字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:劉郁玟
研究生英文姓名:Liu, Yu-Wen
中文論文名稱:海洋菌 Shewanella putrefaciens 之半胱胺酸-S-共軛 β-裂解酶釋放硫醇香氣化合物 3-巰基-1-己醇
英文論文名稱:Release of thiol aroma compound 3-mercaptohexan-1-ol by the cysteine-S-conjugate β-lyase from marine bacterium Shewanella putrefaciens
指導教授姓名:林泓廷
口試委員中文姓名:教授︰林泓廷
副教授︰許邦弘
教授︰方翠筠
教授︰鄭光成
教授︰郭建民
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:11032016
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
語文別:中文
論文頁數:103
中文關鍵詞:硫醇3-Mercaptohexan-1-ol (3-MH)半胱胺酸 S-共軛 β-裂解酶受質抑制
英文關鍵字:Thiols3-Mercaptohexan-1-ol (3-MH)Cysteine-S-conjugate β-lyaseSubstrate inhibition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
揮發性硫醇對許多飲料和食品的香氣有重大影響,如 3-巰基-1-己醇 (3-Mercaptohexan-1-ol, 3-MH) 具有低氣味閾值及令人愉快的水果香氣,可在葡萄酒中可透過微生物中的半胱胺酸 S-共軛 β-裂解酶 (Cysteine-S-conjugate β-lyase, CBL) 從其前驅物中釋放出來。由於先前的數據表明,Shewanella putrefaciens 細胞萃取物具有良好的 C-S β-lyase 活性,因此本研究將探討來自 S. putrefaciens 中以 metC 基因編碼之 CBL 生化特性且測其從 S-3-(hexan-1-ol)-l-cysteine (Cys-3MH) 釋放出 3-MH 的能力,並利用 E. coli C43 (DE3) 進行過表現以製備低成本且具功能性之 MetC。首先利用陰離子交換管柱層析法及 MALDI-TOF MS/MS 分離及鑑定出 S. putrefaciens 具有 metC 基因編碼之 CBL 並利用 5,5'-dithiobis-(2-nitrobenzoic acid) 進行蛋白質活性分析,顯示酵素最適條件為 pH 9 和 60°C,並發現其具有廣泛之基質特異性,對生理基質 L-Cystathionine 與半胱胺酸 S-共軛物 (R/S)-Cys3MH, (R)-Cys3MH 及 (S)-Cys3MH 皆具有良好的催化活性。此外,動力學數據分析發現 MetC 對 L-Cystathionine具有受質抑制的特性。為了降低酵素生產成本,利用 E. coli 表現重組蛋白 MetC,但可能因過表現而導致細胞毒性產生,因此未能成功製備適當摺疊且具功能性的 MetC。綜合上述,可以得知 S. putrefaciens 之 CBL 對於生產硫醇具有潛力,可在香料工業與食品工業中具有強大的應用性。
Volatile thiols have significant effects on the aroma of many beverages and foods, such as 3-mercaptohexan-1-ol (3-MH) with low odor threshold and pleasant fruity aroma. These thiols could be released in wines by microbial cysteine S-conjugate β-lyases (CBL) from its precursors. Previous data showed that Shewanella putrefaciens cell extract exhibited good CBL activities. Therefore, this study investigated the biochemical properties of CBL encoded by metC gene from bacteria and tested its ability to release 3-MH from S-3-(hexan-1-ol)-l-cysteine (Cys-3MH), and overexpressed in E. coli C43 (DE3) to prepare low-cost and functional MetC. First, anion exchange chromatography and MALDI-TOF MS/MS were used to separate and identify the CBL, that encoded by metC from S. putrefaciens , and its activity was tested by using 5,5'-dithiobis-(2-nitrobenzoic acid) The optimum conditions of the enzyme activity were at pH 9 and 60°C, and MetC showed catalytic activity for the physiological substrate L-Cystathionine and cysteine S-conjugate (R/S)-Cys3MH, (R) -Cys3MH and (S)-Cys3MH, indicating its broad substrate specificity; In addition, the kinetics data of MetC showed a phonamonom of substrate inhibition for L-Cystathionine. To reduce the cost of enzyme production, E. coli was used a host to overexpress the recombinant protein MetC; however, a cell cytotoxicity was observed while overexpressing MetC, and a properly folded, functional MetC could not be successfully prepared. In summary, it can be expected that the CBL from S. putrefaciens has the potential to release volatile thiols and can be applied in the fragrance and food industry.
謝誌 I
摘要 II
Abstract III
目錄 IV
表目錄 VII
圖目錄 VIII
附錄目錄 IX
縮寫表 X
壹、前言 1
貳、文獻整理 2
2.1香料 2
2.1.1香料及香氣化合物之基本介紹 2
2.1.2香氣化合物之分類 2
2.2揮發性芳香硫醇化合物 6
2.2.1常見之揮發性芳香硫醇化合物 6
2.2.1.1 4-Mercapto-4-methyl-2-pentanone 7
2.2.1.2 3-Mercapto-1-hexanol 8
2.1.1.3 3-Mercaptohexyl acetate 8
2.2.2揮發性芳香硫醇前驅物 9
2.2.3合成途徑 11
2.2.4檢測與分析 12
2.2.4.1硫醇製備方法 12
2.2.4.2用於 LC 分析的衍生化試劑 13
2.3 Cysteine-S-conjugate β-lyase 14
2.3.1 Cysteine-S-conjugate β-lyase (CBL) 簡介 14
2.3.2微生物中的 Cysteine-S-conjugate β-lyase 14
2.3.3 Cysteine-S-conjugate β-lyase 作用機制 16
2.3.4 Cysteine-S-conjugate β-lyase 特性 17
2.3.5 Cysteine-S-conjugate β-lyase 應用 18
參、實驗設計 20
肆、實驗材料與方法 21
4.1實驗材料 21
4.1.1基因來源 21
4.1.3引子對 21
4.1.4培養基 21
4.1.5抗生素 22
4.1.6化學藥品 22
4.1.7試劑套組 23
4.1.8酵素 24
4.1.9實驗儀器與耗材 24
4.1.2菌株與質體 25
4.2實驗方法 26
4.2.1菌株及目標基因挑選 26
4.2.2菌株保存 26
4.2.3菌株活化 26
4.2.4細胞抽出物之製備 27
4.2.5建構重組表現載體 27
4.2.5.1聚合酶連鎖反應 27
4.2.5.2 DNA 電泳與純化 27
4.2.5.3 TA 克隆 (Cloning) 28
4.2.5.4 DNA 限制酶剪切及接合作用 29
4.2.5.5重組質體轉形 29
4.2.6蛋白質表現與純化 30
4.2.6.1蛋白質序列比對 30
4.2.6.2蛋白質表現 30
4.2.6.3滲透壓萃取 (Osmotic shock) 30
4.2.6.4親和性管柱層析法 (Affinity chromatography) 31
4.2.6.5 離子交換管柱層析法 (Ion-exchange chromatography) 32
4.2.7蛋白質分析 33
4.2.7.1蛋白質定性 33
4.2.7.2蛋白質鑑定 34
4.2.7.3蛋白質濃度測定 35
4.2.7.4 粒徑排阻層析法 (Size exclusion chromatography, SEC) 35
4.2.8半胱胺酸-S-共軛 β-裂解酶特性分析 36
4.2.8.1 DTNB 比色法 36
4.2.8.2酵素最適 pH 值、溫度 36
4.2.8.3酵素動力學 37
伍、結果與討論 38
5.1 海洋菌 Shewanella putrefaciens 之半胱胺酸-S-共軛 β-裂解酶分離與鑑定 38
5.2 MetC 網路資料庫比對結果 39
5.3 MetC 酵素之特性分析 40
5.3.1 最適pH 40
5.3.2 最適溫度 41
5.3.3酵素動力學 42
5.3.3.1 L-Cystathionine 動力學 42
5.3.3.2 Cys3MH 動力學 44
5.4 pET21a-metC/pET26b-metC 質體製備 45
5.4.1 metC 經 PCR 反應之 DNA 電泳結果 45
5.4.2 建構重組保存基因質體 pGEM-T-metC 45
5.4.3表現質體經限制酶剪切結果 46
5.4.4建構重組表現質體 pET21a-metC/pET26b-metC 47
5.5 pET21a- metC 蛋白質表現純化與鑑定 47
5.5.1 pET21a- metC 蛋白質表現與純化 47
5.5.2 蛋白質之聚體型態 48
陸、結論 50
柒、參考文獻 51
捌、圖表 69
玖、附錄 94
吳渝萱。(2020)。以細菌細胞抽出物製備葡萄酒香氣化合物 4-巰基-4-甲基-2-
戊酮。國立臺灣海洋大學食品科學系碩士學位論文。基隆。臺灣。
劉巧妍。(2021)。重組 Photobacterium damselae 半胱胺酸-S-共軛 β-裂解酶釋放葡萄酒含硫香氣化合物。國立臺灣海洋大學食品科學系碩士學位論文。基隆。臺灣。
Abildgaard, A. B., Gersing, S. K., Larsen-Ledet, S., Nielsen, S. V., Stein, A., Lindorff-Larsen, K., & Hartmann-Petersen, R. (2020). Co-chaperones in targeting and delivery of misfolded proteins to the 26S proteasome. Biomolecules, 10, 1141.
Ahumada, K., Martínez-Gil, A., Moreno-Simunovic, Y., Illanes, A., & Wilson, L. (2016). Aroma release in wine using co-immobilized enzyme aggregates. Molecules, 21, 1485.
Allegrini, A., Astegno, A., La Verde, V., & Dominici, P. (2017). Characterization of C-S lyase from Lactobacillus delbrueckii subsp bulgaricus ATCC BAA-365 and its potential role in food flavour application. Journal of Biochemistry, 161, 349-360.
Almeida, S. A. A. G., de Meneses, A. C., de Araujo, P. H. H., & de Oliveira, D. (2017). A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends in Food Science & Technology, 69, 95-105.
Alting, A. C., Engels, W. J. M., Vanschalkwijk, S., & Exterkate, F. A. (1995). Purification and characterization of cystathionine beta-lyase from Lactococcus-lactis Subsp, Cremoris B78 and its possible role in flavor development in cheese. Applied and Environmental Microbiology, 61, 4037-4042.
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402.
Amadei, G., & Ross, B. M. (2012). Quantification of character‐impacting compounds in Ocimum basilicum and 'Pesto alla Genovese' with selected ion flow tube mass spectrometry. Rapid Communications in Mass Spectrometry, 26, 219-225.
Arctander, S. (1969). Perfume and flavor chemicals (aroma chemicals) (Vol. 2): Allured Publishing Corporation.
Aubel, D., Germond, J. E., Gilbert, C., & Atlan, D. (2002). Isolation of the patC gene encoding the cystathionine beta-lyase of Lactobacillus delbrueckii subsp bulgaricus and molecular analysis of inter-strain variability in enzyme biosynthesis. Microbiology, 148, 2029-2036.
Auger, S., Yuen, W. H., Danchin, A., & Martin-Verstraete, I. (2002). The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination. Microbiology, 148, 507-518.
Badgujar, K. C., Sasaki, T., & Bhanage, B. M. (2015). Synthesis of lipase nano-bio-conjugates as an efficient biocatalyst: Characterization and activity-stability studies with potential biocatalytic applications. RSC Advances, 5, 55238-55251.
Belda, I., Ruiz, J., Beisert, B., Navascues, E., Marquina, D., Calderon, F., Rauhut, D., Benito, S., & Santos, A. (2017). Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations. International Journal of Food Microbiology, 257, 183-191.
Belfaiza, J., Parsot, C., Martel, A., De La Tour, C. B., Margarita, D., Cohen, G. N., & Saint-Girons, I. (1986). Evolution in biosynthetic pathways: Two enzymes catalyzing consecutive steps in methionine biosynthesis originate from a common ancestor and possess a similar regulatory region. Proceedings of the National Academy of Sciences, 83, 867-871.
Ben Alzacha, N., & Gargouri, M. (2015). Microbial and enzymatic technologies used for the production of natural aroma compounds: Synthesis, recovery modeling, and bioprocesses. Food and Bioproducts Processing, 94, 675-706.
Bicas, J. L., Silva, J. C., Dionisio, A. P., & Pastore, G. M. (2010). Biotechnological production of bioflavors and functional sugars. Ciência e Tecnologia de Alimentos, 30, 7-18.
Bonikowski, R., Świtakowska, P., & Kula, J. (2015). Synthesis, odour evaluation and antimicrobial activity of some geranyl acetone and nerolidol analogues. Flavour Fragrance Journal, 30, 238-244.
Bonnaffoux, H., Delpech, S., Remond, E., Schneider, R., Roland, A., & Cavelier, F. (2018). Revisiting the evaluation strategy of varietal thiol biogenesis. Food Chemistry, 268, 126-133.
Bonnaffoux, H., Roland, A., Remond, E., Delpech, S., Schneider, R., & Cavelier, F. (2017). First identification and quantification of S-3-(hexan-1-ol)-gamma-glutamyl-cysteine in grape must as a potential thiol precursor, using UPLC-MS/MS analysis and stable isotope dilution assay. Food Chemistry, 237, 877-886.
Bouchilloux, P., Darriet, P., Henry, R., Lavigne-Cruege, V., & Dubourdieu, D. (1998). Identification of volatile and powerful odorous thiols in Bordeaux red wine varieties. Journal of Agricultural and Food Chemistry, 46, 3095-3099.
Braga, A., Guerreiro, C., & Belo, I. (2018). Generation of flavors and fragrances through biotransformation and de novo synthesis. Food and Bioprocess Technology, 11, 2217-2228.
Brenner, A. J., & Harris, E. D. (1995). A quantitative test for copper using bicinchoninic acid. Analytical Biochemistry, 226, 80-84.
Buckle, J. (2003). Basic Plant Taxonomy, Chemistry, Extraction, Biosynthesis, and Analysis (Chapter 3), Clinical aromatherapy. Essential Oils in Practice, 38-75.
Budin, J. T. (2002). A review of methods for the analysis of oxygen-containing aroma compounds. In G. A. Reineccius & T. A. Reineccius (Eds.), Heteroatomic Aroma Compounds, vol. 826 (pp. 200-214). Washington: Amer Chemical Soc.
Bustos, I., Martinez-Bartolome, M. A., Achemchem, F., Pelaez, C., Requena, T., & Martinez-Cuesta, M. C. (2011). Volatile sulphur compounds-forming abilities of lactic acid bacteria: C-S lyase activities. International Journal of Food Microbiology, 148, 121-127.
Buttery, R. G., Seifert, R. M., Guadagni, D. G., & Ling, L. C. (1971). Characterization of additional volatile components of tomato. Journal of Agricultural Food Chemistry, 19, 524-529.
Buttery, R. G., Takeoka, G. R., Krammer, G. E., & Ling, L. C. (1994). Identification of 2, 5-dimethyl-4-hydroxy-3 (2H)-furanone (furaneol) and 5-methyl-4-hydroxy-3 (2H)-furanone in fresh and processed tomato. LWT-Food Science Technology, 27, 592-594.
Campo, E., Ferreira, V., Escudero, A., & Cacho, J. (2005). Prediction of the wine sensory properties related to grape variety from dynamic-headspace gas chromatography-olfactometry data. Journal of Agricultural and Food Chemistry, 53, 5682-5690.
Cannon, R. J., & Ho, C. T. (2018). Volatile sulfur compounds in tropical fruits. Journal of Food and Drug Analysis, 26, 445-468.
Capone, D. L., & Jeffery, D. W. (2011). Effects of transporting and processing Sauvignon blanc grapes on 3-mercaptohexan-1-ol precursor concentrations. Journal of Agricultural and Food Chemistry, 59, 4659-4667.
Capone, D. L., Pardon, K. H., Cordente, A. G., & Jeffery, D. W. (2011). Identification and quantitation of 3-S-cysteinyiglycinehexan-1-ol (Cysgly-3-MH) in Sauvignon blanc grape juice by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 59, 11204-11210.
Capone, D. L., Ristic, R., Pardon, K. H., & Jeffery, D. W. (2015). Simple quantitative determination of potent thiols at ultratrace levels in wine by derivatization and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis. Analytical Chemistry, 87, 1226-1231.
Capone, D. L., Sefton, M. A., Hayasaka, Y., & Jeffery, D. W. (2010). Analysis of precursors to wine odorant 3-mercaptohexan-1-ol using HPLC-MS/MS: resolution and quantitation of diastereomers of 3-S-cysteinylhexan-1-ol and 3-S-glutathionylhexan-1-ol. Journal of Agricultural and Food Chemistry, 58, 1390-1395.
Cappello, M. S., De Domenico, S., Logrieco, A., & Zapparoli, G. (2014). Bio-molecular characterisation of indigenous Oenococcus oeni strains from Negroamaro wine. Food Microbiology, 42, 142-148.
Carroll, A. L., Desai, S. H., & Atsumi, S. (2016). Microbial production of scent and flavor compounds. Current Opinion in Biotechnology, 37, 8-15.
Caven-Quantrill, D. J., & Buglass, A. J. (2007). Determination of volatile organic compounds in English vineyard grape juices by immersion stir bar sorptive extraction-gas chromatography/mass spectrometry. Flavour and Fragrance Journal, 22, 206-213.
Chakraborty, D., Selvam, A., Kaur, B., Wong, J. W. C., & Karthikeyan, O. P. (2017). Application of recombinant Pediococcus acidilactici BD16 (fcs (+)/ech (+)) for bioconversion of agrowaste to vanillin. Applied Microbiology and Biotechnology, 101, 5615-5626.
Chandra, A., & Nair, M. G. (1993). Quantification of benzaldehyde and its precursors in Montmorency cherry (Prunus cerasus L.) kernels. Phytochemical Analysis, 4, 120-123.
Chen, L., Capone, D. L., & Jeffery, D. W. (2018). Chiral analysis of 3-sulfanylhexan-1-ol and 3-sulfanylhexyl acetate in wine by high-performance liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 998, 83-92.
Chen, L., Capone, D. L., & Jeffery, D. W. (2019). Analysis of potent odour-active volatile thiols in foods and beverages with a focus on wine. Molecules, 24, 2472.
Cheong, M., Liu, S., Yeo, J., Chionh, H., Pramudya, K., Curran, P., & Yu, B. (2011). Identification of aroma-active compounds in Malaysian pomelo (Citrus grandis (L.) Osbeck) peel by gas chromatography-olfactometry. Journal of Essential Oil Research, 23, 34-42.
Chouhan, N., Vig, H., & Deshmukh, R. (2021). Flavors and fragrance market by type (flavors and fragrance), nature (natural and synthetic), and application (food & beverages, cosmetics & personal care, home care and fabric care): Global opportunity analysis and industry forecast, 2021–2027.
Christen, P., & Mehta, P. K. (2001). From cofactor to enzymes. The molecular evolution of pyridoxal‐5'‐phosphate‐dependent enzymes. The Chemical Record, 1, 436-447.
Clausen, T., Huber, R., Laber, B., Pohlenz, H.-D., & Messerschmidt, A. (1996). Crystal structure of the pyridoxal-5'-phosphate dependent cystathionine β-lyase from Escherichia coli at 1.83 Å. Journal of Molecular Biology, 262, 202-224.
Coetzee, C., & Du Toit, W. J. (2012). A comprehensive review on Sauvignon blanc aroma with a focus on certain positive volatile thiols. Food Research International, 45, 287-298.
Contreras, C., Beaudry, R. J. P. B., & Technology. (2013). Lipoxygenase-associated apple volatiles and their relationship with aroma perception during ripening. 82, 28-38.
Cooper, A. J., & Pinto, J. (2006). Cysteine S-conjugate β-lyases. Amino Acids, 30, 1-15.
Copeland, R. A. J. E., 2nd ed. John Wiley. (2000). A practical introduction to structure, mechanism, and data analysis. Enzymes, 2nd ed. John Wiley & Sons, New York, NY, 104.
Cordero-Soto, I. N., Castillo-Araiza, C. O., Garcia-Martinez, L. E., Prado-Barragan, A., & Huerta-Ochoa, S. (2020). Solid/gas biocatalysis for aroma production: An alternative process of white biotechnology. Biochemical Engineering Journal, 164, 107767.
Darriet, P., Tominaga, T., Lavigne, V., Boidron, J. N., & Dubourdieu, D. (1995). Identification of a powerful aromatic component of Vitis vinifera L. var. Sauvignon wines: 4‐mercapto‐4‐methylpentan‐2‐one. Flavour and Fragrance Journal, 10, 385-392.
de Marco, A., Deuerling, E., Mogk, A., Tomoyasu, T., & Bukau, B. (2007). Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. Biotechnology, 7, 1-9.
Des Gachons, C. P., Tominaga, T., & Dubourdieu, D. (2000). Measuring the aromatic potential of Vitis vinifera L. Cv. Sauvignon blanc grapes by assaying S-cysteine conjugates, precursors of the volatile thiols responsible for their varietal aroma. Journal of Agricultural and Food Chemistry, 48, 3387-3391.
Des Gachons, C. P., Tominaga, T., & Dubourdieu, D. (2002). Sulfur aroma precursor present in S-glutathione conjugate form: Identification of S-3-(hexan-1-ol)-glutathione in must from Vitis vinifera L. cv. Sauvignon blanc. Journal of Agricultural and Food Chemistry, 50, 4076-4079.
Dobric, N., Limsowtin, G. K., Hillier, A. J., Dudman, N. P., & Davidson, B. E. (2000). Identification and characterization of a cystathionine β/γ-lyase from Lactococcus lactis ssp. cremoris MG1363. FEMS Microbiology Letters, 182, 249-254.
Dobson, C. M. (2004). Principles of protein folding, misfolding and aggregation. In Seminars in Cell & Developmental Biology, vol. 15 (pp. 3-16): Elsevier.
Dubourdieu, D., & Tominaga, T. (2009). Polyfunctional thiol compounds. In Wine chemistry and biochemistry, (pp. 275-293): Springer.
Dulsat-Serra, N., Quintanilla-Casas, B., & Vichi, S. (2016). Volatile thiols in coffee: A review on their formation, degradation, assessment and influence on coffee sensory quality. Food Research International, 89, 982-988.
Dumon-Seignovert, L., Cariot, G., & Vuillard, L. (2004). The toxicity of recombinant proteins in Escherichia coli: A comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expression and Purification, 37, 203-206.
Dunkel, A., Steinhaus, M., Kotthoff, M., Nowak, B., Krautwurst, D., Schieberle, P., & Hofmann, T. (2014). Nature's chemical signatures in human olfaction: A foodborne perspective for future biotechnology. Angewandte Chemie-International Edition, 53, 7124-7143.
Dwivedi, C. M., Ragin, R. C., & Uren, J. R. (1982). Cloning, purification, and characterization of beta-cystathionase from E. coli. Biochemistry, 21, 3064-3069.
Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry Biophysics, 82, 70-77.
Engel, E., Baty, C., le Corre, D., Souchon, I., & Martin, N. (2002). Flavor-active compounds potentially implicated in cooked cauliflower acceptance. Journal of Agricultural and Food Chemistry, 50, 6459-6467.
Engel, K. H. (2020). Chirality: An important phenomenon regarding biosynthesis, perception, and authenticity of flavor compounds. Journal of Agricultural and Food Chemistry, 68, 10265-10274.
Engel, K. H., Flath, R. A., Buttery, R. G., Mon, T. R., Ramming, D. W., & Teranishi, R. (1988). Investigation of volatile constituents in nectarines 1. Analytical and sensory characterization of aroma components in some nectarine cultivars. Journal of Agricultural and Food Chemistry, 36, 549-553.
Engel, K. H., & Tressl, R. (1991). Identification of new sulfur-containing volatiles in yellow passionfruit (Passiflora edulis f. flavicarpa). Journal of Agricultural Food Chemistry, 39, 2249-2252.
Ernst, D. C., Christopherson, M. R., & Downs, D. M. (2018). Increased activity of cystathionine beta-lyase suppresses 2-aminoacrylate stress in Salmonella enterica. Journal of Bacteriology, 200, e00040-00018.
Erten, E. S., & Cadwallader, K. R. (2017). Identification of predominant aroma components of raw, dry roasted and oil roasted almonds. Food Chemistry, 217, 244-253.
Escudero, A., Gogorza, B., Melus, M. A., Ortin, N., Cacho, J., & Ferreira, V. (2004). Characterization of the aroma of a wine from Maccabeo. Key role played by compounds with low odor activity values. Journal of Agricultural and Food Chemistry, 52, 3516-3524.
Farrenkopf, A. M., Dollhopf, M. E., Chadhain, S. N., Luther III, G. W., & Nealson, K. H. (1997). Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4. Marine Chemistry, 57, 347-354.
Fedrizzi, B., Guella, G., Perenzoni, D., Gasperotti, M., Masuero, D., Vrhovsek, U., & Mattivi, F. (2012). Identification of intermediates involved in the biosynthetic pathway of 3-mercaptohexan-1-ol conjugates in yellow passion fruit (Passiflora edulis f. flavicarpa). Phytochemistry, 77, 287-293.
Fedrizzi, B., Pardon, K. H., Sefton, M. A., Elsey, G. M., & Jeffery, D. W. (2009). First identification of 4-S-glutathionyl-4-methylpentan-2-one, a potential precursor of 4-mercapto-4-methylpentan-2-one, in Sauvignon Blanc juice. Journal of Agricultural and Food Chemistry, 57, 991-995.
Felipe, L. D., de Oliveira, A. M., & Bicas, J. L. (2017). Bioaromas - perspectives for sustainable development. Trends in Food Science & Technology, 62, 141-153.
Ferla, M. P., Brewster, J. L., Hall, K. R., Evans, G. B., & Patrick, W. M. (2017). Primordial-like enzymes from bacteria with reduced genomes. Molecular Microbiology, 105, 508-524.
Ferla, M. P., & Patrick, W. M. (2014). Bacterial methionine biosynthesis. Microbiology-SGM, 160, 1571-1584.
Fernandez, M., van Doesburg, W., Rutten, G. A. M., Marugg, J. D., Alting, A. C., van Kranenburg, R., & Kuipers, O. P. (2000). Molecular and functional analyses of the metC gene of Lactococcus lactis, encoding cystathionine beta-lyase. Applied and Environmental Microbiology, 66, 42-48.
Ferner, M. J., Muller, G., Schumann, C., Kampeis, P., Ulber, R., & Raddatz, H. (2016). Immobilisation of glycosidases from commercial preparation on magnetic beads. Part 1. Characterisation of immobilised glycosidases with a particular emphasis on beta-glucosidase. Journal of Molecular Catalysis B-Enzymatic, 123, 23-28.
Fernández, M., van Doesburg, W., Rutten, G. A., Marugg, J. D., Alting, A. C., van Kranenburg, R., & Kuipers, O. P. (2000). Molecular and functional analyses of the metC gene of Lactococcus lactis, encoding cystathionine β-lyase. Applied Environmental Microbiology, 66, 42-48.
Ferreira, V., Ortin, N., Escudero, A., Lopez, R., & Cacho, J. (2002). Chemical characterization of the aroma of Grenache rose wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. Journal of Agricultural and Food Chemistry, 50, 4048-4054.
Folta-Stogniew, E. (2006). Oligomeric states of proteins determined by size-exclusion chromatography coupled with light scattering, absorbance, and refractive index detectors. In New and Emerging Proteomic Techniques, (pp. 97-112): Springer.
Fretz, C. B., Luisier, J. L., Tominaga, T., & Amado, R. (2005). 3-mercaptohexanol: An aroma impact compound of Petite Arvine wine. American Journal of Enology and Viticulture, 56, 407-410.
Frivik, S. K., Ebeler, S. E. J. A. J. o. E., & Viticulture. (2003). Influence of sulfur dioxide on the formation of aldehydes in white wine. 54, 31-38.
Gallage, N. J., & Moller, B. L. (2015). Vanillin-bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Molecular Plant, 8, 40-57.
Garlapati, V. K., Kumari, A., Mahapatra, P., & Banerjee, R. (2013). Modeling, simulation, and kinetic studies of solvent-free biosynthesis of benzyl acetate. Journal of Chemistry, 2013, 451652.
Gentry-Weeks, C. R., Spokes, J., & Thompson, J. (1995). β-Cystathionase from Bordetella avium: Role (s) of lysine 214 and cysteine residues in activity and cytotoxicity (∗). Journal of Biological Chemistry, 270, 7695-7702.
Gram, L., Trolle, G., & Huss, H. H. (1987). Detection of specific spoilage bacteria from fish stored at low (0°C) and high (20°C) temperatures. International Journal of Food Microbiology, 4, 65-72.
Grant-Preece, P. A., Pardon, K. H., Capone, D. L., Cordente, A. G., Sefton, M. A., Jeffery, D. W., & Elsey, G. M. (2010). Synthesis of wine thiol conjugates and labeled analogues: Fermentation of the glutathione conjugate of 3-mercaptohexan-1-ol yields the corresponding cysteine conjugate and free thiol. Journal of Agricultural and Food Chemistry, 58, 1383-1389.
Grassetti, D. R., & Murray Jr, J. (1967). Determination of sulfhydryl groups with 2, 2'-or 4, 4'-dithiodipyridine. Archives of Biochemistry Biophysics, 119, 41-49.
Gros, J., Peeters, F., & Collin, S. (2012). Occurrence of odorant polyfunctional thiols in beers hopped with different cultivars. First evidence of an S-cysteine conjugate in hop (Humulus lupulus L.). Journal of Agricultural and Food Chemistry, 60, 7805-7816.
Grosch, W. (2001). Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chemical Senses, 26, 533-545.
Guichard, H., & Bonnarme, P. (2005). Development and validation of a plate technique for screening of microorganisms that produce volatile sulfur compounds. Analytical Biochemistry, 338, 299-305.
Guth, H. (1997). Identification of character impact odorants of different white wine varieties. Journal of Agricultural Food Chemistry, 45, 3022-3026.
Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130-7139.
Haldane, J. B. S. (1965). Enzymes: MIT Press (MA).
Harsch, M. J., Benkwitz, F., Frost, A., Colonna-Ceccaldi, B., Gardner, R. C., & Salmon, J. M. (2013). New precursor of 3-mercaptohexan-1-ol in grape juice: Thiol-forming potential and kinetics during early stages of must fermentation. Journal of Agricultural and Food Chemistry, 61, 3703-3713.
He, Y., He, F., Zhang, Y., Wang, F., Zheng, X., Dai, Z., & Ma, S. (2021). Formation of cinnamaldehyde dimethyl acetal in methanol during analysis. Journal of Essential Oil Research, 33, 308-313.
Holt, S., Cordente, A. G., Williams, S. J., Capone, D. L., Jitjaroen, W., Menz, I. R., Curtin, C., & Anderson, P. A. (2011). Engineering Saccharomyces cerevisiae to release 3-mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae gene, STR3, for improvement of wine aroma. Applied and Environmental Microbiology, 77, 3626-3632.
Holton, T., & Graham, M. J. N. a. r. (1991). A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. 19, 1156.
Howell, K. S., Klein, M., Swiegers, J. H., Hayasaka, Y., Elsey, G. M., Fleet, G. H., Hoj, P. B., Pretorius, I. S., & Lopes, M. A. D. (2005). Genetic determinants of volatile-thiol release by Saccharomyces cerevisiae during wine fermentation. Applied and Environmental Microbiology, 71, 5420-5426.
Huang, T. J., Armbruster, M. R., Coulton, J. B., & Edwards, J. L. (2019). Chemical tagging in mass spectrometry for systems biology. Analytical Chemistry, 91, 109-125.
Jørgensen, B. R., & Huss, H. H. (1989). Growth and activity of Shewanella putrefaciens isolated from spoiling fish. International Journal of Food Microbiology, 9, 51-62.
Ji, W. H., Zhang, T. L., Lu, Z. G., Shen, J., Xiao, Z. B., & Zhang, X. (2019). Synthesis and characterization of novel biocompatible nanocapsules encapsulated lily fragrance. Chinese Chemical Letters, 30, 739-742.
Kahn, M., Kolter, R., Thomas, C., Figurski, D., Meyer, R., Remaut, E., & Helinski, D. R. (1979). Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2. Methods in Enzymology, 68, 268-280.
Karahadian, C., & Johnson, K. (1993). Analysis of headspace volatiles and sensory characteristics of fresh corn tortillas made from fresh masa dough and spray-dried masa flour. Journal of Agricultural Food Chemistry, 41, 791-799.
Khashe, S., & Janda, J. M. (1998). Biochemical and pathogenic properties of Shewanella alga and Shewanella putrefaciens. Journal of Clinical Microbiology, 36, 783-787.
Kilic, A., Hafizoglu, H., Kollmannsberger, H., & Nitz, S. (2004). Volatile constituents and key odorants in leaves, buds, flowers, and fruits of Laurus nobilis L. Journal of Agricultural Food Chemistry, 52, 1601-1606.
Kim, J. W., Kim, H. J., Kim, Y., Lee, M. S., & Lee, H. S. (2001). Properties of the Corynebacterium glutamicum metC gene encoding cystathionine beta-lyase. Molecules and Cells, 11, 220-225.
Kishimoto, T., Kobayashi, M., Yako, N., Ida, A., & Wanikawa, A. (2008). Comparison of 4-mercapto-4-methylpentan-2-one contents in hop cultivars from different growing regions. Journal of Agricultural and Food Chemistry, 56, 1051-1057.
Kobayashi, H., Takase, H., Kaneko, K., Tanzawa, F., Takata, R., Suzuki, S., & Konno, T. (2010). Analysis of S-3-(hexan-1-ol)-glutathione and S-3-(hexan-1-ol)-L-cysteine in Vitis vinifera L. cv. Koshu for aromatic wines. American Journal of Enology and Viticulture, 61, 176-185.
Kokkonen, P., Beier, A., Mazurenko, S., Damborsky, J., Bednar, D., & Prokop, Z. (2021). Substrate inhibition by the blockage of product release and its control by tunnel engineering. RSC chemical biology, 2, 645-655.
Laber, B., Clausen, T., Huber, R., Messerschmidt, A., Egner, U., MullerFahrnow, A., & Pohlenz, H. D. (1996). Cloning, purification, and crystallization of Escherichia coli cystathionine beta-lyase. FEBS Letters, 379, 94-96.
Lan, Y. B., Xiang, X. F., Yang, W. X., Zhu, B. Q., Pu, H. T., & Duan, C. Q. (2020). Characterization of free and glycosidically bound volatile compounds, fatty acids, and amino acids in Vitis davidii Foex grape species native to China. Food Science and Biotechnology, 29, 1641-1653.
Li, H.-K., Chang, C.-F., Lin, H.-J., Lin, J.-L., Lee, Y.-T., Wu, Y.-H., Liu, C.-Y., Lin, T.-C., Hsu, P.-H., & Lin, H.-T. V. (2021). Conversion of a thiol precursor into aroma compound 4-mercapto-4-methyl-2-pentanone using microbial cell extracts. Fermentation, 7, 129.
Li, H. J., & Lan, W. J. (2011). Biotransformation of limonene by microorganisms. Progress in Chemistry, 23, 2318-2325.
Liang, J., Han, Q., Tan, Y., Ding, H., & Li, J. (2019). Current advances on structure-function relationships of pyridoxal 5'-phosphate-sependent enzymes. Frontiers in Molecular Biosciences, 6, 4.
Liem-Nguyen, V., Bouchet, S., & Bjorn, E. (2015). Determination of sub-nanomolar levels of low molecular mass thiols in natural waters by liquid chromatography tandem mass spectrometry after derivatization with p-(hydroxymercuri)benzoate and online preconcentration. Analytical Chemistry, 87, 1089-1096.
Lignou, S., Parker, J. K., Baxter, C., & Mottram, D. S. (2014). Sensory and instrumental analysis of medium and long shelf-life charentais cantaloupe melons (Cucumis melo L.) harvested at different maturities. Food Chemistry, 148, 218-229.
Longo, M. A., & Sanroman, M. A. (2006). Production of food aroma compounds: Microbial and enzymatic methodologies. Food Technology and Biotechnology, 44, 335-353.
Lopes, P., Saucier, C., & Glories, Y. (2005). Nondestructive colorimetric method to determine the oxygen diffusion rate through closures used in winemaking. Journal of Agricultural and Food Chemistry, 53, 6967-6973.
Loukianov, E., Loukianova, T., & Periasamy, M. (1997). Efficient cloning method that selects the recombinant clones. Biotechniques, 23, 292-295.
Mafata, M., Stander, M. A., Thomachot, B., & Buica, A. (2018). Measuring thiols in single cultivar south african red wines using 4,4-Dithiodipyridine (DTDP) derivatization and ultraperformance convergence chromatography-tandem mass spectrometry. Foods, 7, 139.
Masson, G., & Schneider, R. (2009). Key compounds of provence rose wine flavor. American Journal of Enology and Viticulture, 60, 116-122.
McGorrin, R. J. (2011). The significance of volatile sulfur compounds in food flavors: An overview. Volatile Sulfur Compounds in Food, 3-31.
Mergulhao, F. J., & Monteiro, G. A. (2007). Analysis of factors affecting the periplasmic production of recombinant proteins in Escherichia coli. Journal of Microbiology Biotechnology, 17, 1236-1241.
Michaelis, L., & Menten, M. L. (1913). Die kinetik der invertinwirkung. Biochem. z, 49, 352.
Miroux, B., & Walker, J. E. (1996). Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. Journal of Molecular Biology, 260, 289-298.
Miyamoto, T., Katane, M., Saitoh, Y., Sekine, M., & Homma, H. (2018). Cystathionine beta-lyase is involved in D-amino acid metabolism. Biochemical Journal, 475, 1397-1410.
Moio, L., PIOMBINO, P., & ADDEO, F. (2000). Odour-impact compounds of Gorgonzola cheese. Journal of Dairy Research, 67, 273-285.
Moreno-Arribas, M. V., & Polo, M. C. (2009). Wine chemistry and biochemistry (Vol. 735): Springer.
Mosandl, B., Weber, B., & Maas, A. (1995). Stereoisomeric flavor compounds. 72. Stereoisomeric distribution of some chiral sulfur-containing trace components of yellow passion fruits. Journal of Agricultural and Food Chemistry, 43, 2438-2438.
Murat, M. L., Masneuf, I., Darriet, P., Lavigne, V., Tominaga, T., & Dubourdieu, D. (2001a). Effect of Saccharomyces cerevisiae yeast strains on the liberation of volatile thiols in Sauvignon blanc wine. American Journal of Enology and Viticulture, 52, 136-139.
Murat, M. L., Tominaga, T., & Dubourdieu, D. (2001b). Assessing the aromatic potential of Cabernet Sauvignon and Merlot musts used to produce rose wine by assaying the cysteinylated precursor of 3-mercaptohexan-1-ol. Journal of Agricultural and Food Chemistry, 49, 5412-5417.
Musumeci, L. E., Ryona, I., Pan, B. S., Loscos, N., Feng, H., Cleary, M. T., & Sacks, G. L. (2015). Quantification of polyfunctional thiols in wine by HS-SPME-GC-MS following extractive alkylation. Molecules, 20, 12280-12299.
Natsch, A., Schmid, J., & Flachsmann, F. (2004). Identification of odoriferous sulfanylalkanols in human axilla secretions and their formation through cleavage of cysteine precursors by a C-S lyase isolated from axilla bacteria. Chemistry & Biodiversity, 1, 1058-1072.
Noe, F., Polster, J., Geithe, C., Kotthoff, M., Schieberle, P., & Krautwurst, D. (2017). OR2M3: A highly specific and narrowly tuned human odorant receptor for the sensitive detection of onion key food odorant 3-mercapto-2-methylpentan-1-ol. Chemical Senses, 42, 195-210.
Nossal, N. G., & Heppel, L. A. (1966). The release of enzymes by osmotic shock from Escherichia coli in exponential phase. Journal of Biological Chemistry, 241, 3055-3062.
Pardon, K. H., Graney, S. D., Capone, D. L., Swiegers, J. H., Sefton, M. A., & Elsey, G. M. (2008). Synthesis of the individual diastereomers of the cysteine conjugate of 3-mercaptohexanol (3-MH). Journal of Agricultural and Food Chemistry, 56, 3758-3763.
Parker, J. K. (2015). Introduction to aroma compounds in foods. In Flavour Development, Analysis and Perception in Food and Beverages): Elsevier.
Peterson, D., & Reineccius, G. A. (2002). Biological pathways for the formation of oxygen-containing aroma compounds. In): ACS Publications.
Piano, F., Fracassetti, D., Buica, A., Stander, M., du Toit, W. J., Borsa, D., & Tirelli, A. (2015). Development of a novel liquid/liquid extraction and ultra-performance liquid chromatography tandem mass spectrometry method for the assessment of thiols in South African Sauvignon Blanc wines. Australian Journal of Grape and Wine Research, 21, 40-48.
Piornos, J. A., Balagiannis, D. P., Methven, L., Koussissi, E., Brouwer, E., & Parker, J. K. (2020). Elucidating the odor-active aroma compounds in alcohol-free beer and their contribution to the worty flavor. Journal of Agricultural Food Chemistry, 68, 10088-10096.
Qian, M., & Reineccius, G. (2003). Static headspace and aroma extract dilution analysis of parmigiano reggiano cheese. Journal of Food Science, 68, 794-798.
Reed, M. C., Lieb, A., & Nijhout, H. F. (2010). The biological significance of substrate inhibition: a mechanism with diverse functions. Bioessays, 32, 422-429.
Ren, Z. J., Baumann, R. G., & Black, L. W. (1997). Cloning of linear DNAs in vivo by overexpressed T4 DNA ligase: Construction of a T4 phage hoc gene display vector. Gene, 195, 303-311.
Ribéreau-Gayon, P., Dubourdieu, D., Donèche, B., & Lonvaud, A. (2006). Handbook of enology, Volume 1: The microbiology of wine and vinifications (Vol. 1): John Wiley & Sons.
Riddles, P. W., Blakeley, R. L., & Zerner, B. (1983). Reassessment of Ellman's reagent. Methods in Enzymology, 91, 49-60.
Rocha, J. F., Pina, A. F., Sousa, S. F., & Cerqueira, N. M. F. S. A. (2019). PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries: A structural and mechanistic perspective. Catalysis Science & Technology, 9, 4864-4876.
Roland, A., Cavelier, F., & Schneider, R. (2012). How organic and analytical chemistry contribute to knowledge of the biogenesis of varietal thiols in wine. A review. Flavour and Fragrance Journal, 27, 266-272.
Roland, A., Schneider, R., Le Guernevé, C., Razungles, A., & Cavelier, F. (2010b). Identification and quantification by LC–MS/MS of a new precursor of 3-mercaptohexan-1-ol (3MH) using stable isotope dilution assay: Elements for understanding the 3MH production in wine. Food Chemistry, 121, 847-855.
Roland, A., Schneider, R., Le Guerneve, C., Razungles, A., & Cavelier, F. (2010c). Identification and quantification by LC-MS/MS of a new precursor of 3-mercaptohexan-1-ol (3MH) using stable isotope dilution assay: Elements for understanding the 3MH production in wine. Food Chemistry, 121, 847-855.
Roland, A., Schneider, R., Razungles, A., & Cavelier, F. (2011). Varietal thiols in wine: Discovery, analysis and applications. Chemical Reviews, 111, 7355-7376.
Roland, A., Schneider, R., Razungles, A., Le Guerneve, C., & Cavelier, F. (2010d). Straightforward synthesis of deuterated precursors to demonstrate the biogenesis of aromatic thiols in wine. Journal of Agricultural and Food Chemistry, 58, 10684-10689.
Roland, A., Vialaret, J., Moniatte, M., Rigou, P., Razungles, A., & Schneider, R. (2010a). Validation of a nanoliquid chromatography-tandem mass spectrometry method for the identification and the accurate quantification by isotopic dilution of glutathionylated and cysteinylated precursors of 3-mercaptohexan-1-ol and 4-mercapto-4-methylpentan-2-one in white grape juices. Journal of Chromatography A, 1217, 1626-1635.
Roland, A., Vialaret, J., Razungles, A., Rigou, P., & Schneider, R. (2010b). Evolution of S-cysteinylated and S-glutathionylated thiol precursors during oxidation of Melon B. and Sauvignon blanc musts. Journal of Agricultural and Food Chemistry, 58, 4406-4413.
Roncoroni, M., Santiago, M., Hooks, D. O., Moroney, S., Harsch, M. J., Lee, S. A., Richards, K. D., Nicolau, L., & Gardner, R. C. (2011). The yeast IRC7 gene encodes a beta-lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiology, 28, 926-935.
San-Juan, F., Cacho, J., Ferreira, V., & Escudero, A. (2012). 3-Methyl-2-butene-1-thiol: Identification, analysis, occurrence and sensory role of an uncommon thiol in wine. Talanta, 99, 225-231.
Santiago, M., & Gardner, R. C. (2015). Yeast genes required for conversion of grape precursors to varietal thiols in wine. FEMS Yeast Research, 15, fov034.
Schieberle, P., & Hofmann, T. (1997). Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements and sensory studies on model mixtures. Journal of Agricultural and Food Chemistry, 45, 227-232.
Schneider, R., Charrier, F., Razungles, A., & Baumes, R. (2006). Evidence for an alternative biogenetic pathway leading to 3-mercaptohexanol and 4-mercapto-4-methylpentan-2-one in wines. Analytica Chimica Acta, 563, 58-64.
Schneider, R., Kotseridis, Y., Ray, J. L., Augier, C., & Baumes, R. (2003). Quantitative determination of sulfur-containing wine odorants at sub parts per billion levels. 2. Development and application of a stable isotope dilution assay. Journal of Agricultural and Food Chemistry, 51, 3243-3248.
Seifert, R. M., Buttery, R. G., Guadagni, D. G., Black, D. R., & Harris, J. (1970). Synthesis of some 2-methoxy-3-alkylpyrazines with strong bell pepper-like odors. Journal of Agricultural Food Chemistry, 18, 246-249.
Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1, 2856-2860.
Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W. Z., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 537.
Smacchi, E., & Gobbetti, M. (1998). Purification and characterization of cystathionine γ-lyase from Lactobacillus fermentum DT41. FEMS Microbiology Letters, 166, 197-202.
Starkenmann, C., Troccaz, M., & Howell, K. (2008). The role of cysteine and cysteine-S conjugates as odour precursors in the flavour and fragrance industry. Flavour and Fragrance Journal, 23, 369-381.
Subileau, M., Schneider, R., Salmon, J. M., & Degryse, E. (2008). New insights on 3-mercaptohexanol (3MH) biogenesis in sauvignon blanc wines: Cys-3MH and (E)-hexen-2-al are not the major precursors. Journal of Agricultural and Food Chemistry, 56, 9230-9235.
Sutherland, M. M., & Ames, J. M. (1996). Free fatty acid composition of the adipose tissue of intact and castrated lambs slaughtered at 12 and 30 weeks of age. Journal of Agricultural and Food Chemistry, 44, 3113-3116.
Swiegers, J. H., Bartowsky, E. J., Henschke, P. A., & Pretorius, I. S. (2005). Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research, 11, 139-173.
Swiegers, J. H., & Pretorius, I. S. (2007). Modulation of volatile sulfur compounds by wine yeast. Applied Microbiology and Biotechnology, 74, 954-960.
Thibon, C., Cluzet, S., Merillon, J. M., Darriet, P., & Dubourdieu, D. (2011). 3-Sulfanylhexanol precursor biogenesis in grapevine cells: The stimulating effect of botrytis cinerea. Journal of Agricultural and Food Chemistry, 59, 1344-1351.
Thibon, C., Dubourdieu, D., Darriet, P., & Tominaga, T. (2009). Impact of noble rot on the aroma precursor of 3-sulfanylhexanol content in Vitis vinifera L. cv Sauvignon blanc and Semillon grape juice. Food Chemistry, 114, 1359-1364.
Thibon, C., Marullo, P., Claisse, O., Cullin, C., Dubourdieu, D., & Tominaga, T. (2008). Nitrogen catabolic repression controls the release of volatile thiols by Saccharomyces cerevisiae during wine fermentation. FEMS Yeast Research, 8, 1076-1086.
Thibon, C., Shinkaruk, S., Tominaga, T., Bennetau, B. E., & Dubourdieu, D. (2008a). Analysis of the diastereoisomers of the cysteinylated aroma precursor of 3-sulfanylhexanol in Vitis vinifera grape must by gas chromatography coupled with ion trap tandem mass spectrometry. Journal of Chromatography A, 1183, 150-157.
Tofalo, R., Perpetuini, G., Battistelli, N., Tittarelli, F., & Suzzi, G. (2020). Correlation between IRC7 gene expression and 4-mercapto-4-methylpentan-2-one production in Saccharomyces cerevisiae strains. Yeast, 37, 487-495.
Tominaga, T., Baltenweck-Guyot, R., Des Gachons, C. P., & Dubourdieu, D. (2000a). Contribution of volatile thiols to the aromas of white wines made from several Vitis vinifera grape varieties. American Journal of Enology and Viticulture, 51, 178-181.
Tominaga, T., Blanchard, L., Darriet, P., & Dubourdieu, D. (2000). A powerful aromatic volatile thiol, 2-furanmethanethiol, exhibiting roast coffee aroma in wines made from several Vitis vinifera grape varieties. Journal of Agricultural and Food Chemistry, 48, 1799-1802.
Tominaga, T., des Gachons, C. P., & Dubourdieu, D. (1998b). A new type of flavor precursors in Vitis vinifera L cv Sauvignon blanc: S-cysteine conjugates. Journal of Agricultural and Food Chemistry, 46, 5215-5219.
Tominaga, T., Furrer, A., Henry, R., & Dubourdieu, D. (1998c). Identification of new volatile thiols in the aroma of Vitis vinifera L. var. Sauvignon blanc wines. Flavour and Fragrance Journal, 13, 159-162.
Tominaga, T., Murat, M., & Dubourdieu, D. (1998a). Development of a method for analyzing the volatile thiols involved in the characteristic aroma of wines made from Vitis vinifera L. cv. Sauvignon blanc. Journal of Agricultural Food Chemistry, 46, 1044-1048.
Tominaga, T., Niclass, Y., Frerot, E., & Dubourdieu, D. (2006). Stereoisomeric distribution of 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate in dry and sweet white wines made from Vitis vinifera (var. Sauvignon blanc and Semillon). Journal of Agricultural and Food Chemistry, 54, 7251-7255.
Tomisawa, H., Suzuki, S., Ichihara, S., Fukazawa, H., & Tateishi, M. (1984). Purification and characterization of CS lyase from Fusobacterium varium. A CS cleavage enzyme of cysteine conjugates and some S-containing amino acids. Journal of Biological Chemistry, 259, 2588-2593.
Troccaz, M., Benattia, F., Borchard, G., & Clark, A. J. (2008). Properties of recombinant Staphylococcus haemolyticus cystathionine, beta-lyase (metC) and its potential role in the generation of volatile thiols in axillary malodor. Chemistry & Biodiversity, 5, 2372-2385.
Ugliano, M., Squillante, E., Genovese, A., & Moio, L. (2002). Investigation on aroma compounds of Modena balsamic vinegars. In Flavour Research at the Dawn of the Twenty-First Century, Proceedings of the 10th Weurman Flavour Research Symposium, Beaune, France, (pp. 24-28).
Uren, J. R. (1987). Cystathionine β-lyase from Escherichia coli. Methods in Enzymology, 143, 483-486.
Vandamme, E. J., & Soetaert, W. (2002). Bioflavours and fragrances via fermentation and biocatalysis. Journal of Chemical Technology and Biotechnology, 77, 1323-1332.
Vazquez-Landaverde, P. A., Torres, J. A., & Qian, M. C. (2006). Quantification of trace volatile sulfur compounds in milk by solid-phase microextraction and gas chromatography–pulsed flame photometric detection. Journal of Dairy Science, 89, 2919-2927.
Vilela, A., Bacelar, E., Pinto, T., Anjos, R., Correia, E., Goncalves, B., & Cosme, F. (2019). Beverage and food fragrance biotechnology, novel applications, sensory and sensor techniques: An overview. Foods, 8, 643.
Wakabayashi, H., Wakabayashi, M., Eisenreich, W., & Engel, K. H. (2004). Stereochemical course of the generation of 3-mercaptohexanal and 3-mercaptohexanol by β-lyase-catalyzed cleavage of cysteine conjugates. Journal of Agricultural Food Chemistry, 52, 110-116.
Walton, N. J., Mayer, M. J., & Narbad, A. (2003). Molecules of interest - Vanillin. Phytochemistry, 63, 505-515.
Walton, N. J., Narbad, A., Faulds, C. B., & Williamson, G. (2000). Novel approaches to the biosynthesis of vanillin. Current Opinion in Biotechnology, 11, 490-496.
Weber, B., Dietrich, A., Maas, B., Marx, A., Olk, J., & Mosandl, A. (1994). Stereoisomeric flavour compounds. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 199, 48-50.
Weber, B., Maas, B., & Mosandl, A. (1995). Stereoisomeric flavor compounds. 72. Stereoisomeric distribution of some chiral sulfur-containing trace components of yellow passion fruits. Journal of Agricultural Food Chemistry, 43, 2438-2441.
Welsh, F. W., Murray, W. D., Williams, R. E., & Katz, I. (1989). Microbiological and enzymatic production of flavor and fragrance chemicals. Critical Reviews in Biotechnology, 9, 105-169.
Winter, G., van der Westhuizen, T., Higgins, V. J., Curtin, C., & Ugliano, M. (2011). Contribution of cysteine and glutathione conjugates to the formation of the volatile thiols 3-mercaptohexan-1-ol (3MH) and 3-mercaptohexyl acetate (3MHA) during fermentation by Saccharomyces cerevisiae. Australian Journal of Grape and Wine Research, 17, 285-290.
Wright, M. H., Matthews, B., Arnold, M. S. J., Greene, A. C., & Cock, I. E. (2016). The prevention of fish spoilage by high antioxidant Australian culinary plants: Shewanella putrefaciens growth inhibition. International Journal of Food Science Technology, 51, 801-813.
Wu, B. (2011). Substrate inhibition kinetics in drug metabolism reactions. Drug Metabolism Reviews, 43, 440-456.
Wu, T., & Cadwallader, K. R. (2019). Identification of characterizing aroma components of roasted chicory “coffee” brews. Journal of Agricultural Food Chemistry, 67, 13848-13859.
Xu, K. H., Zhang, Y., Tang, B., Laskin, J., Roach, P. J., & Chen, H. (2010). Study of highly selective and efficient thiol derivatization using selenium reagents by mass spectrometry. Analytical Chemistry, 82, 6926-6932.
Yao, X. Y., Lv, Y. M., Yu, H. L., Cao, H., Wang, L. Y., Wen, B. T., Gu, T. Y., Wang, F. Z., Sun, L. C., & Xin, F. J. (2020). Site-directed mutagenesis of coenzyme-independent carotenoid oxygenase CSO2 to enhance the enzymatic synthesis of vanillin. Applied Microbiology and Biotechnology, 104, 3897-3907.
Yin, L. J., Pan, C. L., & Jiang, S. T. (2002). Effect of lactic acid bacterial fermentation on the characteristics of minced mackerel. Journal of Food Science, 67, 786-792.
Yoshino, M., & Murakami, K. (2015). Analysis of the substrate inhibition of complete and partial types. Springerplus, 4, 1-8.
Zha, M. S., Sun, B. G., Yin, S., Mehmood, A., Cheng, L., & Wang, C. T. (2018). Generation of 2-furfurylthiol by carbon-sulfur lyase from the Baijiu yeast Saccharomyces cerevisiae G20. Journal of Agricultural and Food Chemistry, 66, 2114-2120.
Zhuang, J. L., You, J. M., Zhang, S. J., Sun, Z. W., Ji, Z. Y., Liu, J. M., & Yu, Y. X. (2018). Determination of thiols by gas purge microsyringe extraction coupled with chemical derivatization by high performance liquid chromatography-fluorescence detection with mass spectrometry identification. Journal of Liquid Chromatography & Related Technologies, 41, 794-803.
Zuman, P. (2004). Reactions of orthophthalaldehyde with nucleophiles. Chemical Reviews, 104, 3217-3238.


(此全文20270808後開放外部瀏覽)
電子全文
全文檔開放日期:2027/08/08
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *