字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:魏靜盈
研究生英文姓名:Gui Chin Ying
中文論文名稱:以定量蛋白質體學探討微酸性電解水誘導進入VBNC狀態之李斯特菌
英文論文名稱:Quantitative proteomic analysis on the viable but non-culturable Listeria monocytogenes induced by slightly acidic electrolyzed water
指導教授姓名:陳泰源
口試委員中文姓名:教授︰黃登福
助理教授︰陳建利
副教授︰許邦弘
教授︰蔡宗佑
助理教授︰張心儀
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932066
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:英文
論文頁數:109
中文關鍵詞:李斯特菌微酸性電解水存活但不可培養狀態定量蛋白質體學氯化蛋白質
英文關鍵字:Listeria monocytogenesslightly acidic electrolyzed waterviable but non-culturable statequantitative proteomicschlorinated protein
相關次數:
  • 推薦推薦:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
電解水 (Electrolyzed water) 作為良好的抑菌劑且廣泛應用於食品工業上。不足的殺菌條件下可能會導致菌體進入存活但不可培養狀態 (Viable but non-culturable, VBNC state) ,該狀態下的菌體已失去在平板上長出菌落的能力,但仍表現出可被檢測的代謝活性。李斯特菌 (Listeria monocytogenes) 作為輕度加工水產品及未經充分加熱的即食性食品中常見的污染菌,雖不是前五名的食品中毒病原菌,但卻能引起近 20% 的致死率。因該菌體對於乾燥、高溫、酸性環境、鹽等具有耐受性,且在該環境壓力下有使菌株進入 VBNC 狀態的可能性。因為食品業廣用標準平板計數方法無法偵測到 VBNC 菌體,這將導致嚴重的食安風險。因此,本研究將著重於 VBNC 菌體的生成機制探討,以避免食品病原菌進入 VBNC 狀態造成的食品中毒事件發生。加上,近年已有學者對革蘭氏陰性菌進入 VBNC 狀態做蛋白質體學的探究,但革蘭氏陽性菌的研究較為少數。本研究主要是使用微酸性電解水誘導 L. monocytogenes 進入 VBNC 狀態,再利用平板計數法結合流式細胞儀確認菌體的狀態,及使用掃描式電子顯微鏡去觀察形態變化,後續以 TMT 定量蛋白質體學分析 VBNC 狀態下菌體蛋白質的變化。研究結果表示使用有效氯為 8-10 mg/L 的微酸性電解水可以誘導 L. monocytogenes 進入 VBNC 狀態,且在電子顯微鏡的觀察下發現細胞膜有皺褶的現象。透過TMT標記定量串聯式質譜分析得到微酸性電解水誘導 VBNC 菌體的蛋白質體學資訊,總共鑑定到 203 個差異性表現蛋白 (Differential expressed proteins) ,包括 78 上調的蛋白及 125 下調蛋白。經過 GO 功能性註解及 KEGG 代謝路徑分析,差異性表現蛋白顯著與核醣體、次級代謝物的合成及胺醯 tRNA 合成酶有關。此外,在本研究中還鑑定了 31 段氯化胜肽 (22 個氯化蛋白質),驗證在微酸性電解水的處理下會使蛋白質被氯化的現象。該氯化蛋白質主要為延長因子 Tu及伴護蛋白。從氯化胜肽的結構模體上 (sequence motif),可以觀察到 6 段氯化胜肽 (pcrB in Y112, groEL in Y201, rpsS in Y61, 和 tuf in Y45, Y130, Y161) 在其酪胺酸上游 6 個胺基酸位點若為精胺酸 (RxxxxxcY motif),則有利於被氯化的趨勢。因此,L. monocytogenes 在有效氯為 8-10 mg/L 的微酸性電解水處理下得以進入 VBNC 狀態,且該狀態下的蛋白質主要影響轉譯作用,其中延長因子 Tu 及伴護蛋白為主要被氯化的蛋白質。
Electrolyzed water (EW) is a good bactericidal agent widely used in food industry for sanitization. Insufficiency sanitization could induce foodborne pathogens to enter viable but non-culturable (VBNC) state, i.e. the cells that loss the ability to form colonies during traditional culturing but exhibit detectable metabolic activity. Listeria monocytogenes as a fatal foodborne pathogen generally found in minimal processing seafood and ready-to-eat (RTE) food. Although L. monocytogenes is not the top five germs that cause foodborne illness, listeriosis even causes nearly 20% fatality. Moreover, L. monocytogenes could endure various stress such as drought, extreme temperature, acid, and salinity etc. Thus, the stress may induce them to tentatively enter VBNC state and possibly lead to foodborne outbreaks due to their invisibility under conventional plate counting technique. Therefore, we have to concentrate on the formation mechanism of VBNC bacteria in order to prevent the bacteria enter VBNC state during the food processing. Several studies conducted the proteomic analysis on the VBNC state of Gram negative bacteria recently, but rarely for Gram positive bacteria. For this study, we use the slightly acidic electrolyzed water (SAEW) to trigger the VBNC state of L. monocytogenes, then plating method combing with flow cytometry is used to detect the VBNC bacteria and observe the morphology with scanning electron microscopy (SEM). Additionally, we explore the protein profiles of the VBNC bacteria using tandem mass tag (TMT) labelled-LC-MS/MS technique. The chlorine concentration of SAEW to develop VBNC state was 8-10 mg/L and bacteria showed the shrinkage of the cell membrane under SEM observation. Besides, the proteomic results indicated 203 differential expressed proteins (DEPs), including 78 up-regulated and 125 down-regulated DEPs. After gene ontology (GO) functional annotation and Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathway analysis, the significant DEPs related to ribosome, biosynthesis of secondary metabolites and aminoacyl-tRNA biosynthesis. Additionally, we presently have identified 31 chlorinated peptides in the 22 chlorinated proteins to validate that SAEW induced the protein chlorination during the treatment. The most prominent chlorinated proteins were identified as the elongation factor Tu and chaperone proteins. The 6 peptides, namely pcrB in Y112, groEL in Y201, rpsS in Y61, and tuf in Y45, Y130, Y161, recognized as the RxxxxxcY motif. In conclusion, L. monocytogenes could enter VBNC state by 8-10 mg/L of ACC in SAEW. The critical protein of VBNC bacteria primarily involved in translation process, and furthermore the elongation factor Tu and chaperon were mainly chlorinated.
摘要 I
Abstract II
List of Figures V
List of Tables VI
List of Supplementary Figures and Tables VII
Abbreviations IX
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Foodborne pathogens 3
2.1.1 Listeria monocytogenes 3
2.1.2 Viable but non-culturable (VBNC) bacteria 4
2.2 Slightly acidic electrolyzed water (SAEW) 6
2.3 Proteomic analysis 8
2.3.1 Quantitative proteomic analysis 9
Chapter 3 Experimental Design 10
3.1 The formation of viable but non-culturable (VBNC) bacteria 10
3.2 The mechanism of formation VBNC bacteria 11
Chapter 4 Materials and Methods 12
4.1 Materials 12
4.1.1 Bacteria strain 12
4.1.2 Chemical reagents 12
4.2 Experimental produces 12
4.2.1 Bacterial cultures and preparations 12
4.2.2 Preparation of slightly acidic electrolyzed water (SAEW) 12
4.2.3 Pathogens treatment 13
4.2.4 Flow cytometry analysis of treated samples 13
4.2.5 Scanning electron microscopy (SEM) analysis 13
4.2.6 Total protein extraction of VBNC cells 14
4.2.7 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 14
4.2.8 Whole-protein extraction for proteomic analysis 14
4.2.9 Mass spectrometric analysis 15
4.2.9.1 In solution digestion 15
4.2.9.2 Tandem Mass Tags (TMT) labelling 15
4.2.9.3 SDB fractionation and desalted 15
4.2.9.4 LC-MS/MS 16
4.2.9.5 Data analysis and protein network construction 16
4.2.10 Statistical analysis 16
Chapter 5 Experimental Results 17
5.1 The culturability of L. monocytogenes after treatment with slightly acidic electrolyzed water (SAEW) 17
5.2 Determination of cell viability of L. monocytogenes by flow cytometry 17
5.3 Morphological changes of VBNC L. monocytogenes by scanning electron microscopy 18
5.4 SDS-PAGE analysis 18
5.5 Differential expressed proteins (DEPs) of L. monocytogenes after treating with SAEW 18
5.6 GO and UniProtKB Keywords analysis of up/down regulated proteins 19
5.7 KEGG pathway analysis of L. monocytogenes DEPs exposed to SAEW 19
5.8 The chlorination protein of SAEW induced VBNC L. monocytogenes 20
Chapter 6 Discussion 22
Chapter 7 Conclusion 28
Chapter 8 References 29
Figures and Tables 38
Appendix 72

Afari, G. K., & Hung, Y. C. (2018). Detection and verification of the viable but nonculturable (VBNC) state of Escherichia coli O157: H7 and Listeria monocytogenes using flow cytometry and standard plating. Journal of Food Science, 83, 1913-1920.
Alam, A., Bröms, J. E., Kumar, R., & Sjöstedt, A. (2021). The role of ClpB in bacterial stress responses and virulence. Frontiers in Molecular Biosciences, 283-290.
Algburi, A., Zehm, S., Netrebov, V., Bren, A. B., Chistyakov, V., & Chikindas, M. L. (2017). Subtilosin prevents biofilm formation by inhibiting bacterial quorum sensing. Probiotics and Antimicrobial Proteins, 9, 81-90.
Ayrapetyan, M., Williams, T., & Oliver, J. D. (2018). Relationship between the viable but nonculturable state and antibiotic persister cells. Journal of Bacteriology, 200, e00249-18.
Bai, H., Zhao, F., Li, M., Qin, L., Yu, H., Lu, L., & Zhang, T. (2019). Citric acid can force Staphylococcus aureus into viable but nonculturable state and its characteristics. International Journal of Food Microbiology, 305, 108254.
Barba, F. J., Koubaa, M., do Prado-Silva, L., Orlien, V., & de Souza Sant’Ana, A. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends in Food Science & Technology, 66, 20-35.
Bates, T. C., & Oliver, J. D. (2004). The viable but nonculturable state of Kanagawa positive and negative strains of Vibrio parahaemolyticus. Journal of Microbiology, 42, 74-79.
Batt, C. A. (2014). LISTERIA| Listeria monocytogenes. Encyclopedia of Food Microbiology, 490-493.
Begley, M., & Hill, C. (2015). Stress adaptation in foodborne pathogens. Annual Review of Food Science and Technology, 6, 191-210.
Bozoglu, F., Alpas, H., & Kaletunç, G. (2004). Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunology & Medical Microbiology, 40, 243-247.
Brenzinger, S., van der Aart, L. T., Van Wezel, G. P., Lacroix, J. M., Glatter, T., & Briegel, A. (2019). Structural and proteomic changes in viable but non-culturable Vibrio cholerae. Frontiers in Microbiology, 10, 793-807.
Buchanan, R. L., Gorris, L. G., Hayman, M. M., Jackson, T. C., & Whiting, R. C. (2017). A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control, 75, 1-13.
Center for Food Safety and Applied Nutrition. (2022). Outbreaks of Foodborne Illness. U.S. Food and Drug Administration. https://www.fda.gov/food/recalls-outbreaks-emergencies/outbreaks-foodborne-illness
Chen, T. Y., Kuo, S. H., Chen, S. T., & Hwang, D. F. (2016). Differential proteomics to explore the inhibitory effects of acidic, slightly acidic electrolysed water and sodium hypochlorite solution on Vibrio parahaemolyticus. Food Chemistry, 194, 529-537.
Dallo, S. F., Kannan, T. R., Blaylock, M. W., & Baseman, J. B. (2002). Elongation factor Tu and E1 β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Molecular Microbiology, 46, 1041-1051.
Debnath, A., Mizuno, T., & Miyoshi, S. I. (2019). Comparative proteomic analysis to characterize temperature-induced viable but non-culturable and resuscitation states in Vibrio cholerae. Microbiology, 165, 737-746.
Defeu Soufo, H. J., Reimold, C., Linne, U., Knust, T., Gescher, J., & Graumann, P. L. (2010). Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proceedings of the National Academy of Sciences, 107, 3163-3168.
Dong, K., Pan, H., Yang, D., Rao, L., Zhao, L., Wang, Y., & Liao, X. (2020). Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms. Comprehensive Reviews in Food Science and Food Safety, 19, 149-183.
Dreux, N., Albagnac, C., Federighi, M., Carlin, F., Morris, C. E., & Nguyen‐The, C. (2007). Viable but non‐culturable Listeria monocytogenes on parsley leaves and absence of recovery to a culturable state. Journal of Applied Microbiology, 103, 1272-1281.
Ersoy, Z. G., Dinc, O., Cinar, B., Gedik, S. T., & Dimoglo, A. (2019). Comparative evaluation of disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on Enterococcus faecalis. LWT - Food Science and Technology, 102, 205-213.
Fu, Y., Jia, Y., Fan, J., Yu, C., Yu, C., & Shen, C. (2020). Induction of Escherichia coli O157: H7 into a viable but non‐culturable state by high temperature and its resuscitation. Environmental Microbiology Reports, 12, 568-577.
Furano, A. V. (1975). Content of elongation factor Tu in Escherichia coli. Proceedings of the National Academy of Sciences, 72, 4780-4784.
Gao, R., Liao, X., Zhao, X., Liu, D., & Ding, T. (2021). The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Comprehensive Reviews in Food Science and Food Safety, 20, 2146-2175.
Giagnoni, L., Arenella, M., Galardi, E., Nannipieri, P., & Renella, G. (2018). Bacterial culturability and the viable but non-culturable (VBNC) state studied by a proteomic approach using an artificial soil. Soil Biology and Biochemistry, 118, 51-58.
Gião, M. S., & Keevil, C. W. (2014). Listeria monocytogenes can form biofilms in tap water and enter into the viable but non-cultivable state. Microbial Ecology, 67, 603-611.
Glomski, I. J., Gedde, M. M., Tsang, A. W., Swanson, J. A., & Portnoy, D. A. (2002). The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. Journal of Cell Biology, 156, 1029-1038.
Gu, G., Bolten, S., Mowery, J., Luo, Y., Gulbronson, C., & Nou, X. (2020). Susceptibility of foodborne pathogens to sanitizers in produce rinse water and potential induction of viable but non-culturable state. Food Control, 112, 107138.
Gunasekera, T. S., Sørensen, A., Attfield, P. V., Sørensen, S. J., & Veal, D. A. (2002). Inducible gene expression by nonculturable bacteria in milk after pasteurization. Applied and Environmental Microbiology, 68, 1988-1993.
Han, D., Hung, Y. C., & Wang, L. (2018). Evaluation of the antimicrobial efficacy of neutral electrolyzed water on pork products and the formation of viable but nonculturable (VBNC) pathogens. Food Microbiology, 73, 227-236.
Hanawa, T., Fukuda, M., Kawakamis, H., Hirano, H., Kamiya, S., & Yamamoto, T. (1999). The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell stress & Chaperones, 4, 118.
Hao, J., Wu, T., Li, H., & Liu, H. (2017). Differences of bactericidal efficacy on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis of slightly and strongly acidic electrolyzed water. Food and Bioprocess Technology, 10, 155-164.
Harvey, K. L., Jarocki, V. M., Charles, I. G., & Djordjevic, S. P. (2019). The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis. Frontiers in Microbiology, 10, 2351-2370.
Havliš, J., & Shevchenko, A. (2004). Absolute quantification of proteins in solutions and in polyacrylamide gels by mass spectrometry. Analytical Chemistry, 76, 3029-3036.
Hawkins, C. L. (2020). Hypochlorous acid-mediated modification of proteins and its consequences. Essays in Biochemistry, 64, 75-86.
Heim, S., Del Mar Lleo, M., Bonato, B., Guzman, C. A., & Canepari, P. (2002). The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. Journal of Bacteriology, 184, 6739-6745.
Highmore, C. J., Warner, J. C., Rothwell, S. D., Wilks, S. A., & Keevil, C. W. (2018). Viable-but-nonculturable Listeria monocytogenes and Salmonella enterica serovar Thompson induced by chlorine stress remain infectious. MBio, 9, e00540-18.
Huang, Y. R., Hung, Y. C., Hsu, S. Y., Huang, Y. W., & Hwang, D. F. (2008). Application of electrolyzed water in the food industry. Food Control, 19, 329-345.
Issa-Zacharia, A., Kamitani, Y., Miwa, N., Muhimbula, H., & Iwasaki, K. (2011). Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts. Food Control, 22, 601-607.
Iwu, C. D., Iwu-Jaja, C. J., Elhadi, R., Semerjian, L., & Okoh, A. I. (2022). Modelling the potential risk of infection associated with Listeria monocytogenes in irrigation water and agricultural soil in two district municipalities in South Africa. Microorganisms, 10, 181-195.
Kathariou, S. (2002). Listeria monocytogenes virulence and pathogenicity, a food safety perspective. Journal of Food Protection, 65, 1811-1829.
Khor, H. K., Fisher, M. T., & Schöneich, C. (2004). Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO–). Journal of Biological Chemistry, 279, 19486-19493.
Kibbee, R. J., & Örmeci, B. (2017). Development of a sensitive and false-positive free PMA-qPCR viability assay to quantify VBNC Escherichia coli and evaluate disinfection performance in wastewater effluent. Journal of Microbiological Methods, 132, 139-147.
Kim, C., Hung, Y. C., & Brackett, R. E. (2000a). Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. International Journal of Food Microbiology, 61, 199-207.
Kim, C., Hung, Y. C., & Brackett, R. E. (2000b). Roles of oxidation–reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. Journal of Food Protection, 63, 19-24.
Kochhar, S., & Kochhar, V. K. (2005). Expression of antioxidant enzymes and heat shock proteins in relation to combined stress of cadmium and heat in Vigna mungo seedlings. Plant Science, 168, 921-929.
Kogure, K., Simidu, U., & Taga, N. (1979). A tentative direct microscopic method for counting living marine bacteria. Canadian Journal of Microbiology, 25, 415–420.
Kolling, G. L., & Matthews, K. R. (2001). Examination of recovery in vitro and in vivo of nonculturable Escherichia coli O157: H7. Applied and Environmental Microbiology, 67, 3928-3933.
Laplace, J. M., Thuault, M., Hartke, A., Boutibonnes, P., & Auffray, Y. (1997). Sodium hypochlorite stress in Enterococcus faecalis: influence of antecedent growth conditions and induced proteins. Current Microbiology, 34, 284-289.
Li, H., Xu, Z., Zhao, F., Wang, Y., & Liao, X. (2016). Synergetic effects of high-pressure carbon dioxide and nisin on the inactivation of Escherichia coli and Staphylococcus aureus. Innovative Food Science & Emerging Technologies, 33, 180-186.
Li, J., Ding, T., Liao, X., Chen, S., Ye, X., & Liu, D. (2017). Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy. Ultrasonics Sonochemistry, 38, 711-719.
Li, Y. Y., Cai, R. J., Yang, J. Y., Hendrickson, T. L., Xiang, Y., & Javid, B. (2021). Clinically relevant mutations of mycobacterial GatCAB inform regulation of translational fidelity. MBio, 12, e01100-21.
Lindbäck, T., Rottenberg, M. E., Roche, S. M., & Rørvik, L. M. (2010). The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Veterinary Research, 41, 1-10.
Linder, K., and Oliver, J. D. (1989). Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Applied and Environmental Microbiology, 55, 2837–2842.
Liu, J., Zhou, R., Li, L., Peters, B. M., Li, B., Lin, C. W., Chuang, T. L., Chen, D., Zhao, X., Xiong, Z., & Xu, Z. (2017). Viable but non-culturable state and toxin gene expression of enterohemorrhagic Escherichia coli O157 under cryopreservation. Research in Microbiology, 168, 188-193.
Liu, Y., Wang, C., Tyrrell, G., & Li, X. F. (2010). Production of Shiga-like toxins in viable but nonculturable Escherichia coli O157: H7. Water Research, 44, 711-718.
Masmoudi, S., Denis, M., & Maalej, S. (2010). Inactivation of the gene katA or sodA affects the transient entry into the viable but non-culturable response of Staphylococcus aureus in natural seawater at low temperature. Marine Pollution Bulletin, 60, 2209-2214.
Nicolo, M. S., Gioffre, A., Carnazza, S., Platania, G., Silvestro, I. D., & Guglielmino, S. P. P. (2011). Viable but nonculturable state of foodborne pathogens in grapefruit juice: a study of laboratory. Foodborne Pathogens and Disease, 8, 11-17.
Ovissipour, M., Al-Qadiri, H. M., Sablani, S. S., Govindan, B. N., Al-Alami, N., & Rasco, B. (2015). Efficacy of acidic and alkaline electrolyzed water for inactivating Escherichia coli O104: H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, and Vibrio parahaemolyticus in cell suspensions. Food Control, 53, 117-123.
Park, H., Hung, Y. C., & Brackett, R. E. (2002). Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. International Journal of Food Microbiology, 72, 77-83.
Patrone, V., Campana, R., Vallorani, L., Dominici, S., Federici, S., Casadei, L., Gioacchini, A. M., Stocchi, V., & Baffone, W. (2013). CadF expression in Campylobacter jejuni strains incubated under low-temperature water microcosm conditions which induce the viable but non-culturable (VBNC) state. Antonie van Leeuwenhoek, 103, 979-988.
Pena, R. T., Blasco, L., Ambroa, A., González-Pedrajo, B., Fernández-García, L., López, M., Bleriot, I., Bou, G., García-Contreras, R., Wood, T. K., & Tomás, M. (2019). Relationship between quorum sensing and secretion systems. Frontiers in Microbiology, 10, 1100-1114.
Pham V. H., and Lapointe J. (2017). The Bacterial Heterotrimeric Amidotransferase GatCAB: functions, structures and mechanism-based inhibitors, Archives of Biotechnology and Biomedicine, 1, 021-032.
Pilavtepe‐Çelik, M. (2013). High hydrostatic pressure (HHP) inactivation of foodborne pathogens in low‐acid juices. International Journal of Food Science & Technology, 48, 673-677.
Pu, Y., Li, Y., Jin, X., Tian, T., Ma, Q., Zhao, Z., Lin, S. Y., Chen, Z., Li, B., Yao, G., & Leake, M. C. (2019). ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Molecular Cell, 73, 143-156.
Rahman, S. M. E., Khan, I., & Oh, D. H. (2016). Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Comprehensive Reviews in Food Science and Food Safety, 15, 471-490.
Riondet, C., Cachon, R., Waché, Y., Alcaraz, G., & Diviès, C. (2000) Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. Journal of Bacteriology, 182, 620-626.
Robben, C., Fister, S., Witte, A. K., Schoder, D., Rossmanith, P., & Mester, P. (2018). Induction of the viable but non-culturable state in bacterial pathogens by household cleaners and inorganic salts. Scientific Reports, 8, 1-9.
Rodriguez, C., Taminiau, B., García-Fuentes, E., Daube, G., & Korsak, N. (2021). Listeria monocytogenes dissemination in farming and primary production: Sources, shedding and control measures. Food Control, 120, 107540.
Safavieh, M., Nahar, S., Zourob, M., & Ahmed, M. U. (2015). Microfluidic biosensors for high throughput screening of pathogens in food. In High Throughput Screening for Food Safety Assessment (pp. 327-357). Woodhead Publishing, Cambridge.
Salive, A. F. V., Prudêncio, C. V., Baglinière, F., Oliveira, L. L., Ferreira, S. O., & Vanetti, M. C. D. (2020). Comparison of stress conditions to induce viable but non-cultivable state in Salmonella. Brazilian Journal of Microbiology, 51, 1269-1277.
Schottroff, F., Fröhling, A., Zunabovic-Pichler, M., Krottenthaler, A., Schlüter, O., & Jäger, H. (2018). Sublethal injury and viable but non-culturable (VBNC) state in microorganisms during preservation of food and biological materials by non-thermal processes. Frontiers in Microbiology, 2773.
Signoretto, C., Lleò, M. M., Tafi, M. C., and Canepari, P. (2000). Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Applied and Environmental Microbiology, 66, 1953–1959.
Smith, C. A. (2006). Structure, function and dynamics in the mur family of bacterial cell wall ligases. Journal of Molecular Biology, 362, 640-655.
Stopforth, J. D., Mai, T., Kottapalli, B., & Samadpour, M. (2008). Effect of acidified sodium chlorite, chlorine, and acidic electrolyzed water on Escherichia coli O157: H7, Salmonella, and Listeria monocytogenes inoculated onto leafy greens. Journal of Food Protection, 71, 625-628.
Su, X., Sun, F., Wang, Y., Hashmi, M. Z., Guo, L., Ding, L., & Shen, C. (2015). Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans. Scientific Reports, 5, 1-12.
Sun, W., Gao, S., Wang, L., Chen, Y., Wu, S., Wang, X., Zheng, D., & Gao, Y. (2006). Microwave-assisted protein preparation and enzymatic digestion in proteomics. Molecular & Cellular Proteomics, 5, 769-776.
Teixeira, P., Fernandes, B., Silva, A. M., Dias, N., & Azeredo, J. (2019). Evaluation by flow cytometry of Escherichia coli viability in lettuce after disinfection. Antibiotics, 9, 14-27.
TFDA (Taiwan Food and Drug Administration). (2020). 2020 TFDA Annual Report, accessed 8 April 2022, https://www.fda.gov.tw/ENG/siteList.aspx?sid=4050
Ulfig, A., & Leichert, L. I. (2021). The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cellular and Molecular Life Sciences, 78, 385-414.
Ultee, E., Ramijan, K., Dame, R. T., Briegel, A., & Claessen, D. (2019). Stress-induced adaptive morphogenesis in bacteria. Advances in Microbial Physiology, 74, 97-141.
Wang, L., Xia, Q., & Li, Y. (2018). Label free-based proteomic analysis of proteins in Bacillus cereus spores regulated by high pressure processing and slightly acidic electrolyzed water treatment. Food Control, 90, 392-400.
Wang, Y., Liu, B., Grenier, D., & Yi, L. (2019). Regulatory mechanisms of the LuxS/AI-2 system and bacterial resistance. Antimicrobial Agents and Chemotherapy, 63, e01186-19.
Wasfi, R., Abdellatif, G. R., Elshishtawy, H. M., & Ashour, H. M. (2020). First‐time characterization of viable but non‐culturable Proteus mirabilis: Induction and resuscitation. Journal of Cellular and Molecular Medicine, 24, 2791-2801.
Wei, C., and Zhao, X. (2018). Induction of viable but nonculturable Escherichia coli O157: H7 by low temperature and its resuscitation. Frontiers in Microbiology, 2728-2737.
WHO (World Health Organization). (2019). More complex foodborne disease outbreaks require new technologies, greater transparency, accessed 8 April 2022, https://www.who.int/news/item/06-12-2019-more-complex-foodborne-disease-outbreaks-requires-new-technologies-greater-transparency
Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., & Williams, K. L. (1996). Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology and Genetic Engineering Reviews, 13, 19-50.
Winardhi, R. S., Tang, Q., You, H., Sheetz, M., & Yan, J. (2018). The holdase function of Escherichia coli Hsp70 (DnaK) chaperone. bioRxiv, 305854.
Wong, H. C., Shen, C. T., Chang, C. N., Lee, Y. S., & Oliver, J. D. (2004). Biochemical and virulence characterization of viable but nonculturable cells of Vibrio parahaemolyticus. Journal of Food Protection, 67, 2430-2435.
Xu, H. S., Roberts, N., Singleton, F. L., Attwell, R. W., Grimes, D. J., & Colwell, R. R. (1982). Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecology, 8, 313-323.
Ye, C., Lin, H., Zhang, M., Chen, S., & Yu, X. (2020). Characterization and potential mechanisms of highly antibiotic tolerant VBNC Escherichia coli induced by low level chlorination. Scientific Reports, 10, 1-11.
Yu, H. H., Chin, Y. W., & Paik, H. D. (2021). Application of natural preservatives for meat and meat products against food-borne pathogens and spoilage bacteria: A review. Foods, 10, 2418-2440.
Zeng, X., Tang, W., Ye, G., Ouyang, T., Tian, L., Ni, Y., & Li, P. (2010). Studies on disinfection mechanism of electrolyzed oxidizing water on E. coli and Staphylococcus aureus. Journal of Food Science, 75, M253-M260.
Zhang, C., Chen, X., Xia, X., Li, B., & Hung, Y. C. (2018). Viability assay of E. coli O157: H7 treated with electrolyzed oxidizing water using flow cytometry. Food Control, 88, 47-53.
Zhang, J., Wang, J., Zhao, D., & Hao, J. (2021). Efficacy of the two-step disinfection with slightly acidic electrolyzed water for reduction of Listeria monocytogenes contamination on food raw materials. LWT - Food Science and Technology, 140, 110699.
Zhang, S., Ye, C., Lin, H., Lv, L., & Yu, X. (2015). UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa. Environmental Science & Technology, 49, 1721-1728.
Zhang, Y., Fonslow, B. R., Shan, B., Baek, M. C., & Yates III, J. R. (2013). Protein analysis by shotgun/bottom-up proteomics. Chemical Reviews, 113, 2343-2394.
Zhao, F., Wang, Y., An, H., Hao, Y., Hu, X., & Liao, X. (2016). New insights into the formation of viable but nonculturable Escherichia coli O157: H7 induced by high-pressure CO2. MBio, 7, e00961-16.
Zhao, L., Zhao, M. Y., Phey, C. P., & Yang, H. (2019). Efficacy of low concentration acidic electrolysed water and levulinic acid combination on fresh organic lettuce (Lactuca sativa Var. Crispa L.) and its antimicrobial mechanism. Food Control, 101, 241-250.
Zhong, J., & Zhao, X. (2018). Detection of viable but non-culturable Escherichia coli O157: H7 by PCR in combination with propidium monoazide. 3 Biotech, 8, 1-9.
Zhong, J., & Zhao, X. (2019). Transcriptomic analysis of viable but non-culturable Escherichia coli O157: H7 formation induced by low temperature. Microorganisms, 7, 634-647.
Zhong, Q., Tian, J., Wang, J., Fang, X., & Liao, Z. (2018). iTRAQ-based proteomic analysis of the viable but nonculturable state of Vibrio parahaemolyticus ATCC 17802 induced by food preservative and low temperature. Food Control, 85, 369-375.
Zhong, Q., Wang, B., Wang, J., Liu, Y., Fang, X., & Liao, Z. (2019). Global proteomic analysis of the resuscitation state of Vibrio parahaemolyticus compared with the normal and viable but non-culturable state. Frontiers in Microbiology, 10, 1045-1060.
Zinkevich, V., Beech, I. B., Tapper, R., & Bogdarina, I. (2000). The effect of super-oxidized water on Escherichia coli. Journal of Hospital Infection, 46, 153-156.
(此全文限內部瀏覽)
電子全文
全文檔開放日期:不公開
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *