字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:黃羽豪
研究生英文姓名:Huang, Yu-Hao
中文論文名稱:低醯基結蘭膠/氮,氧-羧甲基幾丁聚醣/台灣黑米智慧型包裝材料之應用
英文論文名稱:Low acyl gellan gum/N,O-carboxymethyl chitosan/Taiwan black rice complex film for smart packaging application
指導教授姓名:蔡敏郎
糜福龍
口試委員中文姓名:教授︰蔡敏郎
教授︰糜福龍
教授︰董崇民
教授︰郭志宇
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:11032010
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:91
中文關鍵詞:智慧型包裝材料花青素氮,氧-羧甲基幾丁聚醣低醯基結蘭膠臺灣黑米
英文關鍵字:Intelligent packaging materialsAnthocyaninsN,O-carboxymethyl chitosanLow acyl gellan gumTaiwan black rice
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
表目錄 8
圖目錄 9
第一章、 前言 10
第二章、文獻回顧 12
2.1 智慧型包材 12
2.1.1 簡介 12
2.1.2 指示劑 12
2.1.3 智慧型包材之相關應用 12
2.2 海鮮與肉品腐敗與偵測 13
2.3 自由基與抗氧化劑 14
2.3.1 自由基 14
2.3.2 抗氧化劑 14
2.4 黑米 15
2.5 花青素 15
2.5.1 花青素的結構 15
2.5.2 花青素顏色變化機制 16
2.5.3 花青素的特性及應用 16
2.6 結蘭膠 16
2.6.1 結蘭膠的結構 16
2.6.2 結蘭膠的特性與應用 17
2.7 羧甲基幾丁聚醣 17
2.7.1 羧甲基幾丁聚醣的結構 17
2.7.2 羧甲基幾丁聚醣的應用 18
第三章、實驗器材與藥品 19
3.1 實驗樣品 19
3.2 實驗藥品 19
3.3 儀器設備 19
第四章、實驗架構 21
第五章、實驗方法 24
5.1 原料前處裡 24
5.2 黑米萃取液製備 24
5.3 黑米花青素分析 24
5.3.1 黑米花青素種類分析 24
5.3.2 黑米萃取液總酚含量測定 24
5.4 低醯基結蘭膠/羧甲基幾丁聚醣/黑米複合膜製備 25
5.5 pH敏感性分析 25
5.5.1 巨觀顏色變化 25
5.5.2 全波長吸收光譜分析 25
5.5.3 色差分析 25
5.6 物化特性分析 26
5.6.1 厚度分析 26
5.6.2 拉伸及延展性測試 26
5.6.3 水分含量分析 26
5.6.4 傅立葉紅外線光譜儀(FTIR)測試 26
5.6.4 X-光繞射分析(XRD) 27
5.6.5 掃描式電子顯微鏡分析 27
5.6.6水氣透過試驗 27
5.6.7 膨潤性質分析 27
5.6.8 接觸角測定 28
5.7 流變性質分析 28
5.7.1 溫度掃描 28
5.8 花青素釋放試驗 28
5.9 抗氧化能力評估試驗 28
5.9.1 DPPH自由基清除 28
5.9.2 ABTS+自由基清除 29
5.10 食品新鮮度測試 29
5.11 TVBN測定分析 29
5.12 統計分析 30
第六章、結果與討論 31
6.1 黑米花青素之成分含量分析 31
6.1.1 總酚含量測定 31
6.1.2 花青素種類分析 31
6.2 pH敏感性分析 31
6.2.1 顏色變化 31
6.2.2 全波長吸收光譜圖 31
6.2.3 複合膜的色差分析 31
6.3 物化性質分析 32
6.3.1厚度分析 32
6.3.2機械性質測定 32
6.3.3 水分含量分析 32
6.3.4 FT-IR光譜分析 33
6.3.5 X-光射線繞射分析 33
6.3.6 掃描式電子顯微鏡分析 34
6.3.7 水氣透過試驗 34
6.3.8 膨潤性質測定 34
6.3.9 接觸角試驗 34
6.4 流變性質分析 35
6.5花青素釋放試驗 35
6.6 抗氧化能力試驗 36
6.6.1 黑米花青素萃取液之自由基清除試驗 36
6.6.2 複合膜之自由基清除試驗 36
6.7 食品新鮮度測定 36
6.8 TVBN測定分析 37
第八章、參考文獻 39
第九章、表 50
第十章、圖 64
第十一章、附圖 91
魏鈺佳,2015。紫心甘藷/結蘭膠複合膜於智慧型包裝之應用。國立臺灣海洋大學食品科學系碩士論文。基隆,臺灣。
楊譽寧,2018。細菌纖維素/幾丁聚醣奈米纖維/薑黃素多功能複合膜之製備與應用。國立臺灣海洋大學食品科學系碩士論文。基隆,臺灣。
吳立婷,2020。蝶豆花萃取物/結蘭膠/大豆分離蛋白複合膜之製備與應用。國立臺灣海洋大學食品科學系碩士論文。基隆,臺灣。
Ai, Y., & Jane, J. L. (2015). Gelatinization and rheological properties of starch. Starch‐Stärke, 67(3-4), 213-224.
Alashek, F., Keshe, M., & Alhassan, G. (2022). Preparation of glycerol derivatives by entered of glycerol in different chemical organic reactions: A review. Results in Chemistry, 4, 100359.
Alizadeh-Sani, M., Mohammadian, E., Rhim, J. W., & Jafari, S. M. (2020). pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends in Food Science & Technology, 105, 93-144.
Andretta, R., Luchese, C. L., Tessaro, I. C., & Spada, J. C. (2019). Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocolloids, 93, 317-324.
Averilla, J. N., Oh, J., Kim, H. J., Kim, J. S., & Kim, J. S. (2019). Potential health benefits of phenolic compounds in grape processing by-products. Food Science and Biotechnology, 28(6), 1607-1615.
Bekhit, A. E. D. A., Holman, B. W., Giteru, S. G., & Hopkins, D. L. (2021). Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends in Food Science & Technology, 109, 280-302.
Bensid, A., El Abed, N., Houicher, A., Regenstein, J. M., & Özogul, F. (2022). Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food–a review. Critical Reviews in Food Science and Nutrition, 62(11), 2985-3001.
Brannon-Peppas, L., & Peppas, N. A. (1990). Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials, 11(9), 635-644.
Cavalcanti, R. N., Santos, D. T., & Meireles, M. A. A. (2011). Non-thermal stabilization mechanisms of anthocyanins in model and food systems—An overview. Food Research International, 44(2), 499-509.
Chayavanich, K., Thiraphibundet, P., & Imyim, A. (2020). Biocompatible film sensors containing red radish extract for meat spoilage observation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 226, 117601.
Chen, H. Z., Zhang, M., Bhandari, B., & Yang, C. H. (2020). Novel pH-sensitive films containing curcumin and anthocyanins to monitor fish freshness. Food Hydrocolloids, 100, 105438.
Chen, P. N., Kuo, W. H., Chiang, C. L., Chiou, H. L., Hsieh, Y. S., & Chu, S. C. (2006). Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chemico-Biological Interactions, 163(3), 218-229.
Chen, X. Q., Nagao, N., Itani, T., & Irifune, K. (2012). Anti-oxidative analysis, and identification and quantification of anthocyanin pigments in different coloured rice. Food Chemistry, 135(4), 2783-2788.
Chi, W., Cao, L., Sun, G., Meng, F., Zhang, C., Li, J., & Wang, L. (2020). Developing a highly pH-sensitive ĸ-carrageenan-based intelligent film incorporating grape skin powder via a cleaner process. Journal of Cleaner Production, 244, 118862.
Choi, I., Lee, J. Y., Lacroix, M., & Han, J. (2017). Intelligent pH indicator film composed of agar/potato starch and anthocyanin extracts from purple sweet potato. Food Chemistry, 218, 122-128.
Dainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science & Technology, 19, S103-S112.
Danalache, F., Mata, P., Moldão-Martins, M., & Alves, V. D. (2015). Novel mango bars using gellan gum as gelling agent: Rheological and microstructural studies. LWT-Food Science and Technology, 62(1), 576-583.
Dangles, O., & Brouillard, R. (1993). Inclusion of natural pigments into cyclodextrins, Natural pigments in competitive spectrophotometric studies of host/guest systems. In Minutes of the International Symposium on Cyclodextrins (Vol. 6, pp. 117-117). Editions de Santé.
de Oliveira Filho, J. G., Braga, A. R. C., de Oliveira, B. R., Gomes, F. P., Moreira, V. L., Pereira, V. A. C., & Egea, M. B. (2021). The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: A review. Food Research International, 142, 110202.
Eker, M. E., Aaby, K., Budic-Leto, I., Rimac Brnčić, S., El, S. N., Karakaya, S., Simsek, S., Manach, C., Wiczkowski, W., & de Pascual-Teresa, S. (2020). A review of factors affecting anthocyanin bioavailability: Possible implications for the inter-individual variability. Foods, 9(1), 2.
Fang, S., Wang, J., Xu, X., & Zuo, X. (2018). Influence of low acyl and high acyl gellan gums on pasting and rheological properties of rice starch gel. Food Biophysics, 13(2), 116-123.
Fang, Z., Zhao, Y., Warner, R. D., & Johnson, S. K. (2017). Active and intelligent packaging in meat industry. Trends in Food Science & Technology, 61, 60-71.
Feketea, G., & Tsabouri, S. (2017). Common food colorants and allergic reactions in children: Myth or reality?. Food Chemistry, 230, 578-588.
Ge, Y., Li, Y., Bai, Y., Yuan, C., Wu, C., & Hu, Y. (2020). Intelligent gelatin/oxidized chitin nanocrystals nanocomposite films containing black rice bran anthocyanins for fish freshness monitorings. International Journal of Biological Macromolecules, 155, 1296-1306.
Goodarzi, M. M., Moradi, M., Tajik, H., Forough, M., Ezati, P., & Kuswandi, B. (2020). Development of an easy-to-use colorimetric pH label with starch and carrot anthocyanins for milk shelf life assessment. International Journal of Biological Macromolecules, 153, 240-247.
Halász, K., & Csóka, L. (2018). Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packaging and Shelf Life, 16, 185-193.
Hassoun, A., & Çoban, Ö. E. (2017). Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends in Food Science & Technology, 68, 26-36.
Hayes, E. R. (1986). N,O-carboxymethyl chitosan and preparative method therefor, U.S. Patent No. 4,619,995. Washington, DC: U.S. Patent and Trademark Office.
He, J., & Giusti, M. M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annual Review of Food Science and Technology, 1, 163-187.
Henning, S. M., Zhang, Y., Rontoyanni, V. G., Huang, J., Lee, R.-P., Trang, A., Nuernberger, G., & Heber, D. (2014). Variability in the antioxidant activity of dietary supplements from pomegranate, milk thistle, green tea, grape seed, goji, and acai: effects of in vitro digestion. Journal of Agricultural and Food Chemistry, 62(19), 4313-4321.
Hoque, M. S., Benjakul, S., & Prodpran, T. (2011). Effects of hydrogen peroxide and Fenton’s reagent on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Food Chemistry, 128(4), 878-888.
Ito, V. C., & Lacerda, L. G. (2019). Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chemistry, 301, 125304.
Jamróz, E., Kulawik, P., Guzik, P., & Duda, I. (2019). The verification of intelligent properties of furcellaran films with plant extracts on the stored fresh Atlantic mackerel during storage at 2° C. Food Hydrocolloids, 97, 105211.
Jastrzebski, Z. D. (1987). The Nature and Properties of Engineering Materials, John Wiley & Sons. New York.
Jayakumar, R., Nwe, N., Tokura, S., & Tamura, H. (2007). Sulfated chitin and chitosan as novel biomaterials. International Journal of Biological Macromolecules, 40(3), 175-181.
Jridi, M., Boughriba, S., Abdelhedi, O., Nciri, H., Nasri, R., Kchaou, H., Kaya, M., Sebai, H., Zouari, N., & Nasri, M. (2019). Investigation of physicochemical and antioxidant properties of gelatin edible film mixed with blood orange (Citrus sinensis) peel extract. Food Packaging and Shelf Life, 21, 100342.
Jung, Y. K., Joo, K. S., Rho, S. J., & Kim, Y. R. (2020). pH-dependent antioxidant stability of black rice anthocyanin complexed with cycloamylose. LWT-Food Science and Technology, 129, 109474.
Kang, S., Wang, H., Xia, L., Chen, M., Li, L., Cheng, J., Li, X., & Jiang, S. (2020). Colorimetric film based on polyvinyl alcohol/okra mucilage polysaccharide incorporated with rose anthocyanins for shrimp freshness monitoring. Carbohydrate Polymers, 229, 115402.
Kanyuck, K. M., Mills, T. B., Norton, I. T., & Norton-Welch, A. B. (2021). Swelling of high acyl gellan gum hydrogel: Characterization of network strengthening and slower release. Carbohydrate Polymers, 259, 117758.
Katili, S., Harsunu, B. T., & Irawan, S. (2013). Effect of plasticizer concentration of glycerol and chitosan compositions in the solvent on the physical properties of chitosan edible film. Jurnal Teknologi, 6(1), 29-38.
Kim, H. W., Kim, J. B., Cho, S. M., Chung, M. N., Lee, Y. M., Chu, S. M., Che, J. H., Kim, S. N., Kim, S. Y., Cho, Y. S., Kim, J. H., & Park, H. J. (2012). Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chemistry, 130(4), 966-972.
Kim, S., Baek, S. K., & Song, K. B. (2018). Physical and antioxidant properties of alginate films prepared from Sargassum fulvellum with black chokeberry extract. Food Packaging and Shelf Life, 18, 157-163.
Kokoszka, S., Debeaufort, F., Hambleton, A., Lenart, A., & Voilley, A. (2010). Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films. Innovative Food Science & Emerging Technologies, 11(3), 503-510.
Kushwaha, U. K. S. (2016). Black Rice: Research, history and development. Springer.
Kuswandi, B., Wicaksono, Y., Abdullah, A., Heng, L. Y., & Ahmad, M. (2011). Smart packaging: sensors for monitoring of food quality and safety. Sensing and Instrumentation for Food Quality and Safety, 5(3), 137-146.
Kuswandi, B., Restyana, A., Abdullah, A., Heng, L. Y., & Ahmad, M. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control, 25(1), 184-189.
Kuswandi, B., & Nurfawaidi, A. (2017). On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control, 82, 91-100.
Li, H., Cheng, F., Wei, X., Yi, X., Tang, S., Wang, Z., Zhang, Y., He, J., & Huang, Y. (2021). Injectable, self-healing, antibacterial, and hemostatic N, O-carboxymethyl chitosan/oxidized chondroitin sulfate composite hydrogel for wound dressing. Materials Science and Engineering: C, 118, 111324.
Li, J. H., Miao, J., Wu, J. L., Chen, S. F., & Zhang, Q. Q. (2014). Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocolloids, 37, 166-173.
Li, Y., Ying, Y., Zhou, Y., Ge, Y., Yuan, C., Wu, C., & Hu, Y. (2019). A pH-indicating intelligent packaging composed of chitosan-purple potato extractions strength by surface-deacetylated chitin nanofibers. International Journal of Biological Macromolecules, 127, 376-384.
Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2018). Rheological behavior of film-forming solutions and film properties from Artemisia sphaerocephala Krasch. gum and purple onion peel extract. Food Hydrocolloids, 82, 124-134.
Liang, T., Sun, G., Cao, L., Li, J., & Wang, L. (2019). A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocolloids, 87, 858-868.
Lin, S. B., Hsu, C. P., Chen, L. C., & Chen, H. H. (2009). Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocolloids, 23(8), 2195-2203.
Liu, J., Yong, H., Liu, Y., Qin, Y., Kan, J., & Liu, J. (2019a). Preparation and characterization of active and intelligent films based on fish gelatin and haskap berries (Lonicera caerulea L.) extract. Food Packaging and Shelf Life, 22, 100417.
Liu, J., Wang, H., Guo, M., Li, L., Chen, M., Jiang, S., Li, X., & Jiang, S. (2019b). Extract from Lycium ruthenicum Murr. Incorporating κ-carrageenan colorimetric film with a wide pH–sensing range for food freshness monitoring. Food Hydrocolloids, 94, 1-10.
Liu, Y., Qin, Y., Bai, R., Zhang, X., Yuan, L., & Liu, J. (2019c). Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. International Journal of Biological Macromolecules, 134, 993-1001.
Liu, Y., Yuan, Y., Duan, S., Li, C., Hu, B., Liu, A., Wu, D., Cui, H., Lin, L., He, J., Wu, W. (2020). Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging. International Journal of Biological Macromolecules, 155, 249-259.
Luchese, C. L., Abdalla, V. F., Spada, J. C., & Tessaro, I. C. (2018). Evaluation of blueberry residue incorporated cassava starch film as pH indicator in different simulants and foodstuffs. Food Hydrocolloids, 82, 209-218.
Luchese, C. L., Pavoni, J. M. F., Spada, J. C., & Tessaro, I. C. (2019). Influence of blueberry and jaboticaba agroindustrial residue particle size on color change of corn starch based films submitted to different pH values solutions. Journal of Renewable Materials, 7(3), 235-243.
Luchese, C. L., Sperotto, N., Spada, J. C., & Tessaro, I. C. (2017). Effect of blueberry agro-industrial waste addition to corn starch-based films for the production of a pH-indicator film. International Journal of Biological Macromolecules, 104, 11-18.
Mi, F. L., Sung, H. W., & Shyu, S. S. (2002). Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent. Carbohydrate Polymers, 48(1), 61-72.
Mohammadalinejhad, S., Almasi, H., & Moradi, M. (2020). Immobilization of Echium amoenum anthocyanins into bacterial cellulose film: A novel colorimetric pH indicator for freshness/spoilage monitoring of shrimp. Food Control, 113, 107169.
Mourtzinos, I., Makris, D. P., Yannakopoulou, K., Kalogeropoulos, N., Michali, I., & Karathanos, V. T. (2008). Thermal stability of anthocyanin extract of Hibiscus sabdariffa L. in the presence of β-cyclodextrin. Journal of Agricultural and Food Chemistry, 56(21), 10303-10310.
Musso, Y. S., Salgado, P. R., & Mauri, A. N. (2019). Smart gelatin films prepared using red cabbage (Brassica oleracea L.) extracts as solvent. Food Hydrocolloids, 89, 674-681.
Mustafa, P., Niazi, M. B., Jahan, Z., Samin, G., Hussain, A., Ahmed, T., & Naqvi, S. R. (2020). PVA/starch/propolis/anthocyanins rosemary extract composite films as active and intelligent food packaging materials. Journal of Food Safety, 40(1), e12725.
Nogueira, G. F., Fakhouri, F. M., Velasco, J. I., & de Oliveira, R. A. (2019). Active edible films based on arrowroot starch with microparticles of blackberry pulp obtained by freeze-drying for food packaging. Polymers, 11(9), 1382.
Odeyemi, O. A., Alegbeleye, O. O., Strateva, M., & Stratev, D. (2020). Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive reviews in Food Science and Food Safety, 19(2), 311-331.
Ogawa, E., Takahashi, R., Yajima, H., & Nishinari, K. (2006). Effects of molar mass on the coil to helix transition of sodium-type gellan gums in aqueous solutions. Food Hydrocolloids, 20, 378–385.
Palumbo, F. S., Federico, S., Pitarresi, G., Fiorica, C., & Giammona, G. (2020). Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydrate Polymers, 229, 115430.
Panariello, L., Coltelli, M. B., Buchignani, M., & Lazzeri, A. (2019). Chitosan and nano-structured chitin for biobased anti-microbial treatments onto cellulose based materials. European Polymer Journal, 113, 328-339.
Pandit, A. H., Nisar, S., Imtiyaz, K., Nadeem, M., Mazumdar, N., Rizvi, M. M. A., & Ahmad, S. (2021). Injectable, self-healing, and biocompatible N, O-carboxymethyl chitosan/multialdehyde guar gum hydrogels for sustained anticancer drug delivery. Biomacromolecules, 22(9), 3731-3745.
Pang, Y., Ahmed, S., Xu, Y., Beta, T., Zhu, Z., Shao, Y., & Bao, J. (2018). Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chemistry, 240, 212-221.
Patras, A., Brunton, N. P., O'Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology, 21(1), 3-11.
Pastor, C., Sánchez-González, L., Chiralt, A., Cháfer, M., & González-Martínez, C. (2013). Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocolloids, 30(1), 272-280.
Qin, Y., Liu, Y., Yuan, L., Yong, H., & Liu, J. (2019). Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids, 96, 102-111.
Ramos‐Tovar, E., & Muriel, P. (2020). Free radicals, antioxidants, nuclear factor‐E2‐related factor‐2 and liver damage. Journal of Applied Toxicology, 40(1), 151-168.
Razavi, R., Molaei, R., Moradi, M., Tajik, H., Ezati, P., & Yordshahi, A. S. (2020). Biosynthesis of metallic nanoparticles using mulberry fruit (Morus alba L.) extract for the preparation of antimicrobial nanocellulose film. Applied Nanoscience, 10(2), 465-476.
Rukchon, C., Nopwinyuwong, A., Trevanich, S., Jinkarn, T., & Suppakul, P. (2014). Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta, 130, 547-554.
Salama, H. E., & Aziz, M. S. A. (2020). Novel biocompatible and antimicrobial supramolecular O-carboxymethyl chitosan biguanidine/zinc physical hydrogels. International Journal of Biological Macromolecules, 163, 649-656.
Salunke, S. R., & Patil, S. B. (2016). Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration. International Journal of Biological Macromolecules, 87, 41-47.
Saurabh, C. K., Gupta, S., & Variyar, P. S. (2018). Development of guar gum based active packaging films using grape pomace. Journal of Food Science and Technology, 55(6), 1982-1992.
Shariatinia, Z. (2018). Carboxymethyl chitosan: properties and biomedical applications. International Journal of Biological Macromolecules, 120, 1406-1419.
Sow, L. C., Tan, S. J., & Yang, H. (2019). Rheological properties and structure modification in liquid and gel of tilapia skin gelatin by the addition of low acyl gellan. Food Hydrocolloids, 90, 9-18.
Staroszczyk, H., Kusznierewicz, B., Malinowska-Pańczyk, E., Sinkiewicz, I., Gottfried, K., & Kołodziejska, I. (2020). Fish gelatin films containing aqueous extracts from phenolic-rich fruit pomace. LWT-Food Science and Technology, 117, 108613.
Sujiwo, J., Kim, D., & Jang, A. (2018). Relation among quality traits of chicken breast meat during cold storage: correlations between freshness traits and torrymeter values. Poultry Science, 97(8), 2887-2894.
Sun, J., Jiang, H., Wu, H., Tong, C., Pang, J., & Wu, C. (2020). Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocolloids, 107, 105942.
Suzuki, M., Kimura, T., Yamagishi, K., Shinmoto, H., & Yamaki, K. (2004). Comparison of mineral contents in 8 cultivars of pigmented brown rice. Journal of the Japanese Society for Food Science and Technology, 58(1), 424-427.
Tang, D. W., Yu, S. H., Ho, Y. C., Huang, B. Q., Tsai, G. J., Hsieh, H. Y., Sung, H. W., & Mi, F. L. (2013). Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide. Food Hydrocolloids, 30(1), 33-41.
Tang, Y., Sun, J., Fan, H., & Zhang, X. (2012). An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydrate Polymers, 88(1), 46-53.
Tong, K., Xiao, G., Cheng, W., Chen, J., & Sun, P. (2018). Large amplitude oscillatory shear behavior and gelation procedure of high and low acyl gellan gum in aqueous solution. Carbohydrate Polymers, 199, 397-405.
Upadhyaya, L., Singh, J., Agarwal, V., & Tewari, R. P. (2013). Biomedical applications of carboxymethyl chitosans. Carbohydrate Polymers, 91(1), 452-466.
Uranga, J., Etxabide, A., Guerrero, P., & de la Caba, K. (2018). Development of active fish gelatin films with anthocyanins by compression molding. Food Hydrocolloids, 84, 313-320.
Wang, X., Yong, H., Gao, L., Li, L., Jin, M., & Liu, J. (2019a). Preparation and characterization of antioxidant and pH-sensitive films based on chitosan and black soybean seed coat extract. Food Hydrocolloids, 89, 56-66.
Wang, S., Xia, P., Wang, S., Liang, J., Sun, Y., Yue, P., & Gao, X. (2019b). Packaging films formulated with gelatin and anthocyanins nanocomplexes: Physical properties, antioxidant activity and its application for olive oil protection. Food Hydrocolloids, 96, 617-624.
Wang, Y., Cen, C., Chen, J., & Fu, L. (2020). MgO/carboxymethyl chitosan nanocomposite improves thermal stability, waterproof and antibacterial performance for food packaging. Carbohydrate polymers, 236, 116078.
Wei, Y. C., Cheng, C. H., Ho, Y. C., Tsai, M. L., & Mi, F. L. (2017). Active gellan gum/purple sweet potato composite films capable of monitoring pH variations. Food Hydrocolloids, 69, 491-502.
Wu, L. T., Tsai, I. L., Ho, Y. C., Hang, Y. H., Lin, C., Tsai, M. L., & Mi, F. L. (2021). Active and intelligent gellan gum-based packaging films for controlling anthocyanins release and monitoring food freshness. Carbohydrate Polymers, 254, 117410.
Xu, X. J., Fang, S., Li, Y. H., Zhang, F., Shao, Z. P., Zeng, Y. T., Chen, J., & Meng, Y. C. (2019). Effects of low acyl and high acyl gellan gum on the thermal stability of purple sweet potato anthocyanins in the presence of ascorbic acid. Food Hydrocolloids, 86, 116-123.
Yan, Z., Zhong, Y., Duan, Y., Chen, Q., & Li, F. (2020). Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition, 6(2), 115-123.
Yang, M., I Koo, S., O Song, W., & K Chun, O. (2011). Food matrix affecting anthocyanin bioavailability. Current Medicinal Chemistry, 18(2), 291-300.
Yang, Y. N., Lu, K. Y., Wang, P., Ho, Y. C., Tsai, M. L., & Mi, F. L. (2020). Development of bacterial cellulose/chitin multi-nanofibers based smart films containing natural active microspheres and nanoparticles formed in situ. Carbohydrate Polymers, 228, 115370.
Yang, Z., Zou, X., Li, Z., Huang, X., Zhai, X., Zhang, W., Shi, J., & Tahir, H. E. (2019). Improved postharvest quality of cold stored blueberry by edible coating based on composite gum arabic/roselle extract. Food and Bioprocess Technology, 12(9), 1537-1547.
Yong, H., & Liu, J. (2020). Recent advances in the preparation, physical and functional properties, and applications of anthocyanins-based active and intelligent packaging films. Food Packaging and Shelf Life, 26, 100550.
Yong, H., Wang, X., Bai, R., Miao, Z., Zhang, X., & Liu, J. (2019). Development of antioxidant and intelligent pH-sensing packaging films by incorporating purple-fleshed sweet potato extract into chitosan matrix. Food Hydrocolloids, 90, 216-224.
Yun, D., Cai, H., Liu, Y., Xiao, L., Song, J., & Liu, J. (2019). Development of active and intelligent films based on cassava starch and Chinese bayberry (Myrica rubra Sieb. et Zucc.) anthocyanins. RSC Advances, 9(53), 30905-30916.
Zawistowski, J., Kopec, A., & Kitts, D. D. (2009). Effects of a black rice extract (Oryza sativa L. indica) on cholesterol levels and plasma lipid parameters in Wistar Kyoto rats. Journal of Functional Foods, 1(1), 50-56.
Zeng, P., Chen, X., Qin, Y. R., Zhang, Y. H., Wang, X. P., Wang, J. Y., Ning, Z. X., Ruan, Q. J., & Zhang, Y. S. (2019). Preparation and characterization of a novel colorimetric indicator film based on gelatin/polyvinyl alcohol incorporating mulberry anthocyanin extracts for monitoring fish freshness. Food Research International, 126, 108604.
Zepon, K. M., Martins, M. M., Marques, M. S., Heckler, J. M., Morisso, F. D. P., Moreira, M. G., Ziulkoski, A. L., & Kanis, L. A. (2019). Smart wound dressing based on κ–carrageenan/locust bean gum/cranberry extract for monitoring bacterial infections. Carbohydrate Polymers, 206, 362-370.
Zhai, X., Li, Z., Zhang, J., Shi, J., Zou, X., Huang, X., Zhang, D., Sun, Y., Yang, Z., Holmes, M., Gong, Y., & Povey, M. (2018). Natural biomaterial-based edible and pH-sensitive films combined with electrochemical writing for intelligent food packaging. Journal of Agricultural and Food Chemistry, 66(48), 12836-12846.
Zhang, J., Huang, X., Zou, X., Shi, J., Zhai, X., Liu, L., Li, Z., Holmes, M., Gong, Y., Povey, M., & Xiao, J. (2021). A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. Journal of Food Engineering, 292, 110290.
Zhang, J., Zou, X., Zhai, X., Huang, X., Jiang, C., & Holmes, M. (2019a). Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chemistry, 272, 306-312.
Zhang, X., Liu, Y., Yong, H., Qin, Y., Liu, J., & Liu, J. (2019b). Development of multifunctional food packaging films based on chitosan, TiO2 nanoparticles and anthocyanin-rich black plum peel extract. Food Hydrocolloids, 94, 80-92.
Zhang, X., Lu, S., & Chen, X. (2014). A visual pH sensing film using natural dyes from Bauhinia blakeana Dunn. Sensors and Actuators B: Chemical, 198, 268-273.
Zhang, Y., Chen, S., Qi, B., Sui, X., & Jiang, L. (2018). Complexation of thermally-denatured soybean protein isolate with anthocyanins and its effect on the protein structure and in vitro digestibility. Food Research International, 106, 619-625.
Zhao, L., Pan, F., Mehmood, A., Zhang, Y., Hao, S., Rehman, A. U., Li, J., & Wang, Y. (2020). Protective effect and mechanism of action of xanthan gum on the color stability of black rice anthocyanins in model beverage systems. International Journal of Biological Macromolecules, 164, 3800-3807.
Zhong, Q. P., & Xia, W. S. (2008). Physicochemical properties of edible and preservative films from chitosan/cassava starch/gelatin blend plasticized with glycerol. Food Technology and Biotechnology, 46(3), 262-269.
Zia, K. M., Tabasum, S., Khan, M. F., Akram, N., Akhter, N., Noreen, A., & Zuber, M. (2018). Recent trends on gellan gum blends with natural and synthetic polymers: A review. International Journal of Biological Macromolecules, 109, 1068-1087.
(此全文20250802後開放外部瀏覽)
電子全文
全文檔開放日期:2025/08/02
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *