字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:鍾宜凝
研究生英文姓名:Chung, Yi-Ning
中文論文名稱:以台灣龍膽石斑魚卵製備抑制 DPP-IV 胜肽並評估其對第二型糖尿病小鼠之影響
英文論文名稱:Preparation of DPP-IV inhibitory peptides from Taiwanese Giant Grouper (Epinephelus lanceolatus) Roe and evaluation of their hypoglycemic effects on type 2 diabetic mice
指導教授姓名:張祐維
陳億乘
口試委員中文姓名:教授︰沈賜川
教授︰張祐維
教授︰謝昌衛
教授︰鄭光成
教授︰蔡宗佑
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:11032030
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:94
中文關鍵詞:龍膽石斑魚卵、第二型糖尿病DPP-IV抑制劑降血糖抗氧化胰島素阻抗抗發炎
英文關鍵字:Giant Grouper roetype 2 diabetesDPP-IV inhibitorshypoglycemiaantioxidantanti-inflammatoryinsulin resistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
第 2 型糖尿病 (T2DM) 是一種以組織高血糖和胰島素抵抗 (IR) 為特徵的全球流行的代謝性疾病,通常伴有各種高風險的併發症。在藥物治療上其中一類為 Dipeptidyl peptidase 4 inhibitor,其抑製劑可以保護小腸分泌的腸泌素 (GLP-1) 不易被 DPP-IV 降解,降低血糖和改善葡萄糖耐受性受損。台灣龍膽石斑魚,其因快速生長的能力和較高的市場價格而在台灣廣泛繁殖,其魚卵富含高質量的蛋白質和脂質,然而在大規模的魚卵生產過程中,生產過剩以及孵化失敗的廢棄魚卵成為副產物,,這導致蛋白質資源大量浪費。而為了利用蛋白質副產物,並增加其附加價值,可以實施使用酵素水解以增強魚卵蛋白質水解物的生物活性。此本研究目的為探討最適水解龍膽石斑魚魚卵條件並分析水解物體外抑制 DPP-IV 能力,並進一步以動物實驗模型探討魚卵水解物對第二型糖尿病之影響。希望可以從食物蛋白質來源生產 DPP-IV 抑制胜肽來取代合成 DPP-IV 抑製劑。在體外測定使用 2 % pepsin 水解魚卵 6 小時,測定其有最高的胜肽含量、DPP-IV 抑制能力。且透過超過濾和模擬腸胃道消化可以提升其 DPP-IV 抑制能力。進一步動物實驗使用高脂飲食 (High fat diet, HFD) 及 Streptozotocin (30mg/kg) 誘導雄性小鼠成為第二型糖尿病模式,實驗組別分為控制組、糖尿病組、正控制組 (Metformin, 24.6mg/kg)、GRHs_1x(200mg/kg)、GRHs_2x (400 mg/kg) 及 GRHs_5x (1000 mg/kg),持續餵食六周後犧牲取其海馬迴、肝臟組織及血漿進行分析。結果指出五倍劑量組能顯著降低血清中血糖、TG、TC、AST、ALT,也可降低 DPP- IV 濃度以及 DPP- IV 活性,增加葡萄糖耐受性、GLP-1 濃度、胰島素濃度並且可降低 HOMA-IR 指數改善胰島素抗性。在肝臟組織結果顯示降低發炎反應之影響,並增加組織中抗氧化酵素活性、抑制脂質過氧化。,且並也可改善其認知行為在水迷宮實驗結果顯示出學習型未的改善和逃脫時間的降低,改善其認知行為,且在肝臟組織切片脂肪油滴及脂防空泡相較於DM組顯著減少。綜合上述結果顯示,GRHs 可改善糖尿病小鼠之高血糖及胰島素阻抗,顯示了作為第 2 型糖尿病之健康食品 2 型糖尿病的潛力。
Type 2 diabetes mellitus (T2DM) is a global prevalence of metabolic diseases characterized by hyperglycemia and insulin resistance (IR) in target tissues, which is generally accompanied by a high risk of various complications. In terms of drug treatment, one of them is dipeptidyl peptidase 4 inhibitor. Its inhibitor can protect intestinal secretion of incretin (GLP-1) from being easily degraded by DPP-IV, reduce blood glucose and improve impaired glucose tolerance. Taiwan giant grouper (Epinephelus lanceolatus), which is widely bred in Taiwan due to its rapid growth ability and high market price. Its roe are rich in high-quality protein and lipids;however, during large-scale roe production, overproduction and hatching failed discarded fish roe become a by-product. It results in a massive waste of protein resources. In order to utilize protein by-products and increase their added value, an enzymatic hydrolysis can be implemented to enhance the biological activity of fish roe protein hydrolysate. The purpose of this study was to design for the DPP-IV inhibitory peptides produced from food protein sources to replace synthetic DPP-IV inhibitors. In vitro analysis, using 2% pepsin to hydrolyze fish roe for 6 hours had the highest peptide content and DPP-IV inhibitory ability. In addition its DPP-IV inhibitory ability can be enhanced by ultrafiltration and simulated gastrointestinal digestion. Therefore, this condition was chosen to prepare GRHs. The in vivo studies were carried out with three different doses of GRHs and the diabetis mice was induced by administrating with streptozotocin (30 mg/kg) and 45 % high fat diet. The groups were divided into a control group, a diabetic group (DM), a positive control group (ACTOs, 200 mg/kg), GRHs_1x(200mg/kg), GRHs_2x (400 mg/kg) and GRHs_5x (1000 mg/kg) for six weeks. The results indicated that the GRHs_5x group can significantly reduce blood glucose, TG, TC, AST, ALT in serum, as well as reducing DPP-IV concentration and DPP-IV activity, increasing glucose tolerance, GLP-1 concentration, insulin concentration and to reduce HOMA-IR, leading to the improvement of insulin resistance. Results in liver tissue showed reduced effects of inflammation, increased activity of antioxidant enzymes in tissue, and inhibited lipid peroxidation. The results observed from the water maze experiment showed that the learning ability was improved, the escape time was reduced, and the cognitive behavior was improved. In summary, GRHs shows the potential to be a functional food ingredient for treating type 2 diabetes.

壹、前言 1
貳、文獻回顧 2
一、台灣龍膽石斑魚 2
1.1 簡介 2
1.2 養殖現況 2
1.3 種魚培育 3
二、龍膽石斑魚卵 3
2.1 培育 3
2.2 副產物 4
2.3 生理活性 4
三、糖尿病 9
3.1近年趨勢 9
3.2 糖尿病定義與種類 9
3.3 胰島素阻抗 10
3.4併發症 11
3.5 糖尿病患者治療方式 12
3.6糖尿病患者醫療成本 13
四、Dipeptidyl peptidase- IV 14
4.1 簡介 14
4.2 降血糖機制 14
4.3 Dipeptidyl peptidase- IV抑制劑 16
五、糖尿病動物模式 17
5.1 STZ誘導 17
5.2 db/db 小鼠 17
參、實驗架構 18
肆、實驗材料 20
一、實驗材料 20
1.1 龍膽石斑魚卵 20
1.2 實驗動物 20
1.3 實驗動物飼料 20
1.4 藥品 20
1.5 儀器設備 23
伍、實驗方法 24
一、樣品製備及體外測定 24
1.1 魚卵前處理 24
1.2 魚卵成分分析 24
1.3十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (SDS-PAGE) 25
1.4 酵素水解 25
1.5 酵素水解物特性分析 26
1.6 DPP-IV抑制能力測定 27
1.7 超過濾 27
1.8 模擬腸胃道消化 (SGID) 28
二、第二型糖尿病小鼠之動物實驗 28
2.1 第二型糖尿病誘導 28
2.2 實驗設計 28
2.3 實驗動物飼養 29
2.4 血液生化分析 29
2.5 動物認知行為能力試驗 34
2.6 小鼠器官採集及均質液體製備 35
2.7肝臟組織中蛋白含量分析 36
2.8組織中氧化與抗氧化成分析 36
2.9肝臟組織發炎細胞激素濃度分析 39
2.10組織病理分析 41
2.11 統計分析 42
陸、結果與討論 43
一、龍膽石斑魚卵成分分析 43
二、龍膽石斑魚卵水解物分析 43
三、糖尿病小鼠之誘導 45
四、GRHs對糖尿病小鼠生長表現和臟器重量之影響 45
五、GRHs對糖尿病小鼠血脂及肝指數之影響 46
六、GRHs 對糖尿病小鼠血清抗氧能力、血糖及胰島素及相關生化指數之影響 47
七、GRHs 對糖尿病小鼠肝臟組織氧化壓力及抗氧化與抗發炎能力之影響 49
八、GRHs 對糖尿病小鼠肝臟組織切片影響 50
九、GRHs 對糖尿病小鼠認知行為改善之影響 51
十、GRHs對糖尿病小鼠海馬迴切片之影響 52
柒、結論 54
捌、未來研究方向 55
玖、參考文獻 56
拾、附錄 92

中華民國糖尿病學會.(2019)。臺灣糖尿病年鑑2019第2型糖尿病
沈珍珍.(2009) 漁業署推動石斑魚 產值倍增計畫. 275, 12-13.
徐慧君、李洮俊(2019) 糖尿病分級醫療. 台灣醫界, 62(7), 396-400.
國民健康署. (2017) 糖尿病防治手冊:糖尿病流行病學 行政院衛生福利部國民健康署.
楊玉婷、陳葦芋、陳政忻 (2009) 石斑魚產業概況及趨勢. 農業生技產業季刊, 19, 24-29.
鄭安倉. (2009) 龍膽石斑生產概況. 漁業推廣期刊, 275, 14-15.
謝明家、辛鍚璋. (1999) 糖尿病慢性併發症. 高醫醫訊月刊, 十八(十一).
Advani, A., Gilbert, R. E., Thai, K., Gow, R. M., Langham, R. G., Cox, A. J., Connelly, K. A., Zhang, Y., Herzenberg, A. M., & Christensen, P. K. (2009). Expression, localization, and function of the thioredoxin system in diabetic nephropathy. Journal of the American Society of Nephrology, 20(4), 730-741.
Ahrén, B. (2007). DPP-4 inhibitors. Best Practice and Research Clinical Endocrinology and Metabolism, 21(4), 517-533.
Alberti, K. G., & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabetic Medicine, 15(7), 539-553.
American Diabetes Association. (2010). Diagnosis and classification of diabetes mellitus. Diabetes Care, 33(S1), S62-S69.
Andersen, E. S., Deacon, C. F., & Holst, J. J. (2018). Do we know the true mechanism of action of the DPP‐4 inhibitors? Diabetes, Obesity and Metabolism, 20(1), 34-41.
Aouacheri, O., Saka, S., Krim, M., Messaadia, A., & Maidi, I. (2015). The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Canadian Journal of Diabetes, 39(1), 44-49.
Aragno, M., Mastrocola, R., Catalano, M. G., Brignardello, E., Danni, O., & Boccuzzi, G. (2004). Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes, 53(4), 1082-1088.
Atef, M., & Mahdi Ojagh, S. (2017). Health benefits and food applications of bioactive compounds from fish byproducts: A review. Journal of Functional Foods, 35, 673-681.
Baggio, L. L., & Drucker, D. J. (2007). Biology of Incretins: GLP-1 and GIP. Gastroenterology, 132(6), 2131-2157.
Barnett, A. (2006). DPP‐4 inhibitors and their potential role in the management of type 2 diabetes. International Journal of Clinical Practice, 60(11), 1454-1470.
Bastard, J.-P., Maachi, M., Van Nhieu, J. T., Jardel, C., Bruckert, E., Grimaldi, A., Robert, J.-J., Capeau, J., & Hainque, B. (2002). Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. The Journal of Clinical Endocrinology and Metabolism, 87(5), 2084-2089.
Chalamaiah, M., Dinesh kumar, B., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135(4), 3020-3038.
Chalamaiah, M., Jyothirmayi, T., Bhaskarachary, K., Vajreswari, A., Hemalatha, R., & Kumar, B. (2013). Chemical composition, molecular mass distribution and antioxidant capacity of rohu (Labeo rohita) roe (egg) protein hydrolysates prepared by gastrointestinal proteases. Food Research International, 52(1), 221-229.
Chalamaiah, M., Jyothirmayi, T., Diwan, P. V., & Kumar, B. D. (2015). Antiproliferative, ACE-inhibitory and functional properties of protein hydrolysates from rohu (Labeo rohita) roe (egg) prepared by gastrointestinal proteases. Journal of Food Science and Technology, 52(12), 8300-8307.
Chalamaiah, M., Rao, G. N., Rao, D. G., & Jyothirmayi, T. (2010). Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chemistry, 120(3), 652-657.
Chatterjee, S., Peters, S. A., Woodward, M., Mejia Arango, S., Batty, G. D., Beckett, N., Beiser, A., Borenstein, A. R., Crane, P. K., & Haan, M. (2016). Type 2 diabetes as a risk factor for dementia in women compared with men: a pooled analysis of 2.3 million people comprising more than 100,000 cases of dementia. Diabetes Care, 39(2), 300-307.
Chen, H.-Y., & Tsai, J.-C. (1994). Optimal dietary protein level for the growth of juvenile grouper, Epinephelus malabaricus, fed semipurified diets. Aquaculture, 119(2), 265-271.
Cheng, Z.-Y., Hu, Y.-H., Xia, Q.-P., Wang, C., & He, L. (2021). DRD1 agonist A-68930 improves mitochondrial dysfunction and cognitive deficits in a streptozotocin-induced mouse model. Brain Research Bulletin, 175, 136-149.
Clelland, C. D., Choi, M., Romberg, C., Clemenson, G. D., Jr., Fragniere, A., Tyers, P., Jessberger, S., Saksida, L. M., Barker, R. A., Gage, F. H., & Bussey, T. J. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937), 210-213.
de Veciana, M., Major, C. A., Morgan, M. A., Asrat, T., Toohey, J. S., Lien, J. M., & Evans, A. T. (1995). Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy. New England Journal of Medicine, 333(19), 1237-1241.
Dekkers, E., Raghavan, S., Kristinsson, H. G., & Marshall, M. R. (2011). Oxidative stability of mahi mahi red muscle dipped in tilapia protein hydrolysates. Food Chemistry, 124(2), 640-645.
del Aguila, L. F., Claffey, K. P., & Kirwan, J. P. (1999). TNF-α impairs insulin signaling and insulin stimulation of glucose uptake in C2C12muscle cells. American Journal of Physiology-Endocrinology and Metabolism, 276(5), E849-E855.
Derosa, G., D'Angelo, A., & Maffioli, P. (2020). Change of some oxidative stress parameters after supplementation with whey protein isolate in patients with type 2 diabetes. Nutrition, 73, 110700.
Dhibi, M., Brahmi, F., Mnari, A., Houas, Z., Chargui, I., Bchir, L., Gazzah, N., Alsaif, M. A., & Hammami, M. (2011). The intake of high fat diet with different trans fatty acid levels differentially induces oxidative stress and non alcoholic fatty liver disease (NAFLD) in rats. Nutrition and Metabolism, 8(1), 65.
Domingueti, C. P., Dusse, L. M. S. A., das Graças Carvalho, M., de Sousa, L. P., Gomes, K. B., & Fernandes, A. P. (2016). Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. Journal of Diabetes and Its Complications, 30(4), 738-745.
Drucker, D. J. (2003). Therapeutic potential of dipeptidyl peptidase IV inhibitors for the treatment of type 2 diabetes. Expert Opinion on Investigational Drugs, 12(1), 87-100.
Du, C., Lv, T., Liu, Q., Cheng, Y., Liu, C., Han, M., Zhang, W., & Qian, H. (2021). Carotenoids in Sporidiobolus pararoseus ameliorate diabetic nephropathy in mice through attenuating oxidative stress. Journal of Biological Chemistry, 402(7), 785-794.
Elissa, L. A., Elsherbiny, N. M., & Magmomah, A. O. (2015). Propolis restored adiponectin level in type 2 diabetes through PPARγ activation. Egyptian journal of basic and applied sciences, 2(4), 318-326.
Erdmann, K., Cheung, B. W., & Schröder, H. (2008). The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. The Journal of nutritional biochemistry, 19(10), 643-654.
Erejuwa, O. O., Sulaiman, S. A., Wahab, M., Sirajudeen, K., Salleh, M., & Gurtu, S. (2012). Hepatoprotective effect of tualang honey supplementation in streptozotocin-induced diabetic rats. International Journal of Applied Research in Natural Products, 4(4), 37-41.
Estruch, M., Miñambres, I., Sanchez-Quesada, J. L., Soler, M., Pérez, A., Ordoñez-Llanos, J., & Benitez, S. (2017). Increased inflammatory effect of electronegative LDL and decreased protection by HDL in type 2 diabetic patients. Atherosclerosis, 265, 292-298.
Fan, B., Liu, X.-C., Meng, Z.-N., Tan, B. H., Wang, L., Zhang, H.-F., Zhang, Y., Wang, Y.-X., & Lin, H.-R. (2014). Cryopreservation of giant grouper Epinephelus lanceolatus (Bloch, 1790) sperm. Journal of Applied Ichthyology, 30(2), 334-339.
Galla, N. R., Pamidighantam, P. R., Akula, S., & Karakala, B. (2012). Functional properties and in vitro antioxidant activity of roe protein hydrolysates of Channa striatus and Labeo rohita. Food Chemistry, 135(3), 1479-1484.
Garrett, D. A., Failla, M. L., & Sarama, R. J. (1999). Development of an in vitro digestion method to assess carotenoid bioavailability from meals. Journal of Agricultural and Food Chemistry, 47(10), 4301-4309.
Gautier, J. F., Fetita, S., Sobngwi, E., & Salaün-Martin, C. (2005). Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with type 2 diabetes. Diabetes and Metabolism, 31(3), 233-242.
Ghasemi, A., & Jeddi, S. (2017). Anti-obesity and anti-diabetic effects of nitrate and nitrite. Nitric Oxide, 70(1), 9-24.
Gilbert, E. R., Fu, Z., & Liu, D. (2011). Development of a nongenetic mouse model of type 2 diabetes. Experimental Diabetes Research, 2011, 416254.
Gokce, G., & Haznedaroglu, M. Z. (2008). Evaluation of antidiabetic, antioxidant and vasoprotective effects of Posidonia oceanica extract. Journal of Ethnopharmacology, 115(1), 122-130.
Green, B. D., Flatt, P. R., & Bailey, C. J. (2006). Dipeptidyl peptidase IV (DPP IV) inhibitors: a newly emerging drug class for the treatment of type 2 diabetes. Diabetes and Vascular Disease Research, 3(3), 159-165.
Gu, H.-F., Li, N., Tang, Y.-L., Yan, C.-Q., Shi, Z., Yi, S.-N., Zhou, H.-L., Liao, D.-F., & OuYang, X.-P. (2019). Nicotinate-curcumin ameliorates cognitive impairment in diabetic rats by rescuing autophagic flux in CA1 hippocampus. CNS Neuroscience and Therapeutics, 25(4), 430-441.
Harnedy, P. A., Parthsarathy, V., McLaughlin, C. M., O'Keeffe, M. B., Allsopp, P. J., McSorley, E. M., O'Harte, F. P. M., & FitzGerald, R. J. (2018). Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Research International, 106, 598-606.
Heemstra, P. C., & Randall, J. E. (1993). Groupers of the world. FAO Fisheries Synopsis, 16(125), 3-I,III,IV.
Ho, N., Sommers, M. S., & Lucki, I. (2013). Effects of diabetes on hippocampal neurogenesis: links to cognition and depression. Neuroscience and Biobehavioral Reviews, 37(8), 1346-1362.
Holst, J. J., & Deacon, C. F. (1998). Inhibition of the activity of dipeptidyl-peptidase IV as a treatment for type 2 diabetes. Diabetes, 47(11), 1663-1670.
Hoyle, N. T., & MerrlTt, J. H. (1994). Quality of Fish Protein Hydrolysates from Herring (Clupea harengus). Journal of Food Science, 59(1), 76-79.
Hseu, J.-R., Hwang, P.-P., & Ting, Y.-Y. (2004). Morphometric model and laboratory analysis of intracohort cannibalism in giant grouper Epinephelus lanceolatus fry. Fisheries Science, 70(3), 482-486.
Hung, M. Y., Fu, T. Y., Shih, P. H., Lee, C. P., & Yen, G. C. (2006). Du-Zhong (Eucommia ulmoides Oliv.) leaves inhibits CCl4-induced hepatic damage in rats. Food and Chemical Toxicology, 44(8), 1424-1431.
Hunter, S. J., & Garvey, W. T. (1998). Insulin action and insulin resistance: diseases involving defects in insulin receptors, signal transduction, and the glucose transport effector system 1. The American Journal of Medicine, 105(4), 331-345.
Intarasirisawat, R., Benjakul, S., Visessanguan, W., & Wu, J. (2012). Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe. Food Chemistry, 135(4), 3039-3048.
Inzucchi, S. E. (2002). Oral antihyperglycemic therapy for type 2 diabetes: scientific review. Journal of the American Medical Association 287(3), 360-372.
Kadohara, K., Sato, I., & Kawakami, K. (2017). Diabetes mellitus and risk of early‐onset Alzheimer's disease: a population‐based case–control study. European Journal of Neurology, 24(7), 944-949.
Karagiannis, T., Paschos, P., Paletas, K., Matthews, D. R., & Tsapas, A. (2012). Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. British Medical Journal, 344, e1369.
Kim, S.-H., Jung, E., Yoon, M. K., Kwon, O. H., Hwang, D.-M., Kim, D.-W., Kim, J., Lee, S.-M., & Yim, H. J. (2016). Pharmacological profiles of gemigliptin (LC15-0444), a novel dipeptidyl peptidase-4 inhibitor, in vitro and in vivo. European Journal of Pharmacology, 788, 54-64.
Kitamura, T., & Inokuchi, K. (2014). Role of adult neurogenesis in hippocampal-cortical memory consolidation. Molecular Brain, 7, 13.
Kong, F., Ding, Z., Zhang, K., Duan, W., Qin, Y., Su, Z., & Bi, Y. (2020). Optimization of extraction flavonoids from Exocarpium Citri Grandis and evaluation its hypoglycemic and hypolipidemic activities. Journal of Ethnopharmacology, 262, 113178.
Kotronen, A., Juurinen, L., Tiikkainen, M., Vehkavaara, S., & Yki–Järvinen, H. (2008). Increased liver fat, impaired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabetes. Gastroenterology, 135(1), 122-130.
Kullmann, S., Kleinridders, A., Small, D. M., Fritsche, A., Häring, H. U., Preissl, H., & Heni, M. (2020). Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes Endocrinol, 8(6), 524-534.
Lacroix, I. M. E., & Li-Chan, E. C. Y. (2013). Inhibition of Dipeptidyl Peptidase (DPP)-IV and α-Glucosidase Activities by Pepsin-Treated Whey Proteins. Journal of Agricultural and Food Chemistry, 61(31), 7500-7506.
Lalitha, N., Sadashivaiah, B., Ramaprasad, T. R., & Singh, S. A. (2020). Anti-hyperglycemic activity of myricetin, through inhibition of DPP-4 and enhanced GLP-1 levels, is attenuated by co-ingestion with lectin-rich protein. PLoS One, 15(4), e0231543.
Lambeir, A.-M., Durinx, C., Scharpé, S., & De Meester, I. (2003). Dipeptidyl-Peptidase IV from Bench to Bedside: An Update on Structural Properties, Functions, and Clinical Aspects of the Enzyme DPP IV. Critical Reviews in Clinical Laboratory Sciences, 40(3), 209-294.
Lang, C. H., Dobrescu, C., & Bagby, G. J. (1992). Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology, 130(1), 43-52.
Li-Chan, E. C. Y., Hunag, S.-L., Jao, C.-L., Ho, K.-P., & Hsu, K.-C. (2012). Peptides Derived from Atlantic Salmon Skin Gelatin as Dipeptidyl-peptidase IV Inhibitors. Journal of Agricultural and Food Chemistry, 60(4), 973-978.
Li, R., Qu, S., Zhang, P., Chattopadhyay, S., Gregg, E. W., Albright, A., Hopkins, D., & Pronk, N. P. (2015). Economic Evaluation of Combined Diet and Physical Activity Promotion Programs to Prevent Type 2 Diabetes Among Persons at Increased Risk: A Systematic Review for the Community Preventive Services Task Force. Annals of Internal Medicine, 163(6), 452-460.
Li, S., Tan, H.-Y., Wang, N., Zhang, Z.-J., Lao, L., Wong, C.-W., & Feng, Y. (2015). The role of oxidative stress and antioxidants in liver diseases. International Journal of Molecular Sciences, 16(11), 26087-26124.
Liaury, K., Miyaoka, T., Tsumori, T., Furuya, M., Wake, R., Ieda, M., Tsuchie, K., Taki, M., Ishihara, K., Tanra, A., & Horiguchi, J. (2012). Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: A possible schizophrenia animal model. Journal of Neuroinflammation, 9, 56.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.
Lu, J., Wu, D. M., Zheng, Y. L., Hu, B., Zhang, Z. F., Ye, Q., Liu, C. M., Shan, Q., & Wang, Y. J. (2010). Ursolic acid attenuates D-galactose-induced inflammatory response in mouse prefrontal cortex through inhibiting AGEs/RAGE/NF-κB pathway activation. Cerebral Cortex, 20(11), 2540-2548.
Lu, Y., Long, M., Zhou, S., Xu, Z., Hu, F., & Li, M. (2014). Mibefradil reduces blood glucose concentration in db/db mice. Clinics (Sao Paulo), 69(1), 61-67.
Lukic, L., Lalic, N. M., Rajkovic, N., Jotic, A., Lalic, K., Milicic, T., Seferovic, J. P., Macesic, M., & Gajovic, J. S. (2014). Hypertension in obese type 2 diabetes patients is associated with increases in insulin resistance and IL-6 cytokine levels: potential targets for an efficient preventive intervention. International Journal of Environmental Research and Public Health, 11(4), 3586-3598.
Lutz, T. A., & Woods, S. C. (2012). Overview of animal models of obesity. Current Protocols in Pharmacology 5(5), 61.
Müller, S., Martin, S., Koenig, W., Hanifi-Moghaddam, P., Rathmann, W., Haastert, B., Giani, G., Illig, T., Thorand, B., & Kolb, H. (2002). Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-α or its receptors. Diabetologia, 45(6), 805-812.
Mackie, A., Mulet-Cabero, A.-I., & Torcello-Gómez, A. (2020). Simulating human digestion: developing our knowledge to create healthier and more sustainable foods. Food and Function, 11(11), 9397-9431.
Majid, A., Lakshmikanth, M., Lokanath, N. K., & Poornima Priyadarshini, C. G. (2022). Generation, characterization and molecular binding mechanism of novel dipeptidyl peptidase-4 inhibitory peptides from sorghum bicolor seed protein. Food Chemistry, 369, 130888.
Makrilakis, K. (2019). The Role of DPP-4 Inhibitors in the Treatment Algorithm of Type 2 Diabetes Mellitus: When to Select, What to Expect. International Journal of Environmental Research and Public Health, 16(15), 2720.
Maritim, A., Sanders, a., & Watkins Iii, J. (2003). Diabetes, oxidative stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology, 17(1), 24-38.
Martin, B. C., Warram, J. H., Krolewski, A. S., Soeldner, J., Kahn, C., & Bergman, R. (1992). Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. The Lancet, 340(8825), 925-929.
Martínez-Castelao, A., Ramos, R., González, M. T., & Castiñeiras, M. J. (2002). Dyslipidemia and cardiovascular risk in type 2 diabetes mellitus patients with associated diabetic nephropathy. Nefrologia, 22(S1), 51-58.
Matsumoto, H., Haniu, H., & Komori, N. (2019). Determination of Protein Molecular Weights on SDS-PAGE. Methods in Molecular Biology, 1855, 101-105.
Matthaiou, C. M., Goutzourelas, N., Stagos, D., Sarafoglou, E., Jamurtas, A., Koulocheri, S. D., Haroutounian, S. A., Tsatsakis, A. M., & Kouretas, D. (2014). Pomegranate juice consumption increases GSH levels and reduces lipid and protein oxidation in human blood. Food and Chemical Toxicology, 73, 1-6.
Mu, J., Woods, J., Zhou, Y.-P., Roy, R. S., Li, Z., Zycband, E., Feng, Y., Zhu, L., Li, C., & Howard, A. D. (2006). Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes. Diabetes, 55(6), 1695-1704.
Mueller, A. S., Bosse, A. C., Most, E., Klomann, S. D., Schneider, S., & Pallauf, J. (2009). Regulation of the insulin antagonistic protein tyrosine phosphatase 1B by dietary Se studied in growing rats. The Journal of Nutritional Biochemistry, 20(4), 235-247.
Muzykantov, V. R. (2001). Targeting of superoxide dismutase and catalase to vascular endothelium. Journal of Controlled Release, 71(1), 1-21.
Nguyen, Q. M., Srinivasan, S. R., Xu, J.-H., Chen, W., Hassig, S., Rice, J., & Berenson, G. S. (2011). Elevated liver function enzymes are related to the development of prediabetes and type 2 diabetes in younger adults: the Bogalusa Heart Study. Diabetes Care, 34(12), 2603-2607.
Nongonierma, A. B., & FitzGerald, R. J. (2013). Dipeptidyl peptidase IV inhibitory properties of a whey protein hydrolysate: Influence of fractionation, stability to simulated gastrointestinal digestion and food–drug interaction. International Dairy Journal, 32(1), 33-39.
Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70(1), 158-169.
Panda, V., Deshmukh, A., Singh, S., Shah, T., & Hingorani, L. (2021). An Ayurvedic formulation of Emblica officinalis and Curcuma longa alleviates insulin resistance in diabetic rats: Involvement of curcuminoids and polyphenolics. Journal of Ayurveda and Integrative Medicine, 12(3), 506-513.
Panjaitan, F. C. A., Gomez, H. L. R., & Chang, Y.-W. (2018). In Silico Analysis of Bioactive Peptides Released from Giant Grouper (Epinephelus lanceolatus) Roe Proteins Identified by Proteomics Approach. Molecules, 23(11), 2910.
Parsa, K. V., & Pal, M. (2011). Preclinical development of dipeptidyl peptidase IV inhibitor alogliptin: a brief overview. Expert Opinion on Drug Discovery, 6(8), 855-869.
Peng, S., Wei, P., Lu, Q., Liu, R., Ding, Y., & Zhang, J. (2018). Beneficial Effects of Poplar Buds on Hyperglycemia, Dyslipidemia, Oxidative Stress, and Inflammation in Streptozotocin-Induced Type-2 Diabetes. Journal of Immunology Research, 2018, 7245956.
PG, P. R., Jyothirmayi, T., MSL, K., & RBN, P. (2010). Studies on lipid profiles and fatty acid composition of roe from rohu (Labeo rohita) and murrel (Channa striatus). Journal of Oleo Science, 59(10), 515-519.
Phillips, P. J., & Twigg, S. M. (2010). Oral hypoglycaemics - A review of the evidence. Australian Family Physician, 39(9), 651-653.
Rajabzadeh, M., Pourashouri, P., Shabanpour, B., & Alishahi, A. (2018). Amino acid composition, antioxidant and functional properties of protein hydrolysates from the roe of rainbow trout (Oncorhynchus mykiss). International Journal of Food Science and Technology, 53(2), 313-319.
Raptis, S., & Dimitriadis, G. (2001). Oral hypoglycemic agents: insulin secretagogues, α-glucosidase inhibitors and insulin sensitizers. Experimental and Clinical Endocrinology and Diabetes, 109(S2), S265-S287.
Raza, H., Prabu, S. K., John, A., & Avadhani, N. G. (2011). Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. International Journal of Molecular Sciences, 12(5), 3133-3147.
Rosenblit, P. D. (2016). Common medications used by patients with type 2 diabetes mellitus: what are their effects on the lipid profile? Cardiovascular Diabetology, 15(1), 1-13.
Rutherfurd, S. M. (2010). Methodology for Determining Degree of Hydrolysis of Proteins in Hydrolysates: A review. Journal of AOAC International, 93(5), 1515-1522.
Samaha, M. M., Said, E., & Salem, H. A. (2019). A comparative study of the role of crocin and sitagliptin in attenuation of STZ-induced diabetes mellitus and the associated inflammatory and apoptotic changes in pancreatic β-islets. Environmental Toxicology and Pharmacology, 72, 103238.
Scheller, J., Chalaris, A., Schmidt-Arras, D., & Rose-John, S. (2011). The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813(5), 878-888.
Shiau, S., & Lan, C.-W. (1996). Optimum dietary protein level and protein to energy ratio for growth of grouper (Epinephelus malabaricus). Aquaculture, 145, 259-266.
Ståhlman, M., Fagerberg, B., Adiels, M., Ekroos, K., Chapman, J. M., Kontush, A., & Borén, J. (2013). Dyslipidemia, but not hyperglycemia and insulin resistance, is associated with marked alterations in the HDL lipidome in type 2 diabetic subjects in the DIWA cohort: impact on small HDL particles. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1831(11), 1609-1617.
Straub, R. H., Hense, H., Andus, T., Scholmerich, J., Riegger, G., & Schunkert, H. (2000). Hormone replacement therapy and interrelation between serum interleukin-6 and body mass index in postmenopausal women: a population-based study. The Journal of Clinical Endocrinology and Metabolism, 85(3), 1340-1344.
Tangvarasittichai, S. (2015). Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World Journal of Diabetes, 6(3), 456-480.
Teixeira-Lemos, E., Nunes, S., Teixeira, F., & Reis, F. (2011). Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc Diabetol, 10, 12.
Tian, R., Liu, X., Jing, L., yang, L., Xie, N., Hou, Y., Tao, H., Tao, Y., Wu, J., & Meng, X. (2022). Huang-Lian-Jie-Du decoction attenuates cognitive dysfunction of rats with type 2 diabetes by regulating autophagy and NLRP3 inflammasome activation. Journal of Ethnopharmacology, 292, 115196.
Tilg, H., Trehu, E., Atkins, M. B., Dinarello, C. A., & Mier, J. W. (1994). Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood, 83(1):113-118.
Tottenham, N., & Sheridan, M. A. (2009). A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Frontiers in Human Neuroscience, 3, 68.
Triplitt, C., Repas, T., & Alvarez, C. (2014). Chapter 57. Diabetes mellitus. Pharmacotherapy: A Pathophysiologic Approach. 9th ed. New York, NY: McGraw-Hill, 1143-1190。.
Tu, D.-G., Chang, Y.-L., Chou, C.-H., Lin, Y.-L., Chiang, C.-C., Chang, Y.-Y., & Chen, Y.-C. (2018). Preventive effects of taurine against d-galactose-induced cognitive dysfunction and brain damage. Food and Function, 9(1), 124-133.
van Dijk, M. T., & Fenton, A. A. (2018). On How the Dentate Gyrus Contributes to Memory Discrimination. Neuron, 98(4), 832-845.e835.
Vozarova, B., Stefan, N., Lindsay, R. S., Saremi, A., Pratley, R. E., Bogardus, C., & Tataranni, P. A. (2002). High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes. Diabetes, 51(6), 1889-1895.
Wang-Fischer, Y., & Garyantes, T. (2018). Improving the Reliability and Utility of Streptozotocin-Induced Rat Diabetic Model. J Diabetes Res, 2018, 8054073.
Weber, A. E. (2004). Dipeptidyl Peptidase IV Inhibitors for the Treatment of Diabetes. Journal of Medicinal Chemistry, 47(17), 4135-4141.
Wellen, K. E., & Hotamisligil, G. S. (2005). Inflammation, stress, and diabetes. The Journal of clinical investigation, 115(5), 1111-1119.
Wilcox, G. (2005). Insulin and insulin resistance. The Clinical Biochemist Reviews, 26(2), 19-39.
Wilson, G. L., & Leiter, E. H. (1990). Streptozotocin interactions with pancreatic beta cells and the induction of insulin-dependent diabetes. Current Topics in Microbiology and Immunology, 156, 27-54.
Xia, T., Zhang, Z., Zhao, Y., Kang, C., Zhang, X., Tian, Y., Yu, J., Cao, H., & Wang, M. (2022). The anti-diabetic activity of polyphenols-rich vinegar extract in mice via regulating gut microbiota and liver inflammation. Food Chemistry, 393, 133443.
Yang, J.-I., Tang, J.-Y., Liu, Y.-S., Wang, H.-R., Lee, S.-Y., Yen, C.-Y., & Chang, H.-W. (2016). Roe Protein Hydrolysates of Giant Grouper (Epinephelus lanceolatus) Inhibit Cell Proliferation of Oral Cancer Cells Involving Apoptosis and Oxidative Stress. BioMed Research International, 2016, 8305073.
Yang, K. T., Lin, C., Liu, C. W., & Chen, Y. C. (2014). Effects of chicken-liver hydrolysates on lipid metabolism in a high-fat diet. Food Chemistry, 160, 148-156.
Ye, J. M., Doyle, P. J., Iglesias, M. A., Watson, D. G., Cooney, G. J., & Kraegen, E. W. (2001). Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation. Diabetes, 50(2), 411-417.
Yin, Z., Yu, H., Chen, S., Ma, C., Ma, X., Xu, L., Ma, Z., Qu, R., & Ma, S. (2015). Asiaticoside attenuates diabetes-induced cognition deficits by regulating PI3K/Akt/NF-κB pathway. Behavioural Brain Research, 292, 288-299.
Yong, A. S. K., Abang Zamhari, D. N. J. B., Shapawi, R., Zhuo, L.-C., & Lin, Y.-H. (2020). Physiological changes of giant grouper (Epinephelus lanceolatus) fed with high plant protein with and without supplementation of organic acid. Aquaculture Reports, 18, 100499.
You, Y., Liu, Z., Chen, Y., Xu, Y., Qin, J., Guo, S., Huang, J., & Tao, J. (2021). The prevalence of mild cognitive impairment in type 2 diabetes mellitus patients: a systematic review and meta-analysis. Acta Diabetologica, 58(6), 671-685.
Zafar, M., & Hassan Naqvi, S. (2010). Effects of STZ-Induced Diabetes on the Relative Weights of Kidney, Liver and Pancreas in Albino Rats: A Comparative Study. International Journal of Morphology, 28, 135-142.
Zar Kalai, F., Han, J., Ksouri, R., Abdelly, C., & Isoda, H. (2014). Oral administration of Nitraria retusa ethanolic extract enhances hepatic lipid metabolism in db/db mice model 'BKS.Cg-Dock7(m)+/+ Lepr(db/)J' through the modulation of lipogenesis-lipolysis balance. Food and Chemical Toxicology, 72, 247-256.
Zhang, C., Gao, S., Zhang, C., Zhang, Y., Liu, H., Hong, H., & Luo, Y. (2019). Evaluating in vitro dipeptidyl peptidase IV inhibition by peptides from common carp (Cyprinus carpio) roe in cell culture models. European Food Research and Technology, 246(1), 179-191.
Zhang, C., Gao, S., Zhang, C., Zhang, Y., Liu, H., Hong, H., & Luo, Y. (2020). Evaluating in vitro dipeptidyl peptidase IV inhibition by peptides from common carp (Cyprinus carpio) roe in cell culture models. European Food Research and Technology, 246(1), 179-191.
Zhang, C., Zhang, Y., Wang, Z., Chen, S., & Luo, Y. (2017). Production and identification of antioxidant and angiotensin-converting enzyme inhibition and dipeptidyl peptidase IV inhibitory peptides from bighead carp (Hypophthalmichthys nobilis) muscle hydrolysate. Journal of Functional Foods, 35, 224-235.
Zhang, W., Zhao, J., Wang, J., Pang, X., Zhuang, X., Zhu, X., & Qu, W. (2010). Hypoglycemic effect of aqueous extract of seabuckthorn (Hippophae rhamnoides L.) seed residues in streptozotocin‐induced diabetic rats. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 24(2), 228-232.
Zhang, Y., Chen, R., Ma, H., & Chen, S. (2015). Isolation and Identification of Dipeptidyl Peptidase IV-Inhibitory Peptides from Trypsin/Chymotrypsin-Treated Goat Milk Casein Hydrolysates by 2D-TLC and LC-MS/MS. Journal of Agricultural and Food Chemistry, 63(40), 8819-8828.
Zhao, L., Pu, L., Wei, J., Li, J., Wu, J., Xin, Z., Gao, W., & Guo, C. (2016). Brazilian green propolis improves antioxidant function in patients with type 2 diabetes mellitus. International Journal of Environmental Research and Public Health, 13(5), 498.
Zhou, K., Sun, S., & Canning, C. (2012). Production and functional characterisation of antioxidative hydrolysates from corn protein via enzymatic hydrolysis and ultrafiltration. Food Chemistry, 135(3), 1192-1197.
(此全文20250806後開放外部瀏覽)
電子全文
全文檔開放日期:2025/08/06
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *