字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:賴正軒
研究生英文姓名:Lai, Cheng-Hsuan
中文論文名稱:環境敏感微球嵌入石蓴多醣 Pluronic 水凝膠作為創傷敷材之評估
英文論文名稱:Evaluation of Environmental-Responsive Microspheres Embedded in Ulvan Pluronic Hydrogels for Wound Dressings
指導教授姓名:黃意真
董崇民
口試委員中文姓名:教授︰糜福龍
副研究員︰陳仁焜
教授︰黃意真
教授︰董崇民
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:11032025
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:77
中文關鍵詞:聚(氮-異丙基丙烯醯胺-co-丙烯酸)EDC/NHS微球水凝膠藥物控制釋放
英文關鍵字:P(NI-co-AA)EDC/NHSmicrosphereshydrogelscontrolled drug release
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本研究目的為利用自行合成的聚 (氮-異丙基丙烯醯胺-co-丙烯酸) 共聚物 (Poly(N-isopropylacrylamide-co-acrylate acid), P(NI-co-AA)) 及明膠 (Gelatin),藉由 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/ N-hydroxylsuccinimide (NHS) 作為交聯劑,製備出雙重環境敏感微球,並將其用作藥物載體,包覆鹽酸四環素 (Tetracycline Hydrochloride, TC) 作為模型藥物,為使微球能應用於傷口部位,將其嵌入到石蓴多醣 (Ulvan) 與 Pluronic F127 (PF127) 物理混合的水凝膠中,形成雙重釋放 (Dual release) 的藥物載體。藉由核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 鑑定自行合成的 P(NI-co-AA),鏈段結構中羧基所佔比例為9.07 mol%,並在 35 ℃ 具有低臨界溶液溫度 (Lower critical solution temperature, LCST)。以化學交聯的環境敏感微球 LCST 值約為 32 ℃,以雷射粒徑分析儀測量粒徑分布,當 Gelatin/P(NI-co-AA) 重量比例為 5/2 時,微球有最佳的型態、粒徑分布 並且每毫克微球中含有 TC 為 6.45 μg。不同比例的 Ulvan/Pluronic F127 複合水凝膠透過流變儀及倒置法,評估水凝膠流變性質,其中 1% Ulvan 及 20 % Pluronic F127 的混合水凝膠具有合適的膠凝轉變溫度 (sol-gel transition temperature, Tsol-gel) 及膠凝時間,因此選擇該組別與微球進行配合。微球水凝膠濃度在 2.5% 以下具有良好的細胞相容性,並在 34 ℃、pH 5.5 環境下顯示出較慢的藥物釋放速率,此外所釋放的藥物能有效的抑制多種菌株生長。綜上所述本研究製備的微球水凝膠具有穩定的型態、流變性質及細胞相容性且負載藥物的微球水凝膠可利用溫度及酸鹼值的變化來達到藥物的釋放,可作為傷口敷料之應用。
The purpose of this study was to use self-synthesized (Poly(N-isopropylacrylamide-co-acrylate acid), P(NI-co-AA)) copolymer and gelatin, through 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/ N-hydroxylsuccinimide (NHS) as a cross-linking agent to prepare dual environmentally sensitive microspheres. Which were used as drug carriers and loaded Tetracycline hydrochloride (TC). The microspheres was embedded in Ulvan and Pluronic F127 (PF127) hydrogel, which physically mixed with to form a dual release drug carrier. P(NI-co-AA) was identified by Nuclear Magnetic Resonance (NMR), the proportion of carboxyl groups in the segment structure was 9.07 mol%, and it had a low critical solution temperature, LCST) at 35 ℃. The LCST value of chemically cross-linked environmentally sensitive microspheres is about 32 ℃, and the particle size distribution is measured by laser particle size analyzer. When the weight ratio of Gelatin/P(NI-co-AA) is 5/2, the microspheres had the best morphology, particle size distribution and 6.45 μg TC per milligram of microspheres. Different ratios of Ulvan/PF127 hydrogels were evaluated by rheometer and inversion method to evaluate the rheological properties. The mixed hydrogels of 1% Ulvan and 20% PF127 had suitable sol-gel transition temperature (Tsol-gel) and gelation time, so this group is selected to cooperate with the microspheres. The microsphere hydrogel has good cell compatibility below 2.5 %, and shows a slow drug release rate at 34 °C and pH 5.5. In addition, the released drugs can effectively inhibit the growth of various strains. In summary, the microsphere hydrogel prepared in this study has stable morphology, rheological properties and cytocompatibility, and the drug-loaded microsphere hydrogel can use the changes of temperature and pH value to achieve drug release control, can be used as wound dressing application.
摘要 II
Abstact III
目錄 IV
圖目錄 V
表目錄 VII
第一章、前言 8
第二章、文獻回顧 9
2.1 傷口修復 9
2.2 藥物釋放系統 11
2.3 刺激敏感聚合物 (Stimuli-Responsive Polymers) 15
2.4 海藻 17
2.5 交聯劑 20
2.6 鹽酸四環素 (Tetracycline HCl, TC) 22
第三章、實驗動機與目的 23
第四章、實驗流程 24
第五章、材料與方法 25
5.1 實驗材料 25
5.2 實驗藥品 25
5.3 實驗儀器 26
5.4 實驗溶液配置 29
5.5 實驗步驟 30
第六章、結果與討論 36
6.1 P(NI-co-AA) 性質分析 36
6.2 石蓴多醣 (Ulvan) 成分分析 39
6.3 微球 (Microspheres, MS) 性質分析 40
6.4水凝膠性質分析 49
6.5 微球水凝膠 59
6.6 細胞相容性 63
6.7 藥物釋放分析 64
6.8 抗菌試驗 68
第七章、結論 70
第八章、參考文獻 71

陳宜嫺、傅如嶽、黃宜純、黃淑桂、楊佳璋、溫慧萍、鄭智交 (2011)。皮膚生理學。台中市:華格那企業。
俞耀庭、林峰輝、白育綸 (2004)。生物醫用材料。新北市:新文京開發。
吳俊忠(2009)。護理檢驗概論,華杏出版社。台北,台灣。
黃世偉(2010)。高分子材料與醫療器材,科學發展455 期14-19。
朱正明(2012)。食品藥物研究年報.3:26-30。
李佳恬(2016)。溫感型複合水凝膠系統作為傷口敷料之研究。淡江大學化學工
程與材料工程學系碩士論文。台北,台灣。
魏廷潔(2018)。溫感型複合薄膜控制藥物釋放之研究。國立臺灣海洋大學食品科學系碩士論文。基隆,台灣。
賴亭彣(2020)。雙重敏感型羧甲基幾丁聚醣複合薄膜做為創傷敷材之評估。國立臺灣海洋大學食品科學系碩士論文。基隆,台灣。
Adamiak, K., & Sionkowska, A. (2020). Current methods of collagen cross-linking: Review. International Journal of Biological Macromolecules, 161, 550-560.
Ahmad, U., Sohail, M., Ahmad, M., Minhas, M. U., Khan, S., Hussain, Z., Kousar, M., Mohsin, S., Abbasi, M., & Shah, S. A. (2019). Chitosan based thermosensitive injectable hydrogels for controlled delivery of loxoprofen: development, characterization and in-vivo evaluation. International Journal of Biological Macromolecules, 129, 233-245.
Akash, M. S. H., & Rehman, K. (2015). Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. Journal of Controlled Release, 209, 120-138.
Ali, S. M., & Yosipovitch, G. (2013). Skin pH: from basic science to basic skin care. Acta Derm Venereol, 93(3), 261-267.
Alves, A., Sousa, R. A., & Reis, R. L. (2013). Processing of degradable ulvan 3D porous structures for biomedical applications. Journal of Biomedical Materials Research Part A, 101(4), 998-1006.
Angell, A. R., Mata, L., de Nys, R., & Paul, N. A. (2014). Variation in amino acid content and its relationship to nitrogen content and growth rate in Ulva ohnoi (Chlorophyta). Journal of Phycology, 50(1), 216-226.
Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertassoni, L. E., Cha, C., Camci‐Unal, G., Dokmeci, M. R., Peppas, N. A., & Khademhosseini, A. (2014). 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced Materials, 26(1), 85-124.
Belote, R. L., Le, D., Maynard, A., Lang, U. E., Sinclair, A., Lohman, B. K., Planells-Palop, V., Baskin, L., Tward, A. D., Darmanis, S., & Judson-Torres, R. L. (2021, Sep). Human melanocyte development and melanoma dedifferentiation at single-cell resolution. Nature Cell Biology, 23(9), 1035-1047.
Berman, B., Maderal, A., & Raphael, B. (2017). Keloids and hypertrophic scars: pathophysiology, classification, and treatment. Dermatologic Surgery, 43, S3-S18.
Bilal, M., & Iqbal, H. M. (2019). Marine seaweed polysaccharides-based engineered cues for the modern biomedical sector. Marine Drugs, 18(1), 7.
Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54(2), 484-489.
Borena, B. M., Martens, A., Broeckx, S. Y., Meyer, E., Chiers, K., Duchateau, L., & Spaas, J. H. (2015). Regenerative skin wound healing in mammals: state-of-the-art on growth factor and stem cell based treatments. Cellular Physiology and Biochemistry, 36(1), 1-23.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
Bravo, S. A., Lamas, M. C., & Salomón, C. J. (2002). In-vitro studies of diclofenac sodium controlled-release from biopolymeric hydrophilic matrices. Journal of Pharmaceutical Sciences, 5(3), 213-219.
Caló, E., & Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252-267.
Chatterjee, S., & Hui, C.-L. (2019). Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules, 24(14).
Chen, C.-C., Fang, C.-L., Al-Suwayeh, S. A., Leu, Y.-L., & Fang, J.-Y. (2011). Transdermal delivery of selegiline from alginate–Pluronic composite thermogels. International Journal of Pharmaceutics, 415(1-2), 119-128.
Chen, H., Xing, X., Tan, H., Jia, Y., Zhou, T., Chen, Y., Ling, Z., & Hu, X. (2017). Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing. Materials Science and Engineering: C, 70, 287-295.
Chen, X., Fan, M., Tan, H., Ren, B., Yuan, G., Jia, Y., Li, J., Xiong, D., Xing, X., & Niu, X. (2019). Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Materials Science and Engineering: C, 101, 619-629.
Cidade, Ramos, D., Santos, J., Carrelo, H., Calero, N., & Borges, J. (2019). Injectable hydrogels based on pluronic/water systems filled with alginate microparticles for biomedical applications. Materials, 12(7), 1083.
Chiu, L.-H. (2008). Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Materials Chemistry and Physics, 107(2), 266-273.
Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica, 67(3), 217-223.
Dias, J., Baptista-Silva, S., De Oliveira, C., Sousa, A., Oliveira, A. L., Bártolo, P., & Granja, P. (2017). In situ crosslinked electrospun gelatin nanofibers for skin regeneration. European Polymer Journal, 95, 161-173.
Ding, Z., Chen, G., & Hoffman, A. S. (1996). Synthesis and purification of thermally sensitive oligomer− enzyme conjugates of poly (N-isopropylacrylamide)− trypsin. Bioconjugate Chemistry, 7(1), 121-125.
Dodgson, K. S., & Price, R. G. (1962). A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochemical Journal, 84(1), 106-110.
Don, T. M., Huang, M. L., Chiu, A. C., Kuo, K. H., Chiu, W. Y., & Chiu, L. H. (2008). Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems. Materials Chemistry and Physics, 107(2-3), 266-273.
Dormer, N. H., Busaidy, K., Berkland, C. J., & Detamore, M. S. (2011). Osteochondral interface regeneration of rabbit mandibular condyle with bioactive signal gradients. Journal of Oral and Maxillofacial Surgery, 69(6), e50-e57.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. t., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
Freitas, S., Merkle, H. P., & Gander, B. (2005). Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. Journal of Controlled Release, 102(2), 313-332.
Gauglitz, Korting, H. C., Pavicic, T., Ruzicka, T., & Jeschke, M. G. (2011). Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Molecular Medicine, 17(1-2), 113-125.
Goodarzi, H., Jadidi, K., Pourmotabed, S., Sharifi, E., & Aghamollaei, H. (2019). Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. International Journal of Biological Macromolecules, 126, 620-632.
Greenhalgh, D. G. (2019). Management of Burns. The New England Journal of Medicine, 380(24), 2349-2359.
Grossman, T. H. (2016). Tetracycline Antibiotics and Resistance. Cold Spring Harb Perspect Med, 6(4), a025387.
Gupta, V., Khan, Y., Berkland, C. J., Laurencin, C. T., & Detamore, M. S. (2017). Microsphere-based scaffolds in regenerative engineering. Annual Review of Biomedical Engineering, 19, 135-161.
Hamid Akash, M. S., Rehman, K., & Chen, S. (2015). Natural and synthetic polymers as drug carriers for delivery of therapeutic proteins. Polymer Reviews, 55(3), 371-406.
Han, G., & Ceilley, R. (2017). Chronic wound healing: a review of current management and treatments. Advances in Therapy, 34(3), 599-610.
Hanafy, N. A., Leporatti, S., & El-Kemary, M. A. (2019). Mucoadhesive hydrogel nanoparticles as smart biomedical drug delivery system. Applied Sciences, 9(5), 825.
Heng, P. W. S. (2018). Controlled release drug delivery systems. Pharmaceutical Development and Technology, 23(9), 833.
Hennink, W. E., & van Nostrum, C. F. (2012). Novel crosslinking methods to design hydrogels. Advanced drug Delivery Reviews, 64, 223-236.
Huang, X., Zhang, Y., Zhang, X., Xu, L., Chen, X., & Wei, S. (2013). Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Materials Science and Engineering: C, 33(8), 4816-4824.
Jafari-Sabet, M., Nasiri, H., & Ataee, R. (2016). The effect of cross-linking agents and collagen concentrations on properties of collagen scaffolds. Journal of Archives in Military Medicine, 4(4).
Jain, K., Vedarajan, R., Watanabe, M., Ishikiriyama, M., & Matsumi, N. (2015). Tunable LCST behavior of poly (N-isopropylacrylamide/ionic liquid) copolymers. Polymer Chemistry, 6(38), 6819-6825.
Jeong, B., Kibbey, M. R., Birnbaum, J. C., Won, Y.-Y., & Gutowska, A. (2000). Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules, 33(22), 8317-8322.
Jung, Park, W., Park, H., Lee, D. K., & Na, K. (2017). Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydrate Polymers, 156, 403-408.
Kanth, V. R., Kajjari, P. B., Madalageri, P. M., Ravindra, S., Manjeshwar, L. S., Aminabhavi, T. M., & Vallabhapurapu, V. S. (2017). Blend hydrogel microspheres of carboxymethyl chitosan and gelatin for the controlled release of 5-fluorouracil. Pharmaceutics, 9(2), 13.
Khaleel, R. M., & Mohammed, D. H. (2020). Spectrophotometric Determination of tetracycline hydrochloride Using 2, 4–dinitrophenyl hydrazine as Coupling Reagent. Journal of Physics: Conference Series,
Kidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. (2019). Ulvan: A systematic review of extraction, composition and function. Algal research, 39, 101422.
Kim, A. R., Lee, S. L., & Park, S. N. (2018). Properties and in vitro drug release of pH-and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. International Journal of Biological Macromolecules, 118, 731-740.
Lahaye, M., & Axelos, M. (1993). Gelling properties of water-soluble polysaccharides from proliferating marine green seaweeds (Ulva spp.). Carbohydrate Polymers, 22(4), 261-265.
Lahaye, M., & Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8(6), 1765-1774.
Lai, J.-Y. (2014). Interrelationship between cross-linking structure, molecular stability, and cytocompatibility of amniotic membranes cross-linked with glutaraldehyde of varying concentrations. RSC Advances, 4(36), 18871-18880.
Lan, Y., Li, W., Jiao, Y., Guo, R., Zhang, Y., Xue, W., & Zhang, Y. (2014). Therapeutic efficacy of antibiotic-loaded gelatin microsphere/silk fibroin scaffolds in infected full-thickness burns. Acta Biomaterialia, 10(7), 3167-3176.
Lin, N., Huang, J., Chang, P. R., Feng, L., & Yu, J. (2011). Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids and Surfaces B: Biointerfaces, 85(2), 270-279.
Lo, Y.-L., Hsu, C.-Y., & Lin, H.-R. (2013). pH-and thermo-sensitive pluronic/poly (acrylic acid) in situ hydrogels for sustained release of an anticancer drug. Journal of Drug Targeting, 21(1), 54-66.
Maquart, F. X., & Monboisse, J. C. (2014). Extracellular matrix and wound healing. Pathologie Biologie, 62(2), 91-95.
Murphrey, M. B., Miao, J. H., & Zito, P. M. (2022). Histology, Stratum Corneum. In StatPearls. StatPearls Publishing
Nam, J. A., Al‐Nahain, A., Hong, S., Lee, K. D., Lee, H., & Park, S. Y. (2011). Synthesis and characterization of a multi‐sensitive crosslinked injectable hydrogel based on pluronic. Macromolecular Bioscience, 11(11), 1594-1602.
Ndlovu, Ngece, K., Alven, S., & Aderibigbe, B. A. (2021). Gelatin-Based Hybrid Scaffolds: Promising Wound Dressings. Polymers 13(17).
Peasura, N., Laohakunjit, N., Kerdchoechuen, O., Vongsawasdi, P., & Chao, L. K. (2016). Assessment of biochemical and immunomodulatory activity of sulphated polysaccharides from Ulva intestinalis. International Journal of Biological Macromolecules, 91, 269-277.
Permanadewi, I., Kumoro, A., Wardhani, D., & Aryanti, N. (2019). Modelling of controlled drug release in gastrointestinal tract simulation. Journal of Physics: Conference Series,
Plikus, M. V., Guerrero-Juarez, C. F., Ito, M., Li, Y. R., Dedhia, P. H., Zheng, Y., Shao, M., Gay, D. L., Ramos, R., & Hsi, T.-C. (2017). Regeneration of fat cells from myofibroblasts during wound healing. Science, 355(6326), 748-752.
Poellmann, M. J., Harrell, P. A., King, W. P., & Johnson, A. J. W. (2010). Geometric microenvironment directs cell morphology on topographically patterned hydrogel substrates. Acta Biomaterialia, 6(9), 3514-3523.
Qu, J., Zhao, X., Liang, Y., Zhang, T., Ma, P. X., & Guo, B. (2018). Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 183, 185-199.
Rangabhatla, A. S. L., Tantishaiyakul, V., Oungbho, K., & Boonrat, O. (2016). Fabrication of pluronic and methylcellulose for etidronate delivery and their application for osteogenesis. International Journal of Pharmaceutics, 499(1-2), 110-118.
Reddy, N., Reddy, R., & Jiang, Q. (2015). Crosslinking biopolymers for biomedical applications. Trends in Biotechnology, 33(6), 362-369.
Robic, A., Gaillard, C., Sassi, J. F., Lerat, Y., & Lahaye, M. (2009). Ultrastructure of ulvan: A polysaccharide from green seaweeds. Biopolymers: Original Research on Biomolecules, 91(8), 652-664.
Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S. S., Sharifi, F., Jalilian, E., Nuutila, K., Giatsidis, G., Mostafalu, P., & Derakhshandeh, H. (2018). Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 127, 138-166.
Schilli, C. M., Zhang, M., Rizzardo, E., Thang, S. H., Chong, Y., Edwards, K., Karlsson, G., & Müller, A. H. (2004). A new double-responsive block copolymer synthesized via RAFT polymerization: poly (N-isopropylacrylamide)-b lock-poly (acrylic acid). Macromolecules, 37(21), 7861-7866.
Shieh, Y.-T., Lin, P.-Y., Chen, T., & Kuo, S.-W. (2016). Temperature-, pH-and CO2-sensitive poly (N-isopropylacryl amide-co-acrylic acid) copolymers with high glass transition temperatures. Polymers, 8(12), 434.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology (Vol. 299, pp. 152-178). Elsevier.
Su, W.-H., Cheng, M.-H., Lee, W.-L., Tsou, T.-S., Chang, W.-H., Chen, C.-S., & Wang, P.-H. (2010). Nonsteroidal anti-inflammatory drugs for wounds: pain relief or excessive scar formation Mediators of Inflammation, 2010.
Sulastri, E., Lesmana, R., Zubair, M. S., Elamin, K. M., & Wathoni, N. (2021). A Comprehensive Review on Ulvan Based Hydrogel and Its Biomedical Applications. Chemical and Pharmaceutical Bulletin, 69(5), 432-443.
Sun, J., & Tan, H. (2013). Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials 6(4), 1285-1309.
Toskas, G., Hund, R. D., Laourine, E., Cherif, C., Smyrniotopoulos, V., & Roussis, V. (2011). Nanofibers based on polysaccharides from the green seaweed Ulva rigida. Carbohydrate Polymers, 84, 1093-1102.
Voegeli, D. (2012). Understanding the main principles of skin care in older adults. Nursing Standard, 27(11).
Wang, C., Wang, M., Xu, T., Zhang, X., Lin, C., Gao, W., Xu, H., Lei, B., & Mao, C. (2019). Engineering Bioactive Self-Healing Antibacterial Exosomes Hydrogel for Promoting Chronic Diabetic Wound Healing and Complete Skin Regeneration. Theranostics, 9(1), 65-76.
Wang, W., Wat, E., Hui, P. C., Chan, B., Ng, F. S., Kan, C.-W., Wang, X., Hu, H., Wong, E. C., & Lau, C. (2016). Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment. Scientific Reports, 6(1), 1-10.
Xiang, J., Shen, L., & Hong, Y. (2020). Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. European Polymer Journal, 130, 109609.
Yaich, H., Amira, A. B., Abbes, F., Bouaziz, M., Besbes, S., Richel, A., Blecker, C., Attia, H., & Garna, H. (2017). Effect of extraction procedures on structural, thermal and antioxidant properties of ulvan from Ulva lactuca collected in Monastir coast. International Journal of Biological Macromolecules, 105(Pt 2), 1430-1439.
Yousef, H., Alhajj, M., & Sharma, S. (2022). Anatomy, Skin (Integument), Epidermis. In StatPearls. StatPearls Publishing
Zhang, X., Pan, Y., Li, S., Xing, L., Du, S., Yuan, G., Li, J., Zhou, T., Xiong, D., Tan, H., Ling, Z., Chen, Y., Hu, X., & Niu, X. (2020). Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. International Journal of Biological Macromolecules, 164, 2204-2214.
Ziaee, M., Zahedi, P., Abdouss, M., Zarandi, M. A., Manouchehri, S., & Mozdoori, N. (2016). Electrospun poly (N-isopropylacrylamide-co-acrylic acid)/cellulose laurate blend nanofibers containing adapalene: Morphology, drug release, and cell culture studies. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(9), 477-486.
(此全文20270809後開放外部瀏覽)
電子全文
全文檔開放日期:2027/08/09
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *