Dairy Science 76(8), 2366-2379.
Behrend, L., Henderson, G., & Zwacka, R. (2003). Reactive oxygen species in oncogenic transformation. Biochemical Society Transactions 31(6), 1441-1444.
Brady, L. J., Gallaher, D. D., & Busta, F. F. (2000). The role of probiotic cultures in the prevention of colon cancer. The Journal of nutrition 130(2), 410S-414S.
Bryan, A., Hart, C., Wise, M., & Roberts, B. (2018). Glucose concentrations effect on rate of fermentation in yeast. Journal of Undergraduate Biology Laboratory Investigations, 1(1).
Bučko, S., Katona, J., Popović, L., Petrović, L., & Milinković, J. (2016). Influence of enzymatic hydrolysis on solubility, interfacial and emulsifying properties of pumpkin (Cucurbita pepo) seed protein isolate. Food Hydrocolloids 60, 271-278.
Butler, B., Korte, O., Stearmer, M., Upthegrove, S., & Vesy, M. (2018). Yeast’s Sweet Tooth: Natural Sugars Result in Greater Ethanol Production in Saccharomyces Cerevisiae than Processed Sugars. Journal of Undergraduate Biology Laboratory Investigations, 1(1).
Burgain, J., Scher, J., Francius, G., Borges, F., Corgneau, M., Revol-Junelles, A., . . . Gaiani, C. (2014). Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components. Advances in colloid interface science 213, 21-35.
Caili, F., Huan, S., & Quanhong, L. J. P. f. f. h. n. (2006). A review on pharmacological activities and utilization technologies of pumpkin. 61(2), 70-77.
Casey, G. P., & Ingledew, W. M. (1986). Ethanol tolerance in yeasts. CRC Critical Reviews in Microbiology, 13(3), 219-280.
Chen, H.-L., Hung, K.-F., Yen, C.-C., Laio, C.-H., Wang, J.-L., Lan, Y.-W., . . . Chen, C.-M. (2019). Kefir peptides alleviate particulate matter< 4 μm (PM 4.0)-induced pulmonary inflammation by inhibiting the NF-κB pathway using luciferase transgenic mice. Scientific reports 9(1), 1-13.
Chen, Z., Wang, X., Jie, Y., Huang, C., & Zhang, G. (1994). Study on hypoglycemia and hypotension function of pumpkin powder on human. Jiangxi Chinese Medicine, 25(50), 132-139.
Darragh, A. J., & Moughan, P. J. (2005). The effect of hydrolysis time on amino acid analysis. Journal of AOAC International, 88(3), 888-893.
Dasari, G., Worth, M. A., Connor, M. A., & Pamment, N. B. (1990). Reasons for the apparent difference in the effects of produced and added ethanol on culture viability during rapid fermentation by Saccharomyces cerevisiae. Biotechnology and bioengineering, 35(2), 109-122.
Dash, P., & Ghosh, G. J. F. b. (2017). Proteolytic and antioxidant activity of protein fractions of seeds of Cucurbita moschata. 18, 1-8.
de Vos, W. M. (1999). Gene expression systems for lactic acid bacteria. Current opinion in microbiology 2(3), 289-295.
Denter, J., & Bisping, B. (1994). Formation of B-vitamins by bacteria during the soaking process of soybeans for tempe fermentation. International journal of food microbiology 22(1), 23-31.
Dreher, M. L., Weber, C. W., Bemis, W. P., & Berry, J. W. (1980). Cucurbit seed coat composition. Journal of agricultural food chemistry 28(2), 364-366.
Drioli, E., & Giorno, L. (Eds.). (2010). Comprehensive membrane science and engineering (Vol. 1). Newnes.
El Soda, M., & Desmazeaud, M. (1982). Les peptide-hydrolases des lactobacilles du groupe Thermobacterium. I. Mise en évidence de ces activités chez Lactobacillus helveticus, L. acidophilus, L. lactis et L. bulgaricus. Can. J. Microbiol 28, 1181-1188.
Erdmann, K., Cheung, B. W., & Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. The Journal of nutritional biochemistry 19(10), 643-654.
Fahim, A. T., Abd-El Fattah, A. A., Agha, A. M., & Gad, M. Z. (1995). Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats. Pharmacological research 31(1), 73-79.
Fogarasi, A. L., Kun, S., Tankó, G., Stefanovits-Bányai, É., & Hegyesné-Vecseri, B. (2015). A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts. Food Chemistry, 167, 1-6.
Frazier, W. C., & Westhoff, D. C. (1988). Food microbiology.
Garrido, J., & Borges, F. (2013). Wine and grape polyphenols—A chemical perspective. Food research international, 54(2), 1844-1858.
Gómez-Pastor, R., Pérez-Torrado, R., Garre, E., & Matallana, E. (2011). Recent advances in yeast biomass production. In Biomass—Detection, Production and Usage: InTech, Rijeka.
García, M., Puchalska, P., Esteve, C., & Marina, M. (2013). Vegetable foods: A cheap source of proteins and peptides with antihypertensive, antioxidant, and other less occurrence bioactivities. Talanta 106, 328-349.
Ge, Y., Bian, X., Sun, B., Zhao, M., Ma, Y., Tang, Y., ... & Wu, J. L. (2019). Dynamic profiling of phenolic acids during Pu-erh tea fermentation using derivatization liquid chromatography–mass spectrometry approach. Journal of agricultural and food chemistry, 67(16), 4568-4577.
Gilliland, S. E., & Kim, H. (1984). Effect of viable starter culture bacteria in yogurt on lactose utilization in humans. Journal of Dairy Science 67(1), 1-6.
Gulfi, M., Arrigoni, E., & Amadò, R. (2005). Influence of structure on in vitro fermentability of commercial pectins and partially hydrolysed pectin preparations. Carbohydrate polymers 59(2), 247-255.
Halliwell, B. (2007). Biochemistry of oxidative stress. Biochemical society transactions, 35(5), 1147-1150.
Hepner, G., Fried, R., St Jeor, S., Fusetti, L., & Morin, R. (1979). Hypocholesterolemic effect of yogurt and milk. The American journal of clinical nutrition, 32(1), 19-24.
Hernández-Corroto, E., Marina, M. L., & García, M. C. (2018). Multiple protective effect of peptides released from Olea europaea and Prunus persica seeds against oxidative damage and cancer cell proliferation. Food Research International, 106, 458-467.
Herrera, E., Jiménez, R., Aruoma, O. I., Hercberg, S., Sánchez-García, I., & Fraga, C. J. N. r. (2009). Aspects of antioxidant foods and supplements in health and disease. 67(suppl_1), S140-S144.
Hirayama, K., & Rafter, J. (2000). The role of probiotic bacteria in cancer prevention. Microbes infection 2(6), 681-686.
Horax, R., Vallecios, M. S., Hettiarachchy, N., Osorio, L. F., & Chen, P. (2017). Solubility, functional properties, ACE‐I inhibitory and DPPH scavenging activities of Alcalase hydrolysed soy protein hydrolysates. International Journal of Food Science Technology 52(1), 196-204.
Huang, X.-E., Hirose, K., Wakai, K., Matsuo, K., Ito, H., Xiang, J., . . . Tajima, K. (2004). Comparison of lifestyle risk factors by family history for gastric, breast, lung and colorectal cancer. Asian Pacific Journal of Cancer Prevention 5(4), 419-427.
Hugenholtz, J., Sybesma, W., Groot, M. N., Wisselink, W., Ladero, V., Burgess, K., . . . Smid, E. J. (2002). Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. In Lactic Acid Bacteria: Genetics, Metabolism and Applications (pp. 217-235): Springer.
Jamdar, S., Rajalakshmi, V., Pednekar, M., Juan, F., Yardi, V., & Sharma, A. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food chemistry 121(1), 178-184.
Jankovic, I., Sybesma, W., Phothirath, P., Ananta, E., & Mercenier, A. (2010). Application of probiotics in food products—challenges and new approaches. Current Opinion in Biotechnology 21(2), 175-181.
Joó, Á., Kun, S., & Kun-Farkas, G. (2013). Effect of lactic acid bacteria in combination with yeast on fermentation of wort. Acta Alimentaria, 42(Supplement-1), 27-36.
Jun, H.-I., Lee, C.-H., Song, G.-S., & Kim, Y.-S. (2006). Characterization of the pectic polysaccharides from pumpkin peel. LWT-Food Science Technology 39(5), 554-561.
Khan, S. A., Liu, L., Lai, T., Zhang, R., Wei, Z., Xiao, J., ... & Zhang, M. (2018). Phenolic profile, free amino acids composition and antioxidant potential of dried longan fermented by lactic acid bacteria. Journal of food science and technology, 55(12), 4782-4791.
Kieliszek, M., Pobiega, K., Piwowarek, K., & Kot, A. M. (2021). Characteristics of the proteolytic enzymes produced by lactic acid bacteria. Molecules, 26(7), 1858.
King, K. (1993). Pectin: an untapped natural resource. Food Science Technology Today 7(3), 147-152.
Kitts, D. D., & Weiler, K. (2003). Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current pharmaceutical design 9(16), 1309-1323.
Klaver, F., & Van der Meer, R. (1993). The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Applied Environmental Microbiology 59(4), 1120-1124.
Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of functional foods 1(2), 177-187.
Lankaputhra, W., & Shah, N. (1998). Antimutagenic properties of probiotic bacteria and of organic acids. Mutation Research/Fundamental Molecular Mechanisms of Mutagenesis 397(2), 169-182.
Lim, T. (2012). Cucurbita moschata. In Edible Medicinal And Non-Medicinal Plants (pp. 266-280): Springer.
Liu, X., Jia, B., Sun, X., Ai, J., Wang, L., Wang, C., ... & Huang, W. (2015). Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. Journal of food science, 80(4), M800-M808.
Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. J Pharmacognosy reviews, 4(8), 118.
Malik, M., Bora, J., & Sharma, V. (2019). Growth studies of potentially probiotic lactic acid bacteria (Lactobacillus plantarum, Lactobacillus acidophilus, and Lactobacillus casei) in carrot and beetroot juice substrates. Journal of Food Processing and Preservation, 43(11), e14214.
Möller, N. P., Scholz-Ahrens, K. E., Roos, N., & Schrezenmeir, J. (2008). Bioactive peptides and proteins from foods: indication for health effects. European journal of nutrition 47(4), 171-182.
McGlynn, W. (2003). Importance of food ph in commerical canning operations. Oklahoma Cooperative Extension Service.
Meshginfar, N., Mahoonak, A. S., Hosseinian, F., Ghorbani, M., & Tsopmo, A. (2018). Production of antioxidant peptide fractions from a by-product of tomato processing: mass spectrometry identification of peptides and stability to gastrointestinal digestion. Journal of food science technology 55(9), 3498-3507.
Mountney, G. J., & Gould, W. A. (1988). Practical food microbiology and technology. Practical food microbiology technology. (Ed. 3).
Nkosi, C., Opoku, A., & Terblanche, S. (2006). Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4‐Induced liver injury in low‐protein fed rats. Phytotherapy Research: An International Journal Devoted to Pharmacological Toxicological Evaluation of Natural Product Derivatives 20(11), 935-940.
Okereke, A., & Montville, T. J. (1991). Bacteriocin-mediated inhibition of Clostridium botulinum spores by lactic acid bacteria at refrigeration and abuse temperatures. Applied Environmental Microbiology 57(12), 3423-3428.
Oktay, M., Gülçin, İ., Küfrevioğlu, Ö. İ. J. L.-F. S., & Technology. (2003). Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. 36(2), 263-271.
Perdigon, G., Vintini, E., Alvarez, S., Medina, M., & Medici, M. (1999). Study of the possible mechanisms involved in the mucosal immune system activation by lactic acid bacteria. Journal of dairy science 82(6), 1108-1114.
Premi, L. (1972). Hydrogen peroxide formation and hydrogen peroxide splitting activity in lactic acid bacteria.
Rehman, S.-U., Banks, J., McSweeney, P., & Fox, P. (2000). Effect of ripening temperature on the growth and significance of non-starter lactic acid bacteria in Cheddar cheese made from raw or pasteurised milk. International Dairy Journal 10(1-2), 45-53.
Samaranayaka, A. G., & Li-Chan, E. C. (2011). Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. Journal of functional foods 3(4), 229-254.
Sarkar, P., Jones, L., Craven, G., Somerset, S., & Palmer, C. (1997). Amino acid profiles of kinema, a soybean-fermented food. Food Chemistry 59(1), 69-75.
Sasota,(2017).Determining_the_Effect_of_Cellular_Respiration_on_Different_Sucrose_Concentration_during_Ethanol_Yeast_Fermentation.
Scutarașu, E. C., Teliban, I. V., Zamfir, C. I., Luchian, C. E., Colibaba, L. C., Niculaua, M., & Cotea, V. V. (2021). Effect of Different Winemaking Conditions on Organic Acids Compounds of White Wines. Foods 10(11), 2569.
Sentjurc M, Nemec M, Connor HD, Abram V. Antioxidant activity of Sempervivum tectorum and its components. J. Agric. Food Chem. 51: 2766–2771 (2003)
Shayesteh, R., Kamalinejad, M., Adiban, H., Kardan, A., Keyhanfar, F., & Eskandari, M. R. (2017). Cytoprotective effects of pumpkin (Cucurbita Moschata) fruit extract against oxidative stress and carbonyl stress. Drug research 67(10), 576-582.
Singh, A., & Kumar, V. (2022). Nutritional, phytochemical, and antimicrobial attributes of seeds and kernels of different pumpkin cultivars. Food Frontiers, 3(1), 182-193.
Sánchez, A., Vázquez, A. J. F. Q., & Safety. (2017). Bioactive peptides: A review. 1(1), 29-46.
Stadie, J., Gulitz, A., Ehrmann, M. A., & Vogel, R. F. (2013). Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food microbiology, 35(2), 92-98.
Stiles, M. E., & Holzapfel, W. H. (1997). Lactic acid bacteria of foods and their current taxonomy. International journal of food microbiology 36(1), 1-29.
Sutakwa, A., & Nadia, L. S. (2021, March). Effects Of Sucrose Addition To Lactic Acid Concentrations And Lactic Acid Bacteria Population Of Butterfly Pea (Clitoria Ternatea L.) Yogurt. In Journal of Physics: Conference Series (Vol. 1823, No. 1, p. 012038). IOP Publishing.
Taha, F. S., Mohamed, S. S., Wagdy, S. M., & Mohamed, G. (2013). Antioxidant and antimicrobial activities of enzymatic hydrolysis products from sunflower protein isolate. 21, 5.651-658.
Takenaka, A., Annaka, H., Kimura, Y., Aoki, H., & Igarashi, K. (2003). Reduction of paraquat-induced oxidative stress in rats by dietary soy peptide. Bioscience, biotechnology, biochemistry 67(2), 278-283.
Thomas, T. D., & Pritchard, G. G. (1987). Proteolytic enzymes of dairy starter cultures. FEMS Microbiology Reviews 3(3), 245-268.
Udenigwe, C. C., & Aluko, R. E. (2012). Food protein‐derived bioactive peptides: production, processing, and potential health benefits. Journal of food science 77(1), R11-R24.
Vaštag, Ž., Popović, L., Popović, S., Krimer, V., & Peričin, D. (2011). Production of enzymatic hydrolysates with antioxidant and angiotensin-I converting enzyme inhibitory activity from pumpkin oil cake protein isolate. Food Chemistry 124(4), 1316-1321.
Vermeersch, L., Perez-Samper, G., Cerulus, B., Jariani, A., Gallone, B., Voordeckers, K., ... & Verstrepen, K. J. (2019). On the duration of the microbial lag phase. Current genetics, 65(3), 721-727.
Ward, D., & Ainsworth, P. (1998). The development of a nutritious low cost weaning food for Kenya infants. African Journal of health sciences 5(1-2), 89-95.
Waseem, M., Kumar, S., & Kumar, A. (2018). Bioactive peptides. In: Nova Science Publisher Inc.
Xia, T., & Wang, Q. (2006). Antihyperglycemic effect of Cucurbita ficifolia fruit extract in streptozotocin-induced diabetic rats. Fitoterapia 77(7-8), 530-533.
Yamamoto, N., Akino, A., & Takano, T. (1994). Antihypertensive effects of different kinds of fermented milk in spontaneously hypertensive rats. Bioscience, biotechnology, biochemistry 58(4), 776-778.
Yang, Z. (2000). Antimicrobial compounds and extracellular polysaccharides produced by lactic acid bacteria: structures and properties: Z. Yang.
Zhang, D., Nie, S., Xie, M., & Hu, J. (2020). Antioxidant and antibacterial capabilities of phenolic compounds and organic acids from Camellia oleifera cake. Food Science and Biotechnology, 29(1), 17-25.
Zhou, T., Kong, Q., Huang, J., Dai, R., & Li, Q. J. F. (2007). Characterization of nutritional components and utilization of pumpkin. 1(2), 313-321.

(此全文限內部瀏覽)
電子全文
全文檔開放日期:不公開
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *