|
Afari, G. K., & Hung, Y. C. (2018). Detection and verification of the viable but nonculturable (VBNC) state of Escherichia coli O157: H7 and Listeria monocytogenes using flow cytometry and standard plating. Journal of Food Science, 83, 1913-1920. Alam, A., Bröms, J. E., Kumar, R., & Sjöstedt, A. (2021). The role of ClpB in bacterial stress responses and virulence. Frontiers in Molecular Biosciences, 283-290. Algburi, A., Zehm, S., Netrebov, V., Bren, A. B., Chistyakov, V., & Chikindas, M. L. (2017). Subtilosin prevents biofilm formation by inhibiting bacterial quorum sensing. Probiotics and Antimicrobial Proteins, 9, 81-90. Ayrapetyan, M., Williams, T., & Oliver, J. D. (2018). Relationship between the viable but nonculturable state and antibiotic persister cells. Journal of Bacteriology, 200, e00249-18. Bai, H., Zhao, F., Li, M., Qin, L., Yu, H., Lu, L., & Zhang, T. (2019). Citric acid can force Staphylococcus aureus into viable but nonculturable state and its characteristics. International Journal of Food Microbiology, 305, 108254. Barba, F. J., Koubaa, M., do Prado-Silva, L., Orlien, V., & de Souza Sant’Ana, A. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends in Food Science & Technology, 66, 20-35. Bates, T. C., & Oliver, J. D. (2004). The viable but nonculturable state of Kanagawa positive and negative strains of Vibrio parahaemolyticus. Journal of Microbiology, 42, 74-79. Batt, C. A. (2014). LISTERIA| Listeria monocytogenes. Encyclopedia of Food Microbiology, 490-493. Begley, M., & Hill, C. (2015). Stress adaptation in foodborne pathogens. Annual Review of Food Science and Technology, 6, 191-210. Bozoglu, F., Alpas, H., & Kaletunç, G. (2004). Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunology & Medical Microbiology, 40, 243-247. Brenzinger, S., van der Aart, L. T., Van Wezel, G. P., Lacroix, J. M., Glatter, T., & Briegel, A. (2019). Structural and proteomic changes in viable but non-culturable Vibrio cholerae. Frontiers in Microbiology, 10, 793-807. Buchanan, R. L., Gorris, L. G., Hayman, M. M., Jackson, T. C., & Whiting, R. C. (2017). A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control, 75, 1-13. Center for Food Safety and Applied Nutrition. (2022). Outbreaks of Foodborne Illness. U.S. Food and Drug Administration. https://www.fda.gov/food/recalls-outbreaks-emergencies/outbreaks-foodborne-illness Chen, T. Y., Kuo, S. H., Chen, S. T., & Hwang, D. F. (2016). Differential proteomics to explore the inhibitory effects of acidic, slightly acidic electrolysed water and sodium hypochlorite solution on Vibrio parahaemolyticus. Food Chemistry, 194, 529-537. Dallo, S. F., Kannan, T. R., Blaylock, M. W., & Baseman, J. B. (2002). Elongation factor Tu and E1 β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Molecular Microbiology, 46, 1041-1051. Debnath, A., Mizuno, T., & Miyoshi, S. I. (2019). Comparative proteomic analysis to characterize temperature-induced viable but non-culturable and resuscitation states in Vibrio cholerae. Microbiology, 165, 737-746. Defeu Soufo, H. J., Reimold, C., Linne, U., Knust, T., Gescher, J., & Graumann, P. L. (2010). Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proceedings of the National Academy of Sciences, 107, 3163-3168. Dong, K., Pan, H., Yang, D., Rao, L., Zhao, L., Wang, Y., & Liao, X. (2020). Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms. Comprehensive Reviews in Food Science and Food Safety, 19, 149-183. Dreux, N., Albagnac, C., Federighi, M., Carlin, F., Morris, C. E., & Nguyen‐The, C. (2007). Viable but non‐culturable Listeria monocytogenes on parsley leaves and absence of recovery to a culturable state. Journal of Applied Microbiology, 103, 1272-1281. Ersoy, Z. G., Dinc, O., Cinar, B., Gedik, S. T., & Dimoglo, A. (2019). Comparative evaluation of disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on Enterococcus faecalis. LWT - Food Science and Technology, 102, 205-213. Fu, Y., Jia, Y., Fan, J., Yu, C., Yu, C., & Shen, C. (2020). Induction of Escherichia coli O157: H7 into a viable but non‐culturable state by high temperature and its resuscitation. Environmental Microbiology Reports, 12, 568-577. Furano, A. V. (1975). Content of elongation factor Tu in Escherichia coli. Proceedings of the National Academy of Sciences, 72, 4780-4784. Gao, R., Liao, X., Zhao, X., Liu, D., & Ding, T. (2021). The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Comprehensive Reviews in Food Science and Food Safety, 20, 2146-2175. Giagnoni, L., Arenella, M., Galardi, E., Nannipieri, P., & Renella, G. (2018). Bacterial culturability and the viable but non-culturable (VBNC) state studied by a proteomic approach using an artificial soil. Soil Biology and Biochemistry, 118, 51-58. Gião, M. S., & Keevil, C. W. (2014). Listeria monocytogenes can form biofilms in tap water and enter into the viable but non-cultivable state. Microbial Ecology, 67, 603-611. Glomski, I. J., Gedde, M. M., Tsang, A. W., Swanson, J. A., & Portnoy, D. A. (2002). The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. Journal of Cell Biology, 156, 1029-1038. Gu, G., Bolten, S., Mowery, J., Luo, Y., Gulbronson, C., & Nou, X. (2020). Susceptibility of foodborne pathogens to sanitizers in produce rinse water and potential induction of viable but non-culturable state. Food Control, 112, 107138. Gunasekera, T. S., Sørensen, A., Attfield, P. V., Sørensen, S. J., & Veal, D. A. (2002). Inducible gene expression by nonculturable bacteria in milk after pasteurization. Applied and Environmental Microbiology, 68, 1988-1993. Han, D., Hung, Y. C., & Wang, L. (2018). Evaluation of the antimicrobial efficacy of neutral electrolyzed water on pork products and the formation of viable but nonculturable (VBNC) pathogens. Food Microbiology, 73, 227-236. Hanawa, T., Fukuda, M., Kawakamis, H., Hirano, H., Kamiya, S., & Yamamoto, T. (1999). The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell stress & Chaperones, 4, 118. Hao, J., Wu, T., Li, H., & Liu, H. (2017). Differences of bactericidal efficacy on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis of slightly and strongly acidic electrolyzed water. Food and Bioprocess Technology, 10, 155-164. Harvey, K. L., Jarocki, V. M., Charles, I. G., & Djordjevic, S. P. (2019). The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis. Frontiers in Microbiology, 10, 2351-2370. Havliš, J., & Shevchenko, A. (2004). Absolute quantification of proteins in solutions and in polyacrylamide gels by mass spectrometry. Analytical Chemistry, 76, 3029-3036. Hawkins, C. L. (2020). Hypochlorous acid-mediated modification of proteins and its consequences. Essays in Biochemistry, 64, 75-86. Heim, S., Del Mar Lleo, M., Bonato, B., Guzman, C. A., & Canepari, P. (2002). The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. Journal of Bacteriology, 184, 6739-6745. Highmore, C. J., Warner, J. C., Rothwell, S. D., Wilks, S. A., & Keevil, C. W. (2018). Viable-but-nonculturable Listeria monocytogenes and Salmonella enterica serovar Thompson induced by chlorine stress remain infectious. MBio, 9, e00540-18. Huang, Y. R., Hung, Y. C., Hsu, S. Y., Huang, Y. W., & Hwang, D. F. (2008). Application of electrolyzed water in the food industry. Food Control, 19, 329-345. Issa-Zacharia, A., Kamitani, Y., Miwa, N., Muhimbula, H., & Iwasaki, K. (2011). Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts. Food Control, 22, 601-607. Iwu, C. D., Iwu-Jaja, C. J., Elhadi, R., Semerjian, L., & Okoh, A. I. (2022). Modelling the potential risk of infection associated with Listeria monocytogenes in irrigation water and agricultural soil in two district municipalities in South Africa. Microorganisms, 10, 181-195. Kathariou, S. (2002). Listeria monocytogenes virulence and pathogenicity, a food safety perspective. Journal of Food Protection, 65, 1811-1829. Khor, H. K., Fisher, M. T., & Schöneich, C. (2004). Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO–). Journal of Biological Chemistry, 279, 19486-19493. Kibbee, R. J., & Örmeci, B. (2017). Development of a sensitive and false-positive free PMA-qPCR viability assay to quantify VBNC Escherichia coli and evaluate disinfection performance in wastewater effluent. Journal of Microbiological Methods, 132, 139-147. Kim, C., Hung, Y. C., & Brackett, R. E. (2000a). Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. International Journal of Food Microbiology, 61, 199-207. Kim, C., Hung, Y. C., & Brackett, R. E. (2000b). Roles of oxidation–reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. Journal of Food Protection, 63, 19-24. Kochhar, S., & Kochhar, V. K. (2005). Expression of antioxidant enzymes and heat shock proteins in relation to combined stress of cadmium and heat in Vigna mungo seedlings. Plant Science, 168, 921-929. Kogure, K., Simidu, U., & Taga, N. (1979). A tentative direct microscopic method for counting living marine bacteria. Canadian Journal of Microbiology, 25, 415–420. Kolling, G. L., & Matthews, K. R. (2001). Examination of recovery in vitro and in vivo of nonculturable Escherichia coli O157: H7. Applied and Environmental Microbiology, 67, 3928-3933. Laplace, J. M., Thuault, M., Hartke, A., Boutibonnes, P., & Auffray, Y. (1997). Sodium hypochlorite stress in Enterococcus faecalis: influence of antecedent growth conditions and induced proteins. Current Microbiology, 34, 284-289. Li, H., Xu, Z., Zhao, F., Wang, Y., & Liao, X. (2016). Synergetic effects of high-pressure carbon dioxide and nisin on the inactivation of Escherichia coli and Staphylococcus aureus. Innovative Food Science & Emerging Technologies, 33, 180-186. Li, J., Ding, T., Liao, X., Chen, S., Ye, X., & Liu, D. (2017). Synergetic effects of ultrasound and slightly acidic electrolyzed water against Staphylococcus aureus evaluated by flow cytometry and electron microscopy. Ultrasonics Sonochemistry, 38, 711-719. Li, Y. Y., Cai, R. J., Yang, J. Y., Hendrickson, T. L., Xiang, Y., & Javid, B. (2021). Clinically relevant mutations of mycobacterial GatCAB inform regulation of translational fidelity. MBio, 12, e01100-21. Lindbäck, T., Rottenberg, M. E., Roche, S. M., & Rørvik, L. M. (2010). The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Veterinary Research, 41, 1-10. Linder, K., and Oliver, J. D. (1989). Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Applied and Environmental Microbiology, 55, 2837–2842. Liu, J., Zhou, R., Li, L., Peters, B. M., Li, B., Lin, C. W., Chuang, T. L., Chen, D., Zhao, X., Xiong, Z., & Xu, Z. (2017). Viable but non-culturable state and toxin gene expression of enterohemorrhagic Escherichia coli O157 under cryopreservation. Research in Microbiology, 168, 188-193. Liu, Y., Wang, C., Tyrrell, G., & Li, X. F. (2010). Production of Shiga-like toxins in viable but nonculturable Escherichia coli O157: H7. Water Research, 44, 711-718. Masmoudi, S., Denis, M., & Maalej, S. (2010). Inactivation of the gene katA or sodA affects the transient entry into the viable but non-culturable response of Staphylococcus aureus in natural seawater at low temperature. Marine Pollution Bulletin, 60, 2209-2214. Nicolo, M. S., Gioffre, A., Carnazza, S., Platania, G., Silvestro, I. D., & Guglielmino, S. P. P. (2011). Viable but nonculturable state of foodborne pathogens in grapefruit juice: a study of laboratory. Foodborne Pathogens and Disease, 8, 11-17. Ovissipour, M., Al-Qadiri, H. M., Sablani, S. S., Govindan, B. N., Al-Alami, N., & Rasco, B. (2015). Efficacy of acidic and alkaline electrolyzed water for inactivating Escherichia coli O104: H4, Listeria monocytogenes, Campylobacter jejuni, Aeromonas hydrophila, and Vibrio parahaemolyticus in cell suspensions. Food Control, 53, 117-123. Park, H., Hung, Y. C., & Brackett, R. E. (2002). Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. International Journal of Food Microbiology, 72, 77-83. Patrone, V., Campana, R., Vallorani, L., Dominici, S., Federici, S., Casadei, L., Gioacchini, A. M., Stocchi, V., & Baffone, W. (2013). CadF expression in Campylobacter jejuni strains incubated under low-temperature water microcosm conditions which induce the viable but non-culturable (VBNC) state. Antonie van Leeuwenhoek, 103, 979-988. Pena, R. T., Blasco, L., Ambroa, A., González-Pedrajo, B., Fernández-García, L., López, M., Bleriot, I., Bou, G., García-Contreras, R., Wood, T. K., & Tomás, M. (2019). Relationship between quorum sensing and secretion systems. Frontiers in Microbiology, 10, 1100-1114. Pham V. H., and Lapointe J. (2017). The Bacterial Heterotrimeric Amidotransferase GatCAB: functions, structures and mechanism-based inhibitors, Archives of Biotechnology and Biomedicine, 1, 021-032. Pilavtepe‐Çelik, M. (2013). High hydrostatic pressure (HHP) inactivation of foodborne pathogens in low‐acid juices. International Journal of Food Science & Technology, 48, 673-677. Pu, Y., Li, Y., Jin, X., Tian, T., Ma, Q., Zhao, Z., Lin, S. Y., Chen, Z., Li, B., Yao, G., & Leake, M. C. (2019). ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Molecular Cell, 73, 143-156. Rahman, S. M. E., Khan, I., & Oh, D. H. (2016). Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Comprehensive Reviews in Food Science and Food Safety, 15, 471-490. Riondet, C., Cachon, R., Waché, Y., Alcaraz, G., & Diviès, C. (2000) Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. Journal of Bacteriology, 182, 620-626. Robben, C., Fister, S., Witte, A. K., Schoder, D., Rossmanith, P., & Mester, P. (2018). Induction of the viable but non-culturable state in bacterial pathogens by household cleaners and inorganic salts. Scientific Reports, 8, 1-9. Rodriguez, C., Taminiau, B., García-Fuentes, E., Daube, G., & Korsak, N. (2021). Listeria monocytogenes dissemination in farming and primary production: Sources, shedding and control measures. Food Control, 120, 107540. Safavieh, M., Nahar, S., Zourob, M., & Ahmed, M. U. (2015). Microfluidic biosensors for high throughput screening of pathogens in food. In High Throughput Screening for Food Safety Assessment (pp. 327-357). Woodhead Publishing, Cambridge. Salive, A. F. V., Prudêncio, C. V., Baglinière, F., Oliveira, L. L., Ferreira, S. O., & Vanetti, M. C. D. (2020). Comparison of stress conditions to induce viable but non-cultivable state in Salmonella. Brazilian Journal of Microbiology, 51, 1269-1277. Schottroff, F., Fröhling, A., Zunabovic-Pichler, M., Krottenthaler, A., Schlüter, O., & Jäger, H. (2018). Sublethal injury and viable but non-culturable (VBNC) state in microorganisms during preservation of food and biological materials by non-thermal processes. Frontiers in Microbiology, 2773. Signoretto, C., Lleò, M. M., Tafi, M. C., and Canepari, P. (2000). Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Applied and Environmental Microbiology, 66, 1953–1959. Smith, C. A. (2006). Structure, function and dynamics in the mur family of bacterial cell wall ligases. Journal of Molecular Biology, 362, 640-655. Stopforth, J. D., Mai, T., Kottapalli, B., & Samadpour, M. (2008). Effect of acidified sodium chlorite, chlorine, and acidic electrolyzed water on Escherichia coli O157: H7, Salmonella, and Listeria monocytogenes inoculated onto leafy greens. Journal of Food Protection, 71, 625-628. Su, X., Sun, F., Wang, Y., Hashmi, M. Z., Guo, L., Ding, L., & Shen, C. (2015). Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans. Scientific Reports, 5, 1-12. Sun, W., Gao, S., Wang, L., Chen, Y., Wu, S., Wang, X., Zheng, D., & Gao, Y. (2006). Microwave-assisted protein preparation and enzymatic digestion in proteomics. Molecular & Cellular Proteomics, 5, 769-776. Teixeira, P., Fernandes, B., Silva, A. M., Dias, N., & Azeredo, J. (2019). Evaluation by flow cytometry of Escherichia coli viability in lettuce after disinfection. Antibiotics, 9, 14-27. TFDA (Taiwan Food and Drug Administration). (2020). 2020 TFDA Annual Report, accessed 8 April 2022, https://www.fda.gov.tw/ENG/siteList.aspx?sid=4050 Ulfig, A., & Leichert, L. I. (2021). The effects of neutrophil-generated hypochlorous acid and other hypohalous acids on host and pathogens. Cellular and Molecular Life Sciences, 78, 385-414. Ultee, E., Ramijan, K., Dame, R. T., Briegel, A., & Claessen, D. (2019). Stress-induced adaptive morphogenesis in bacteria. Advances in Microbial Physiology, 74, 97-141. Wang, L., Xia, Q., & Li, Y. (2018). Label free-based proteomic analysis of proteins in Bacillus cereus spores regulated by high pressure processing and slightly acidic electrolyzed water treatment. Food Control, 90, 392-400. Wang, Y., Liu, B., Grenier, D., & Yi, L. (2019). Regulatory mechanisms of the LuxS/AI-2 system and bacterial resistance. Antimicrobial Agents and Chemotherapy, 63, e01186-19. Wasfi, R., Abdellatif, G. R., Elshishtawy, H. M., & Ashour, H. M. (2020). First‐time characterization of viable but non‐culturable Proteus mirabilis: Induction and resuscitation. Journal of Cellular and Molecular Medicine, 24, 2791-2801. Wei, C., and Zhao, X. (2018). Induction of viable but nonculturable Escherichia coli O157: H7 by low temperature and its resuscitation. Frontiers in Microbiology, 2728-2737. WHO (World Health Organization). (2019). More complex foodborne disease outbreaks require new technologies, greater transparency, accessed 8 April 2022, https://www.who.int/news/item/06-12-2019-more-complex-foodborne-disease-outbreaks-requires-new-technologies-greater-transparency Wilkins, M. R., Sanchez, J. C., Gooley, A. A., Appel, R. D., Humphery-Smith, I., Hochstrasser, D. F., & Williams, K. L. (1996). Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology and Genetic Engineering Reviews, 13, 19-50. Winardhi, R. S., Tang, Q., You, H., Sheetz, M., & Yan, J. (2018). The holdase function of Escherichia coli Hsp70 (DnaK) chaperone. bioRxiv, 305854. Wong, H. C., Shen, C. T., Chang, C. N., Lee, Y. S., & Oliver, J. D. (2004). Biochemical and virulence characterization of viable but nonculturable cells of Vibrio parahaemolyticus. Journal of Food Protection, 67, 2430-2435. Xu, H. S., Roberts, N., Singleton, F. L., Attwell, R. W., Grimes, D. J., & Colwell, R. R. (1982). Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microbial Ecology, 8, 313-323. Ye, C., Lin, H., Zhang, M., Chen, S., & Yu, X. (2020). Characterization and potential mechanisms of highly antibiotic tolerant VBNC Escherichia coli induced by low level chlorination. Scientific Reports, 10, 1-11. Yu, H. H., Chin, Y. W., & Paik, H. D. (2021). Application of natural preservatives for meat and meat products against food-borne pathogens and spoilage bacteria: A review. Foods, 10, 2418-2440. Zeng, X., Tang, W., Ye, G., Ouyang, T., Tian, L., Ni, Y., & Li, P. (2010). Studies on disinfection mechanism of electrolyzed oxidizing water on E. coli and Staphylococcus aureus. Journal of Food Science, 75, M253-M260. Zhang, C., Chen, X., Xia, X., Li, B., & Hung, Y. C. (2018). Viability assay of E. coli O157: H7 treated with electrolyzed oxidizing water using flow cytometry. Food Control, 88, 47-53. Zhang, J., Wang, J., Zhao, D., & Hao, J. (2021). Efficacy of the two-step disinfection with slightly acidic electrolyzed water for reduction of Listeria monocytogenes contamination on food raw materials. LWT - Food Science and Technology, 140, 110699. Zhang, S., Ye, C., Lin, H., Lv, L., & Yu, X. (2015). UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa. Environmental Science & Technology, 49, 1721-1728. Zhang, Y., Fonslow, B. R., Shan, B., Baek, M. C., & Yates III, J. R. (2013). Protein analysis by shotgun/bottom-up proteomics. Chemical Reviews, 113, 2343-2394. Zhao, F., Wang, Y., An, H., Hao, Y., Hu, X., & Liao, X. (2016). New insights into the formation of viable but nonculturable Escherichia coli O157: H7 induced by high-pressure CO2. MBio, 7, e00961-16. Zhao, L., Zhao, M. Y., Phey, C. P., & Yang, H. (2019). Efficacy of low concentration acidic electrolysed water and levulinic acid combination on fresh organic lettuce (Lactuca sativa Var. Crispa L.) and its antimicrobial mechanism. Food Control, 101, 241-250. Zhong, J., & Zhao, X. (2018). Detection of viable but non-culturable Escherichia coli O157: H7 by PCR in combination with propidium monoazide. 3 Biotech, 8, 1-9. Zhong, J., & Zhao, X. (2019). Transcriptomic analysis of viable but non-culturable Escherichia coli O157: H7 formation induced by low temperature. Microorganisms, 7, 634-647. Zhong, Q., Tian, J., Wang, J., Fang, X., & Liao, Z. (2018). iTRAQ-based proteomic analysis of the viable but nonculturable state of Vibrio parahaemolyticus ATCC 17802 induced by food preservative and low temperature. Food Control, 85, 369-375. Zhong, Q., Wang, B., Wang, J., Liu, Y., Fang, X., & Liao, Z. (2019). Global proteomic analysis of the resuscitation state of Vibrio parahaemolyticus compared with the normal and viable but non-culturable state. Frontiers in Microbiology, 10, 1045-1060. Zinkevich, V., Beech, I. B., Tapper, R., & Bogdarina, I. (2000). The effect of super-oxidized water on Escherichia coli. Journal of Hospital Infection, 46, 153-156.
|