字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:曾子安
研究生英文姓名:Tzeng, Tz-An
中文論文名稱:臺灣市場之午仔魚中腸炎弧菌的發生、致病因子、抗生素抗藥模式和生物膜形成
英文論文名稱:Occurrence, virulence, antibiotic resistance patterns and biofilm formation of the Vibrio parahaemolyticus from threadfins (Eleutheronema tetradactylum) on Taiwan market
指導教授姓名:林泓廷
口試委員中文姓名:教授︰陳怡原
教授︰鄭光成
副教授︰許邦弘
教授︰凌明沛
教授︰蔡國珍
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:11032020
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
語文別:中文
論文頁數:81
中文關鍵詞:弧菌抗生素抗生素抗藥性致病因子生物膜蛋白質體分析
英文關鍵字:Vibrioantibioticsantibiotics resistantvirulencebiofilmproteomics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
食源性疾病 (foodborne disease) 指的食用被汙染的食物或飲水等所致的疾病,俗稱食物中毒,其中最常見的食源性病原菌為腸炎弧菌 (Vibrio parahaemolyticus),其致病型態屬於感染型,且常見的致病因子為熱穩定溶血素 (Thermostable direct hemolysin, TDH ) 及類熱穩定溶血素 (TDH-related hemolysin, TRH)。抗生素的使用成為了預防和治療細菌性疾病的重要工具,但近期卻發現,過度的使用抗生素會造成抗藥性細菌,甚至產生多重抗藥性 (multidrug-resistant, MDR),且生物膜的形成也可能對抗藥性產生影響。本實驗選用抗生素殘留嚴重之午仔魚作為樣品來監測臺灣市場之午仔魚中腸炎弧菌之發生、致病因子、抗藥性監測與鑑定及生物膜之生成能力。結果顯示,腸炎弧菌的發生比例為傳統市場大於食品供應商,且分離出的腸炎弧菌分離株均無檢測到具有溶血素 TDH 及 TRH 的基因表現與生化表現。針對抗敏性結果則是對兩種胺基糖苷類 (amikacin 與 gentamicin) 及青黴素類的 ampicillin 和頭孢菌素類的 cefuroxime 具有明顯的抗藥性,且對碳青黴烯類的 imipenem 與 meropenem 及青黴素類的 piperacillin、頭孢菌素類的 cefepime 和四環黴素類的 doxycycline 具有明顯的敏感性。而在所有的分離株中 MDR 腸炎弧菌分離株之菌株比例比非 MDR 腸炎弧菌分離株來的高。此外,分離株之生物膜生成能力強度較弱,且生物膜生成能力越強並無提高抗藥性的結果。最後透過蛋白質體分析結果發現,即使皆為腸炎弧菌分離株,但可能因菌株為環境分離株而造成蛋白質表現量有較大的個體差異。另外發現在兩株腸炎弧菌分離株中添加頭孢菌素類藥物時,可能會降低糖代謝途徑及核甘酸代謝。藉由本次實驗之結過,除了瞭解臺灣市場午仔魚中腸炎弧菌分離株的發生、致病、抗藥性及生物膜結果外,也提供了腸炎弧菌抗藥性分離株在抗生素存在對其蛋白體之影響。
Food-borne diseases refer to the diseases caused by ingestion of contaminated food or water. Vibrio parahaemolyticus, one of the most common food-borne pathogens, could possess virulence factors thermostable hemolysin (TDH) and thermostable hemolysin-like (TRH) and normally cause illnesses via food infection. Antibiotics have been used for the prevention and treatment of bacterial diseases, but it has recently been found that excessive use of antibiotics can lead to the development of drug-resistant bacteria. In this study, threadfins on Taiwan's markets were screened for V. parahaemolyticus isolates, and their pathogenic factors, drug resistance profiles, and biofilm formation ability were investigated. 19 V. parahaemolyticus strains were isolated from 50 threadfin samples, and the incidence of V. parahaemolyticus in the samples from traditional markets was greater than those from food processing companies; in addition, and the tdh and trh genes were not detected by using PCR among the V. parahaemolyticus isolates, which as well showed no signs of Kangawa phenomenon and urease activity. Drug susceptibility tests indicated that most V. parahaemolyticus isolates showed drug resistance against amikacin/gentamicin (aminoglycosides), penicillin (penicillins), and cefuroxime (cephalosporins) and showed drug susceptibility for piperacillin (penicillins) and imipenem/meropenem (carbapenems), cefepime (cephalosporins), and doxycycline (Tetracyclins); moreover, most drug-resistant strains were multidrug drug resistant. As for the biofilms, the V. parahaemolyticus isolates showed no, weak, or intermediate biofilm formation, ability, and no signs for the relation of biofilm-forming ability and antibiotic resistance. Intriguingly, it was observed in the proteosome analysis that drug resistant V. parahaemolyticus could exhibit different patterns of gene expression in the presence of cephalosporins, suggesting different strategies for the isolates to combat antibiotics. In this study we provided the occurrence, pathogenicity, drug resistance and biofilm results of V. parahaemolyticus isolates in threadfins on Taiwan market, and the proteomics data revealed the expression strategies of the drug-resistant V. parahaemolyticu isolates in the presence of antibiotics.
謝致 I
摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
縮寫表 VIII
壹、 前言 1
貳、 文獻整理 3
2.1 食源性病原菌:弧菌屬 3
2.1.1 食源性病原菌之介紹 3
2.1.2 腸炎弧菌 (Vibrio parahaemolyticus) 3
2.1.3 創傷弧菌 (Vibrio vulnificus) 3
2.1.4 霍亂弧菌 (Vibrio cholerae) 4
2.2 腸炎弧菌致病因子 (V. parahaemolyticus virulence factors) 4
2.2.1 致病因子之介紹 4
2.2.2 致病因子的測定 4
2.3 抗生素 (antibiotic) 5
2.3.1 抗生素之介紹 5
2.3.2 抗生素之種類 6
2.4 抗生素抗藥性腸炎弧菌 (antibiotic resistant V. parahaemolyticus) 8
2.4.1 抗生素抗藥性細菌之介紹與產生 8
2.4.2 多重抗藥性細菌 (multidrug-resistant bacteria) 9
2.4.3 抗藥性細菌之監測方式 9
2.4.4 各國腸炎弧菌之抗藥性監測與我國現今狀況 11
2.5 水產食品傳遞鏈 12
2.5.1 食品傳遞鏈之介紹 12
2.5.2 海鮮食品 13
2.5.3 午仔魚 13
2.5.4 抗生素與午仔魚的關聯 14
2.6 生物膜 (biofilm) 15
2.6.1 生物膜之介紹 15
2.6.2 生物膜的形成 15
2.6.3 生物膜的測定 17
2.6.4 生物膜對水產加工產業及抗藥性微生物的影響 18
參、 實驗設計 20
肆、 實驗材料與方法 21
4.1 實驗材料 21
4.1.1 午仔魚樣品 21
4.1.2 標準菌株 21
4.1.3 培養基 21
4.1.4 抗生素 24
4.1.5 化學藥品 24
4.1.6 實驗儀器與耗材 25
4.2 實驗方法 26
4.2.1 菌株活化 26
4.2.2 生長曲線 26
4.2.3 樣品採樣 27
4.2.4 菌叢分析 27
4.2.5 腸炎弧菌分離及菌株保存 27
4.2.6 DNA 萃取 (DNA extraction) 27
4.2.7 腸炎弧菌分離菌株鑑定及致病基因鑑定 28
4.2.8 抗生素敏感性測試 (antibiotic susceptibility testing) 29
4.2.9 生物膜生成能力測試 29
4.2.10 致病因子生化試驗 30
4.2.11. 抗藥性細菌之蛋白質體學分析 30
4.2.12 統計分析 32
伍、 結果與討論 33
5.1 午仔魚中腸炎弧菌分離株的發生比例及午仔魚之菌叢分析 33
5.2 午仔魚中腸炎弧菌分離株之致病因子 34
5.3 午仔魚中腸炎弧菌分離株之抗生素敏感性試驗及多重抗藥性 35
5.3.1 午仔魚中腸炎弧菌分離株之抗生素敏感性試驗 35
5.3.2 午仔魚中腸炎弧菌分離株之多重抗藥性結果 37
5.4 午仔魚中腸炎弧菌分離株之生物膜生成能力試驗 37
5.5 午仔魚中抗藥性腸炎弧菌分離株之蛋白質體學分析 38
陸、 結論 44
柒、 參考文獻 45
捌、 圖表 59
玖、 附錄 77
吳渝萱. (2020). 以細菌細胞抽出物製備葡萄酒香氣化合物 4-巰基-4-甲基-2-戊酮。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。.
林軒如. (2016). 解譯 ABC 轉運蛋白 VcaM 對霍亂弧菌之藥物抗性。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。.
Acar, J. F., & Moulin, G. (2006). Antimicrobial resistance at farm level. Revue Scientifique Et Technique-Office International Des Epizooties, 25, 775-792.
Ahmed, H. A., El Bayomi, R. M., Hussein, M. A., Khedr, M. H. E., Remela, E. M. A., & El-Ashram, A. M. M. (2018). Molecular characterization, antibiotic resistance pattern and biofilm formation of Vibrio parahaemolyticus and V-cholerae isolated from crustaceans and humans. International Journal of Food Microbiology, 274, 31-37.
Ahmed, M. J., & Theydan, S. K. (2014). Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis. Journal of the Taiwan Institute of Chemical Engineers, 45, 219-226.
Akinbowale, O. L., Peng, H., & Barton, M. D. (2006). Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. Journal of Applied Microbiology, 100, 1103-1113.
Aksu, Z., & Tunc, O. (2005). Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochemistry, 40, 831-847.
Al-Assafi, M. M. K., Abd Mutalib, S., & Aldulaimi, M. (2014). A review of important virulence factors of" Vibrio vulnificus". Current Research Journal of Biological Sciences, 6, 76-88.
Al-Dulaimi, M. M. K., Abd Mutalib, S., Abd Ghani, M., Zaini, N. A. M., & Ariffin, A. A. (2019). Multiple antibiotic resistance (MAR), plasmid profiles, and DNA polymorphisms among Vibrio vulnificus isolates. Antibiotics-Basel, 8, 68.
Altekruse, S. F., Bishop, R. D., Baldy, L. M., Thompson, S. G., Wilson, S. A., Ray, B. J., & Griffin, P. M. (2000). Vibrio gastroenteritis in the US Gulf of Mexico region: the role of raw oysters. Epidemiology and Infection, 124, 489-495.
Anand, S., Singh, D., Avadhanula, M., & Marka, S. (2014). Development and control of bacterial biofilms on dairy processing membranes. Comprehensive Reviews in Food Science and Food Safety, 13, 18-33.
Andriole, V. T. (2005). The quinolones: Past, present, and future. Clinical Infectious Diseases, 41, S113-S119.
Apata, D. (2009). Antibiotic resistance in poultry. International Journal of Poultry Science, 8, 404-408.
Aslam, B., Basit, M., Nisar, M. A., Khurshid, M., & Rasool, M. H. (2017). Proteomics: technologies and their applications. Journal of Chromatographic Science, 55, 182-196.
Augustin, M., Ali-Vehmas, T., & Atroshi, F. (2004). Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. Journal of Pharmacy and Pharmaceutical Sciences, 7, 55-64.
Baker-Austin, C., Oliver, J. D., Alam, M., Ali, A., Waldor, M. K., Qadri, F., & Martinez-Urtaza, J. (2018). Vibrio spp. infections. Nature Reviews Disease Primers, 4, 1-19.
Baker‐Austin, C., Stockley, L., Rangdale, R., & Martinez‐Urtaza, J. (2010). Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus:A European perspective. Environmental Microbiology Reports, 2, 7-180.
Baquero, F., Martínez, J.-L., & Cantón, R. (2008). Antibiotics and antibiotic resistance in water environments. Current Opinion In Biotechnology, 19, 260-265.
Beshiru, A., Igbinosa, I. H., & Igbinosa, E. O. (2018). Biofilm formation and potential virulence factors of Salmonella strains isolated from ready-to-eat shrimps. Plos One, 13, e0204345.
Beshiru, A., Igbinosa, I. H., & Igbinosa, E. O. (2021). Characterization of enterotoxigenic Staphylococcus aureus from ready-to-eat seafood (RTES). Lwt-Food Science and Technology, 135,110042.
Blair, J., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13, 42-51.
Bronson, J. J., & Barrett, J. F. (2001). Quinolone, everninomycin, glycylcyline, carbapenem, lipopeptide and cephem antibacterials in clinical development. Current Medicinal Chemistry, 8, 1775-1793.
Cabello, F. C., Godfrey, H. P., Tomova, A., Ivanova, L., Dölz, H., Millanao, A., & Buschmann, A. H. (2013). Antimicrobial use in aquaculture re‐examined: Its relevance to antimicrobial resistance and to animal and human health. Environmental Microbiology, 15, 1917-1942.
Caburlotto, G., Suffredini, E., Toson, M., Fasolato, L., Antonetti, P., Zambon, M., & Manfrin, A. (2016). Occurrence and molecular characterisation of Vibrio parahaemolyticus in crustaceans commercialised in Venice area, Italy. International Journal of Food Microbiology, 220, 39-49.
Cai, Y. L., & Ni, Y. X. (1996). Purification, characterization, and pathogenicity of urease produced by Vibrio parahaemolyticus. Journal of Clinical Laboratory Analysis, 10, 70-73.
Carabineiro, S. A. C., Thavorn-Amornsri, T., Pereira, M. F. R., & Figueiredo, J. L. (2011). Adsorption of ciprofloxacin on surface-modified carbon materials. Water Research, 45, 4583-4591.
Cassenego, A. P. V., d'Azevedo, P. A., Ribeiro, A. M. L., Frazzon, J., Van Der Sand, S. T., & Frazzon, A. P. G. (2011). Species distribution and antimicrobial susceptibility of Enterococci isolated from broilers infected experimentally with Eimeria spp and fed with diets containing different supplements. Brazilian Journal of Microbiology, 42, 480-488.
Chang, C., Mahmood, M. M., Teuber, S. S., & Gershwin, M. E. (2012). Overview of penicillin allergy. Clinical Reviews in Allergy & Immunology, 43, 84-97.
Chayid, M. A., & Ahmed, M. J. (2015). Amoxicillin adsorption on microwave prepared activated carbon from Arundo donax Linn: Isotherms, kinetics, and thermodynamics studies. Journal of Environmental Chemical Engineering, 3, 1592-1601.
Chen, B., Zhang, D., Wang, X., Ma, W., Deng, S., Zhang, P., Zhu, H., Xu, N., & Liang, S. (2017). Proteomics progresses in microbial physiology and clinical antimicrobial therapy. European Journal of Clinical Microbiology & Infectious Diseases, 36, 403-413.
Chiesa, L. M., Nobile, M., Malandra, R., Panseri, S., & Arioli, F. (2018). Occurrence of antibiotics in mussels and clams from various FAO areas. Food Chemistry, 240, 16-23.
Chiou, J. C., Li, R. C., & Chen, S. (2015). CARB-17 family of beta-lactamases mediates intrinsic resistance to penicillins in Vibrio parahaemolyticus. Antimicrobial Agents and Chemotherapy, 59, 3593-3595.
Chmielewski, R., & Frank, J. (2003). Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety, 2, 22-32.
Christensen, G. D., Simpson, W. A., Bisno, A. L., & Beachey, E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and immunity, 37, 318-326.
Christensen, G. D., Simpson, W. A., Younger, J., Baddour, L., Barrett, F., Melton, D., & Beachey, E. (1985). Adherence of coagulase-negative Staphylococci to plastic tissue culture plates: A quantitative model for the adherence of Staphylococci to medical devices. Journal of Clinical Microbiology, 22, 996-1006.
CLSI. (2010). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; approved guideline - Third Edition.
Correia, S., Poeta, P., Hébraud, M., Capelo, J. L., & Igrejas, G. (2017). Mechanisms of quinolone action and resistance: Where do we stand? Journal of Medical Microbiology, 66, 551-559.
Costerton, J. W., Lewandowski, Z., DeBeer, D., Caldwell, D., Korber, D., & James, G. (1994). Biofilms, the customized microniche. Journal of Bacteriology, 176, 2137-2142.
Crowe, S. J., Mahon, B. E., Vieira, A. R., & Gould, L. H. (2015). Vital signs: Multistate foodborne outbreaks - United States, 2010-2014. Mmwr-Morbidity and Mortality Weekly Report, 64, 1221-1225.
d'Azevedo, P. A., Dias, C. A. G., & Teixeira, L. M. (2006). Genetic diversity and antimicrobial resistance of Enterococcal isolates from southern region of Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 48, 11-16.
Dantas, G., & Sommer, M. O. A. (2014). How to fight back against antibiotic resistance. American Scientist, 102, 42-51.
de Melo, L. M. R., Almeida, D., Hofer, E., dos Reis, C. M. F., Theophilo, G. N. D., Santos, A. F. D., & Vieira, R. H. S. D. (2011). Antibiotic resistance of Vibrio Parahaemolyticus isolated from pond-reared litopenaeus Vannamei marketed in Natal, Brazil. Brazilian Journal of Microbiology, 42, 1463-1469.
Devi, R., Surendran, P. K., & Chakraborty, K. (2009). Antibiotic resistance and plasmid profiling of Vibrio parahaemolyticus isolated from shrimp farms along the southwest coast of India. World Journal of Microbiology & Biotechnology, 25, 2005-2012.
Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8, 881-890.
Egerton, S., Culloty, S., Whooley, J., Stanton, C., & Ross, R. P. (2018). The gut microbiota of marine fish. Frontiers in Microbiology, 9,873.
Elmahdi, S., DaSilva, L. V., & Parveen, S. (2016). Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiology, 57, 128-134.
Enos-Berlage, J. L., Guvener, Z. T., Keenan, C. E., & McCarter, L. L. (2005). Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Molecular Microbiology, 55, 1160-1182.
Enos-Berlage, J. L., & McCarter, L. L. (2000). Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. Journal of Bacteriology, 182, 5513-5520.
Enos‐Berlage, J. L., Guvener, Z. T., Keenan, C. E., & McCarter, L. L. (2005). Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Molecular Microbiology, 55, 1160-1182.
Faruque, S. M., Biswas, K., Udden, S. M. N., Ahmad, Q. S., Sack, D. A., Nair, G. B., & Mekalanos, J. J. (2006). Transmissibility of cholera: In vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proceedings of the National Academy of Sciences of the United States of America, 103, 6350-6355.
Ferreira, C., Pereira, A., Melo, L., & Simões, M. (2010). Advances in industrial biofilm control with micro-nanotechnology. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2, 845-854.
Fisher, K., & Phillips, C. (2009). The ecology, epidemiology and virulence of Enterococcus. Microbiology, 155, 1749-1757.
Founou, L. L., Founou, R. C., & Essack, S. Y. (2016). Antibiotic resistance in the food chain: A developing country-perspective. Frontiers in Microbiology, 7, 1881.
Frazzon, A. P. G., Gama, B. A., Hermes, V., Bierhals, C. G., Pereira, R. I., Guedes, A. G., d'Azevedo, P. A., & Frazzon, J. (2010). Prevalence of antimicrobial resistance and molecular characterization of tetracycline resistance mediated by tet(M) and tet(L) genes in Enterococcus spp. isolated from food in Southern Brazil. World Journal of Microbiology & Biotechnology, 26, 365-370.
Freeman, D., Falkiner, F., & Keane, C. (1989). New method for detecting slime production by coagulase negative Staphylococci. Journal of Clinical Pathology, 42, 872-874.
Fujino, T. (1965). Taxonomic studies on the bacterial strains isolated from cases of " Shirasu" food poisoning (Pasteurella parahaemolytica) and related microorganisms. Biken's Journal, 8, 63-71.
Ghenem, L., Elhadi, N., Alzahrani, F., & Nishibuchi, M. (2017). Vibrio parahaemolyticus: A review on distribution, pathogenesis, virulence determinants and epidemiology. Saudi Journal of Medicine & Medical Sciences, 5, 93.
Giacometti, F., Pezzi, A., Galletti, G., Tamba, M., Merialdi, G., Piva, S., Serraino, A., & Rubini, S. (2021). Antimicrobial resistance patterns in Salmonella enterica subsp. enterica and Escherichia coli isolated from bivalve molluscs and marine environment. Food Control, 121, 107590.
Gomes, B. C., Esteves, C. T., Palazzo, I. C., Darini, A. L. C., Felis, G. E., Sechi, L. A., Franco, B. D., & De Martinis, E. C. (2008). Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiology, 25, 668-675.
Guvener, Z. T., & McCarter, L. L. (2003). Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. Journal of Bacteriology, 185, 5431-5441.
Guzel, F., & Saygili, H. (2016). Adsorptive efficacy analysis of novel carbonaceous sorbent derived from grape industrial processing wastes towards tetracycline in aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 60, 236-240.
Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A., & Iqbal, M. (2011). Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian Journal of Infectious Diseases, 15, 305-311.
Helmy, Y. A., El-Adawy, H., & Abdelwhab, E. M. (2017). A comprehensive review of common bacterial, parasitic and viral zoonoses at the human-animal interface in Egypt. Pathogens, 6, 258.
Hermann, T. (2007). Aminoglycoside antibiotics: Old drugs and new therapeutic approaches. Cellular and Molecular Life Sciences, 64, 1841-1852.
Holmes, A. H., Moore, L. S., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387, 176-187.
Homem, V., & Santos, L. (2011). Degradation and removal methods of antibiotics from aqueous matrices - A review. Journal of Environmental Management, 92, 2304-2347.
Honda, T., & Iida, T. (1993). The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct haemolysin and related haemolysins. Reviews in Medical Microbiology, 4, 106-113.
Honda, T., Ni, Y., & Miwatani, T. (1988). Purification and characterization of a hemolysin produced by a clinical isolate of Kanagawa phenomenon-negative Vibrio parahaemolyticus and related to the thermostable direct hemolysin. Infection and Immunity, 56, 961-965.
Horsley, R. (1973). The bacterial flora of the Atlantic salmon (Salmo salar L.) in relation to its environment. Journal of Applied Bacteriology, 36, 377-386.
IFT. (2006). Antimicrobial resistance: implications for the food system. Food Australia, 58, 586-587.
Inatsu, Y., Ohata, Y., Nakamura, N., Hosotani, Y., Ananchaipattana, C., Bari, M. L., & Kawasaki, S. (2015). Survival of inoculated Escherichia coli O157:H7 in Japanese sweet dumplings during storage. Biocontrol Science, 20, 285-290.
Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., Hussain, T., Ali, M., Rafiq, M., & Kamil, M. A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association, 81, 7-11
Jamuna, M., & Jeevaratnam, K. (2004). Isolation and partial characterization of bacteriocins from Pediococcus species. Applied Microbiology and Biotechnology, 65, 433-439.
Jeong, H. W., Kim, J. A., Jeon, S. J., Choi, S. S., Kim, M. K., Yi, H. J., Cho, S. J., Kim, I. Y., Chon, J. W., Kim, D. H., Bae, D., Kim, H., & Seo, K. H. (2020). Prevalence, antibiotic-resistance, and virulence characteristics of Vibrio parahaemolyticus in restaurant fish tanks in Seoul, South Korea. Foodborne Pathogens and Disease, 17, 209-214.
Jin, M., Lu, J., Chen, Z. Y., Nguyen, S. H., Mao, L. K., Li, J. W., Yuan, Z. G., & Guo, J. H. (2018). Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. Environment International, 120, 421-430.
Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clinical Infectious Diseases, 49, 1749-1755.
Joseph, L. A., & Wright, A. C. (2004). Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. Journal of Bacteriology, 186, 889-893.
Kaper, J. B., Morris, J. G., & Levine, M. M. (1995). Cholera. Clinical Microbiology Reviews, 8, 48-86.
Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes‐Jørgensen, A., Molin, S., & Tolker‐Nielsen, T. (2003). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology, 48, 1511-1524.
Kogure, K., Ikemoto, E., & Morisaki, H. (1998). Attachment of Vibrio alginolyticus to glass surfaces is dependent on swimming speed. Journal of Bacteriology, 180, 932-937.
Kumar, C. G., & Anand, S. K. (1998). Significance of microbial biofilms in food industry: A review. International Journal of Food Microbiology, 42, 9-27.
Kumar, H. S., Parvathi, A., Karunasagar, I., & Karunasagar, I. (2005). Prevalence and antibiotic resistance of Escherichia coli in tropical seafood. World Journal of Microbiology & Biotechnology, 21, 619-623.
Kwon, D., Lee, W., Kim, W., Yoo, H., Shin, H.-C., & Jeon, S. (2015). Colorimetric detection of penicillin antibiotic residues in pork using hybrid magnetic nanoparticles and penicillin class-selective, antibody-functionalized platinum nanoparticles. Analytical Methods, 7, 7639-7645.
Labella, A., Gennari, M., Ghidini, V., Trento, I., Manfrin, A., Borrego, J. J., & Lleo, M. M. (2013). High incidence of antibiotic multi-resistant bacteria in coastal areas dedicated to fish farming. Marine Pollution Bulletin, 70, 197-203.
Larsen, A., Tao, Z., Bullard, S. A., & Arias, C. R. (2013). Diversity of the skin microbiota of fishes: evidence for host species specificity. Fems Microbiology Ecology, 85, 483-494.
Lee, H. J., Hoel, S., Lunestad, B. T., Lerfall, J., & Jakobsen, A. (2021). Aeromonas spp. isolated from ready‐to‐eat seafood on the Norwegian market: Prevalence, putative virulence factors and antimicrobial resistance. Journal of applied microbiology, 130, 1380-1393.
Letchumanan, V., Yin, W. F., Lee, L. H., & Chan, K. G. (2015). Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Frontiers in Microbiology, 6, 33.
Li, Y., Xie, T., Pang, R., Wu, Q., Zhang, J., Lei, T., Xue, L., Wu, H., Wang, J., & Ding, Y. (2020). Food-borne Vibrio parahaemolyticus in China: Prevalence, antibiotic susceptibility, and genetic characterization. Frontiers in Microbiology, 11, 1670.
Lian, F., Song, Z., Liu, Z., Zhu, L., & Xing, B. (2013). Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by Cu2+ and pH. Environmental Pollution, 178, 264-270.
Lin, Y., Xu, S., & Li, J. (2013). Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chemical Engineering Journal, 225, 679-685.
Liu, W. F., Zhang, J., Zhang, C. L., & Ren, L. (2011). Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: Mechanisms, isotherms and kinetics. Chemical Engineering Journal, 171, 431-438.
Liu, S.-R., Peng, X.-X., & Li, H. (2019). Metabolic mechanism of ceftazidime resistance in Vibrio alginolyticus. Infection and Drug Resistance, 12, 417.
Liu, Y.-Y., Wang, Y., Walsh, T. R., Yi, L.-X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., & Huang, X. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16, 161-168.
Malcolm, T. T. H., Cheah, Y. K., Radzi, C. W. J. W. M., Abu Kasim, F., Kantilal, H. K., John, T. Y. H., Martinez-Urtaza, J., Nakaguchi, Y., Nishibuchi, M., & Son, R. (2015). Detection and quantification of pathogenic Vibrio parahaemolyticus in shellfish by using multiplex PCR and loop-mediated isothermal amplification assay. Food Control, 47, 664-671.
Malmström, L., Malmström, J., & Aebersold, R. (2011). Quantitative proteomics of microbes: Principles and applications to virulence. Proteomics, 11, 2947-2956.
Marshall, B. M., & Levy, S. B. (2011). Food animals and antimicrobials: Impacts on human health. Clinical Microbiology Reviews, 24, 718-733.
Maukonen, J., Matto, J., Wirtanen, G., Raaska, L., Mattila-Sandholm, T., & Saarela, M. (2003). Methodologies for the characterization of microbes in industrial environments: A review. Journal of Industrial Microbiology & Biotechnology, 30, 327-356.
McCarter, L. L. (1998). OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus. Journal of Bacteriology, 180, 3166-3173.
McLean, R. J. C., Whiteley, M., Stickler, D. J., & Fuqua, W. C. (1997). Evidence of autoinducer activity in naturally occurring biofilms. Fems Microbiology Letters, 154, 259-263.
Mihciokur, H., & Oguz, M. (2016). Removal of oxytetracycline and determining its biosorption properties on aerobic granular sludge. Environmental toxicology and pharmacology, 46, 174-182.
Miyasaka, J., Yahiro, S., Arahira, Y., Tokunaga, H., Katsuki, K., & Hara-Kudo, Y. (2006). Isolation of Vibrio parahaemolyticus and Vibrio vulnificus from wild aquatic birds in Japan. Epidemiology & Infection, 134, 780-785.
Moawad, A. A., Hotzel, H., Awad, O., Tomaso, H., Neubauer, H., Hafez, H. M., & El-Adawy, H. (2017). Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers. Gut Pathogens, 9, 1-13.
Mohamad, N., Amal, M. N. A., Saad, M. Z., Yasin, I. S. M., Zulkiply, N. A., Mustafa, M., & Nasruddin, N. S. (2019). Virulence-associated genes and antibiotic resistance patterns of Vibrio spp. isolated from cultured marine fishes in Malaysia. Bmc Veterinary Research, 15, 1-13.
Moon, S., Sohn, I.-W., Hong, Y., Lee, H., Park, J.-H., Kwon, G.-Y., Lee, S., & Youn, S.-K. (2014). Emerging pathogens and vehicles of food-and water-borne disease outbreaks in Korea, 2007–2012. Osong Public Health and Research Perspectives, 5, 34-39.
Morris, J. G., & Tenney, J. (1985). Antibiotic therapy for Vibrio vulnificus infection. Jama, 253, 1121-1122.
Muñoz-Egea, M.-C., García-Pedrazuela, M., Mahillo-Fernandez, I., & Esteban, J. (2016). Effect of antibiotics and antibiofilm agents in the ultrastructure and development of biofilms developed by nonpigmented rapidly growing mycobacteria. Microbial Drug Resistance, 22, 1-6.
Munoz, M. D. C., Benomar, N., Ennahar, S., Horvatovich, P., Lerma, L. L., Knapp, C. W., Galvez, A., & Abriouel, H. (2016). Comparative proteomic analysis of a potentially probiotic Lactobacillus pentosus MP-10 for the identification of key proteins involved in antibiotic resistance and biocide tolerance. International Journal of Food Microbiology, 222, 8-15.
Nahar, S., Mizan, M. F. R., Ha, A. J. W., & Ha, S. D. (2018). Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Comprehensive Reviews in Food Science and Food Safety, 17, 1484-1502.
Nishibuchi, M., & Kaper, J. (1990). Duplication and variation of the thermostable direct haemolysin (tdh) gene in Vibrio parahaemolyticus. Molecular Microbiology, 4, 87-99.
Nishibuchi, M., & Kaper, J. B. (1985). Nucleotide sequence of the thermostable direct hemolysin gene of Vibrio parahaemolyticus. Journal of Bacteriology, 162, 558-564.
O'Neill, J. (2016). Tackling drug-resistant infections globally: final report and recommendations.
O'Toole, G., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49-79.
O'Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30, 295-304.
Oh, E.-G., Son, K.-T., Ha, K.-S., Yoo, H.-D., Yu, H.-S., Shin, S.-B., Lee, H.-J., & Kim, J.-H. (2009). Antimicrobial resistance of Vibrio strains from brackish water on the coast of Gyeongsangnamdo. Korean Journal of Fisheries and Aquatic Sciences, 42, 335-343.
Oh, E.-G., Son, K.-T., Yu, H., Lee, T.-S., Lee, H.-J., Shin, S., Kwon, J.-Y., Park, K., & Kim, J. (2011). Antimicrobial resistance of Vibrio parahaemolyticus and Vibrio alginolyticus strains isolated from farmed fish in Korea from 2005 through 2007. Journal of Food Protection, 74, 380-386.
Olsen, I. (2015). Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 34, 877-886.
Ottaviani, D., Leoni, F., Talevi, G., Masini, L., Santarelli, S., Rocchegiani, E., Susini, F., Montagna, C., Monno, R., D'Annibale, L., Manso, E., Oliva, M., & Pazzani, C. (2013). Extensive investigation of antimicrobial resistance in Vibrio parahaemolyticus from shellfish and clinical sources, Italy. International Journal of Antimicrobial Agents, 42, 191-193.
Pacifici, G. M. (2011). Pharmacokinetics of cephalosporins in the neonate: A review. Clinics, 66, 1267-1274.
Park, K., Mok, J. S., Kwon, J. Y., Ryu, A. R., Kim, S. H., & Lee, H. J. (2018). Food-borne outbreaks, distributions, virulence, and antibiotic resistance profiles of Vibrio parahaemolyticus in Korea from 2003 to 2016: a review. Fisheries and Aquatic Sciences, 21, 1-10
Park, S. K., Kim, M., Sho, Y. S., Chung, S. Y., Hu, S., Lee, J. O., Hong, M. K., Kim, M. C., Kang, J. S., & Jhee, O. H. (2007). Microbiological and chemical detection of antibiotic residues in livestock and seafood products in the Korean market. Food Science and Biotechnology, 16, 868-872.
Pascual, J., Macian, M. C., Arahal, D. R., Garay, E., & Pujalte, M. J. (2010). Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. International Journal of Systematic and Evolutionary Microbiology, 60, 154-165.
Pesci, E. C., Milbank, J. B. J., Pearson, J. P., McKnight, S., Kende, A. S., Greenberg, E. P., & Iglewski, B. H. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 96, 11229-11234.
Phillips, C. A. (2016). Bacterial biofilms in food processing environments: a review of recent developments in chemical and biological control. International Journal of Food Science and Technology, 51, 1731-1743.
Potter, R. F., D'Souza, A. W., & Dantas, G. (2016). The rapid spread of carbapenem-resistant Enterobacteriaceae. Drug Resistance Updates, 29, 30-46.
Price, O. E., Bradstock, R. A., Keeley, J. E., & Syphard, A. D. (2012). The impact of antecedent fire area on burned area in southern California coastal ecosystems. Journal of Environmental Management, 113, 301-307.
Rafalskiy, V., Pushkar, D., Yakovlev, S., Epstein, O., Putilovskiy, M., Tarasov, S., Glazunov, A., Korenev, S., Moiseeva, E., & Gorelysheva, N. (2020). Distribution and antibiotic resistance profile of key gram-negative bacteria that cause community-onset urinary tract infections in the Russian Federation: Resorce multicentre surveillance 2017 study. Journal of Global Antimicrobial Resistance, 21, 188-194.
Rajkowski, K. (2009). Biofilms in fish processing. Biofilms in the Food and Beverage Industries, 499-516.
Reboucas, R. H., de Sousa, O. V., Lima, A. S., Vasconcelos, F. R., de Carvalho, P. B., & Vieira, R. H. S. D. (2011). Antimicrobial resistance profile of Vibrio species isolated from marine shrimp farming environments (Litopenaeus vannamei) at Ceara, Brazil. Environmental Research, 111, 21-24.
Riboldi, G. P., Frazzon, J., d'Azevedo, P. A., & Frazzon, A. P. G. (2009). Antimicrobial resistance profile of Enterococcus spp isolated from food in Southern Brazil. Brazilian Journal of Microbiology, 40, 125-128.
Roncada, P., Deriu, F., Gaviraghi, A., Martino, P., & Bonizzi, L. (2009). Proteomic study of antibiotic resistance in Escherichia coli strains. Veterinary research communications, 33, 157-160.
Ryu, A. R., Mok, J. S., Lee, D. E., Kwon, J. Y., & Park, K. (2019). Occurrence, virulence, and antimicrobial resistance of Vibrio parahaemolyticus isolated from bivalve shellfish farms along the southern coast of Korea. Environmental Science and Pollution Research, 26, 21034-21043.
Sahilah, A. M., Laila, R. A. S., Sallehuddin, H. M., Osman, H., Aminah, A., & Azuhairi, A. A. (2014). Antibiotic resistance and molecular typing among cockle (Anadara granosa) strains of Vibrio parahaemolyticus by polymerase chain reaction (PCR)-based analysis. World Journal of Microbiology & Biotechnology, 30, 649-659.
Schatz, A., & Waksman, S. A. (1944). Effect of streptomycin and other antibiotic substances upon mycobacterium tuberculosis and related organisms. Proceedings of the Society for Experimental Biology and Medicine, 57, 244-248.
Schwarz, S., Kehrenberg, C., & Walsh, T. R. (2001). Use of antimicrobial agents in veterinary medicine and food animal production. International Journal of Antimicrobial Agents, 17, 431-437.
Shaw, K. S., Goldstein, R. E. R., He, X., Jacobs, J. M., Crump, B. C., & Sapkota, A. R. (2014). Antimicrobial susceptibility of Vibrio vulnificus and Vibrio parahaemolyticus recovered from recreational and commercial areas of Chesapeake Bay and Maryland Coastal Bays. Plos One, 9, e89616.
Shen, C. J., Kuo, T. Y., Lin, C. C., Chow, L. P., & Chen, W. J. (2010). Proteomic identification of membrane proteins regulating antimicrobial peptide resistance in Vibrio parahaemolyticus. Journal of Applied Microbiology, 108, 1398-1407.
Sinde, E., & Carballo, J. (2000). Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: The influence of free energy and the effect of commercial sanitizers. Food Microbiology, 17, 439-447.
Sá-Correia, I., & Teixeira, M. C. (2010). 2D electrophoresis-based expression proteomics: A microbiologist’s perspective. Expert Review of Proteomics, 7, 943-953.
Srey, S., Jahid, I. K., & Ha, S. D. (2013). Biofilm formation in food industries: A food safety concern. Food Control, 31, 572-585.
Stepanovic, S., Vukovic, D., Dakic, I., Savic, B., & Svabic-Vlahovic, M. (2000). A modified microtiter-plate test for quantification of Staphylococcal biofilm formation. Journal of Microbiological Methods, 40, 175-179.
Stewart, P. S., & Costerton, J. W. (2001). Antibiotic resistance of bacteria in biofilms. The Lancet, 358, 135-138.
Stoodley, P., Cargo, R., Rupp, C. J., Wilson, S., & Klapper, I. (2002). Biofilm material properties as related to shear-induced deformation and detachment phenomena. Journal of Industrial Microbiology & Biotechnology, 29, 361-367.
Sudha, S., Mridula, C., Silvester, R., & Hatha, A. A. M. (2014). Prevalence and antibiotic resistance of pathogenic Vibrios in shellfishes from Cochin market. Indian Journal of Geo-Marine Sciences, 43, 815-824.
Suga, N., Ogo, M., & Suzuki, S. (2013). Risk assessment of oxytetracycline in water phase to major sediment bacterial community: A water-sediment microcosm study. Environmental Toxicology and Pharmacology, 36, 142-148.
Suthienkul, O., Ishibashi, M., Iida, T., Nettip, N., Supavej, S., Eampokalap, B., Makino, M., & Honda, T. (1995). Urease production correlates with possession of the trh gene in Vibrio parahaemolyticus strains isolated in Thailand. Journal of Infectious Diseases, 172, 1405-1408.
Syal, K., Mo, M. N., Yu, H., Iriya, R., Jing, W. W., Sui, G., Wang, S. P., Grys, T. E., Haydel, S. E., & Tao, N. J. (2017). Current and emerging techniques for antibiotic susceptibility tests. Theranostics, 7, 1795-1805.
Tan, C. W., Malcolm, T. T. H., Kuan, C. H., Thung, T. Y., Chang, W. S., Loo, Y. Y., Premarathne, J. M. K. J. K., Ramzi, O. B., Norshafawatie, M. F. S., Yusralimuna, N., Rukayadi, Y., Nakaguchi, Y., Nishibuchi, M., & Radu, S. (2017). Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from short Mackerels (Rastrelliger brachysoma) in Malaysia. Frontiers in Microbiology, 8, 1087.
Tan, C. W., Rukayadi, Y., Hasan, H., Thung, T. Y., Lee, E., Rollon, W. D., Hara, H., Kayali, A. Y., Nishibuchi, M., & Radu, S. (2020). Prevalence and antibiotic resistance patterns of Vibrio parahaemolyticus isolated from different types of seafood in Selangor, Malaysia. Saudi Journal of Biological Sciences, 27, 1602-1608.
Tran, T. H. T., Yanagawa, H., Nguyen, K. T., Hara-Kudo, Y., Taniguchi, T., & Hayashidani, H. (2018). Prevalence of Vibrio parahaemolyticus in seafood and water environment in the Mekong Delta, Vietnam. Journal of Veterinary Medical Science, 80, 1737-1742.
Tunung, R., Margaret, S. P., Jeyaletchumi, P., Chai, L. C., Zainazor, T. C. T., Ghazali, F. M., Nakaguchi, Y., Nishibuchi, M., & Son, R. (2010). Prevalence and quantification of Vibrio parahaemolyticus in raw salad vegetables at retail level. Journal of Microbiology and Biotechnology, 20, 391-396.
Uddin, G. M. N., Larsen, M. H., Guardabassi, L., & Dalsgaard, A. (2013). Bacterial flora and antimicrobial resistance in raw frozen cultured seafood imported to Denmark. Journal of Food Protection, 76, 490-499.
Uruen, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R. C., & Arenas, J. (2021). Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics-Basel, 10, 3.
Vaseeharan, B., & Ramasamy, P. (2003). Abundance of potentially pathogenic micro-organisms in Penaeus monodon larvae rearing systems in India. Microbiological Research, 158, 299-308.
Vaseeharan, B., Ramasamy, P., Murugan, T., & Chen, J. (2005). In vitro susceptibility of antibiotics against Vibrio spp. and Aeromonas spp. isolated from Penaeus monodon hatcheries and ponds. International Journal of Antimicrobial Agents, 26, 285-291.
Vranakis, I., Goniotakis, I., Psaroulaki, A., Sandalakis, V., Tselentis, Y., Gevaert, K., & Tsiotis, G. (2014). Proteome studies of bacterial antibiotic resistance mechanisms. Journal of Proteomics, 97, 88-99.
Washburn, M. P., Wolters, D., & Yates, J. R. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology, 19, 242-247.
Weinberg, M. A., & Bral, M. (1998). Tetracycline and its analogues: A therapeutic paradigm in periodontal diseases. Critical Reviews in Oral Biology & Medicine, 9, 322-332.
Wiegand, I., Hilpert, K., & Hancock, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3, 163.
Wouters, J. A., Kamphuis, H. H., Hugenholtz, J., Kuipers, O. P., De Vos, W. M., & Abee, T. (2000). Changes in glycolytic activity of Lactococcus lactis induced by low temperature. Applied and Environmental Microbiology, 66, 3686-3691.
Yanagihara, I., Nakahira, K., Yamane, T., Kaieda, S., Mayanagi, K., Hamada, D., Fukui, T., Ohnishi, K., Kajiyama, S., Shimizu, T., Sato, M., Ikegami, T., Ikeguchi, M., Honda, T., & Hashimoto, H. (2010). Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. Journal of Biological Chemistry, 285, 16267-16274.
Yang, J. H., Mok, J. S., Jung, Y. J., Lee, K. J., Kwon, J. Y., Park, K., Moon, S. Y., Kwon, S. J., Ryu, A. R., & Lee, T. S. (2017). Distribution and antimicrobial susceptibility of Vibrio species associated with zooplankton in coastal area of Korea. Marine Pollution Bulletin, 125, 39-44.
Yang, Z.-q., Jiao, X.-a., Zhou, X.-h., Cao, G.-x., Fang, W.-m., & Gu, R.-x. (2008). Isolation and molecular characterization of Vibrio parahaemolyticus from fresh, low-temperature preserved, dried, and salted seafood products in two coastal areas of eastern China. International Journal of Food Microbiology, 125, 279-285.
Yildiz, F. H., & Visick, K. L. (2009). Vibrio biofilms: so much the same yet so different. Trends in Microbiology, 17, 109-118.
(此全文20270808後開放外部瀏覽)
電子全文
全文檔開放日期:2027/08/08
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *