字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:邱沁榆
研究生英文姓名:Chiu, Chin-Yu
中文論文名稱:探討不同收穫後處理與高壓加工技術對尖吻鱸魚排品質與保存試驗之影響
英文論文名稱:Effects of different post harvest and high pressure processing on the quality and shelf life of Asian seabass (Lates calacrifer) fillets
指導教授姓名:陳泰源
口試委員中文姓名:副教授︰林家民
教授︰黃健政
教授︰蕭泉源
教授︰冉繁華
副教授︰陳冠文
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932062
請選擇論文為:應用型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:84
中文關鍵詞:尖吻鱸高壓加工技術收穫後處理活締
英文關鍵字:Asian seabasshigh pressure processingpost harvestspike
相關次數:
  • 推薦推薦:0
  • 點閱點閱:67
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏收藏:0
尖吻鱸為台灣前五大重要養殖經濟魚種,根據行政院農委會漁業署2020年統計,其產量位居第15名,全年皆能生產且養殖技術不斷提升,使產量逐年上升。鮮度為水產品之不可逆生化指標,收穫後處理被視為控制鮮度之重要關鍵步驟,其中放血可有效地阻止脂質氧化、魚腥味的產生與儲存過程中微生物的生長,而活締作為較人道之方式,能減緩緊迫的發生,減少肌肉能量的消耗與延緩僵直發生。然而欲維持儲藏過程中之鮮度品質,可透過新興之高壓加工技術,減少魚排中微生物並保持原有的外觀、風味、質地和營養價值。因此本次研究目的主要探討不同收穫後處理 (冰鎮、放血和活締) 與高壓加工技術 (150, 250, 350 MPa/ 3 min) 對於尖吻鱸魚排在冷藏 (4℃) 下鮮度品質與保存期限之影響。不同收穫後處理下,放血與活締組之保水力顯著優於冰鎮組 (控制組),而經高壓加工後,放血與活締150 MPa組別之保水力顯著高於250和350 MPa組別。在K值方面,所有組別儲藏至第7天皆無超過40%,且放血與活締250和350 MPa組未超過20%,表示具有良好鮮度品質。放血與活締250和350 MPa組控制、放血與活締之初始TBARS值無顯著差異,儲藏至第7天,控制組脂質氧化程度顯著高於放血與活締組,推測放血步驟可降低脂質氧化程度。經過高壓後250 MPa組別脂質氧化程度增加。所有組別儲藏至第21天,大腸桿菌皆無超過限量標準。在總生菌方面,控制、活締、放血150 MPa與活締150 MPa於第7天總生菌超標,放血、放血250、活締250、放血250與活締350 MPa組別直到第11天才超標,具有較佳的抑制效果。在特定腐敗微生物 (產硫化氫菌與假單胞菌屬) 方面,不同收穫後處理下菌數皆無顯著差異,而放血與活締使用250和350 MPa組別之菌數皆顯著下降,表示高壓對於特定腐敗微生物有抑制效果。和控制組相比,放血與活締組之亮度 (L* 值) 上升且紅度下降 (a* 值),在高壓組別則可觀察到亮度隨著壓力增加顯著上升,放血和活締350 MPa組別亮度顯著最高並具有白化、煮熟的外觀。而在質地方面,不同收穫後處理下之初始質地指標皆無顯著差異,然而放血與活締使用250和350 MPa組別在質地上具有較佳的表現,整體而言,活締250 MPa可維持硬度與膠著性並有更好的彈性和咀嚼性表現。綜合上述,以活締結合250 MPa組別有較長的保存期限,且在質地方面亦有優秀的表現,可滿足消費者對於食品高安全及鮮度品質之要求。
Recently, Asian seabass (Lates calcarifer) has become an important and high economic value farmed fish for both export and domestic consumption. According to the statics of the Fisheries Agency, Council of Agriculture, Executive Yuan in 2020, Asian seabass occupied the 15th place of annual output value in Taiwan. Seafood harvesting is a crucial step to preserve seafood because freshness is an irreversible biochemical character. Among fish harvesting methods, exsanguination is the action of draining blood, which retards lipid oxidation, off-flavor and growth of spoilage microorganism during storage. Ikejime (spike) is a humane way of killing a fish during harvesting. High pressure processing (HPP) is a well-established cold-pasteurization food preservation. HPP could not only preserve better sensory and nutritional attributes but also extend shelf-life of seafood due to decline of initial bacterial loads. Hence, this study is to investigate the effects of different post harvest condition (hypothermia, exsanguination, spike) and HPP treatments (150, 250 and 350 MPa/ 15 min) on quality and shelf life of vacuum-packed seabass fillets under refrigerated (4℃) storage. Among different post harvest methods, water holding capacity of exsanguination and spike groups was significantly better than control. Water holding capacity of exsanguination and spike 150 MPa groups was significantly higher than the other HPP treatment groups. In terms of K value, all groups did not exceed 40% until day 7, and the groups used with HPP 250 and 350 MPa, did not exceed 20%, which indicated that the fillets were very fresh. Initial TBARS value has no significant difference among different post harvest methods. During the storage time, lipid oxidation degrees of exsanguination and spike groups were lower than control, suggesting bleeding can significantly retard lipid oxidation. All groups did not exceed the limit of E. coli standard during the storage. The results showed that exsanguination, exsanguination 250 MPa, exsanguination 350 MPa, spike 250 MPa and spike 350 MPa groups reached the maximum acceptable level of total plate count at day 11. Using 350 MPa groups can effectively reduce Pseudomonas and Shewanella growth. The bled fillets increased lightness L* and reduced redness a* compared to control fillets, as did the HPP groups. Compare to the control (hypothermia), spike 250 MPa not only had excellent texture performance such as better springiness and chewiness while maintaining hardness and gumminess, but also extended the shelf life until 1 week and maintained fresh appearance.
目錄
摘要 I
ABSTRACT II
表目錄 V
附錄目錄 VII
壹、 前言 1
貳、 研究動機 2
參、 文獻回顧 3
一、 尖吻鱸 3
1.1 簡介 3
1.2 養殖現況 3
1.3 銷售型態與產業現況 4
二、 收穫後處理方式對生理和生化特性之影響 4
2.1 魚類產生緊迫時生理反應機制 4
2.2 不同收穫後處理方式之比較 4
三、 魚介類死後之化學變化 5
3.1 死後變化對鮮度品質之影響 5
3.2 魚介類鮮度判定指標 6
四、 高壓加工技術 9
4.1 簡介 9
4.2 高壓加工對食品之影響 9
4.3 高壓加工對微生物之影響 10
4.4 高壓加工於水產品之應用 10
肆、 實驗架構 12
伍、 材料與方法 13
一、 實驗材料 13
二、 實驗藥品 13
三、 實驗儀器與設備 14
四、 實驗方法 15
4.1 尖吻鱸前處理 15
4.2 化學指標 16
4.3 微生物指標 18
4.4 物性指標 19
4.5 統計分析 21
陸、 結果與討論 22
一、 化學指標 22
1.1 pH值 22
1.2 揮發性鹽基態氮 (VBN) 22
1.3 硫巴比妥酸價 (TBARS) 23
1.4 共軛雙烯 24
1.5 K-value 24
二、 微生物指標 25
2.1 總生菌 25
2.2 嗜冷菌 26
2.3 大腸桿菌 26
2.4 產硫化氫菌 26
2.5 假單胞菌屬 27
三、 物性指標 28
3.1 物性儀 28
3.2 色差儀 30
3.3 保水力 33
柒、 結論 34
捌、 參考文獻 35
玖、 圖表 48
壹拾、附錄 77

中島宣郎, 市川恒平, 鎌田政喜, & 藤田栄一郎. (1961). 5'-リボヌクレオチドの食品化学的研究 (第 1 報) 食品中の 5'-リボヌクレオチドについて (その1) イオン交換クロマトグラフィーによる煮出し汁中の 5'-リボヌクレオチドの定量. 日本農芸化学会誌, 35, 797-803.
行政院農委會漁業署 (2021)。2020年漁業統計年報。行政院農委會漁業署。
行政院衛生福利部 (2022)。食品中汙染物質及毒素衛生標準,衛授食字號1111300972號公告。行政院衛生福利部。
林佳蕙 (2011)。珍珠龍膽石斑 (Epinephelus lanceoratus × E. fuscoguttatus) 與褐石斑 (E. bruneus) 之化學組成特性及其貯存變化。國立臺灣海洋大學食品科學系碩士論文,基隆市,臺灣。
林彥宏、余祁暐、林志遠 (2021)。養殖漁水產智農聯盟發展模式分析。農業生技產業季刊,第63期,52-62。
邱思魁 (2018)。魚貝類的化學組成與其死後變化。海大漁推,第48期,01-48。
邱思魁 (2019)。海產食品的品質與其貯藏中腐敗的起因。海大漁推,第49期,25-61。
邱思魁、游昭鈴、蕭泉源 (1995)。養殖虱目魚普通肉含氮萃取成分之季節變化,食品科學,第4期,387-394。
段盛秀,楊海明 (2019)。食品化學分析與檢驗。藝軒圖書出版社。
孫海麟 (2019)。全質構分析Texture Profile Analysis (TPA)。長宏儀器開發有限公司。
陳俊元 (2012)。不同收穫方式對卵形鯧鰺與點帶石斑肉質鮮度及生理緊迫反應之影響。國立澎湖科技大學水產資源與養殖研究所碩士論文,澎湖縣。
陳清春、詹滿色、張淑文、王金利 (2014)。貿易自由化過程中魚貨交易制度調適研究。行政院農委會。
游鎮輔 (2016)。以微酸性電解水與微鹼性電解水溶液處理吳郭魚魚漿及魚片改善品質之評估。國立臺灣海洋大學食品科學系碩士論文,基隆市,臺灣。
黃宛儀 (2014)。探討台灣產褐臭肚魚 (Siganus fuscescens) 及其加工品於不同季節、地域之呈味成分與鮮度變化。國立臺灣海洋大學食品科學系碩士論文,基隆市,臺灣。
經濟部標準檢驗局 (1997)。冷凍魚類檢驗法。中華民國國家標準 (CNS) 總號1451類號N6029。
詹滿色 (2020)。新冠疫情下臺灣大宗養殖水產品之市場分析。海大漁推,第50期,95-118。
蔡明安 (2017)。餐桌上的人道精神—人道殺魚法。奧秘海洋,第85期,4-7。
蔡智哲 (2017)。野生瓜子鱲與不同飼料投餵之養殖瓜子鱲生化學組成之差異及其貯藏安定性之評估。國立臺灣海洋大學食品科學系碩士論文,基隆市,臺灣。
衛生福利部食品藥物管理署 (2013)。食品微生物檢驗方法—生菌數之檢驗,食字第1021950329號公告。
謝明惠、沈珍珍 (2020)。因應新冠肺炎疫情,開創水產外銷商機。農政與農情,第342期,10-14。
Abe, F. (2007). Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: Perspectives from piezophysiology. Bioscience, Biotechnology, & Biochemistry, 71, 2347-2357.
Abera, G. (2019). Review on high-pressure processing of foods. Cogent Food & Agriculture, 5, 1568725.
Ahmad, M., Benjakul, S., Sumpavapol, P., & Nirmal, N. P. (2012). Quality changes of sea bass slices wrapped with gelatin film incorporated with lemongrass essential oil. International Journal of Food Microbiology, 155, 171-178.
Alasalvar, C., Taylor, K. A., & Shahidi, F. (2002). Comparative quality assessment of cultured and wild sea bream (Sparus aurata) stored in ice. Journal of Agricultural and Food Chemistry, 50, 2039-2045.
de Alba, M., Pérez-Andrés, J. M., Harrison, S. M., Brunton, N. P., Burgess, C. M., & Tiwari, B. K. (2019). High pressure processing on microbial inactivation, quality parameters and nutritional quality indices of mackerel fillets. Innovative Food Science & Emerging Technologies, 55, 80-87.
de Ancos, B., Rodrigo, M. J., Sánchez-Moreno, C., Cano, M. P., & Zacarías, L. (2020). Effect of high-pressure processing applied as pretreatment on carotenoids, flavonoids and vitamin C in juice of the sweet oranges ' Navel' and the red-fleshed 'Cara'. Food Research International, 132, 109105.
Angsupanich, K., & Ledward, D. A. (1998). High pressure treatment effects on cod (Gadus morhua) muscle. Food Chemistry, 63, 39-50.
Arfat, Y. A., Benjakul, S., Vongkamjan, K., Sumpavapol, P., & Yarnpakdee, S. (2015). Shelf-life extension of refrigerated sea bass slices wrapped with fish protein isolate/fish skin gelatin-ZnO nanocomposite film incorporated with basil leaf essential oil. Journal of Food Science & Technology, 52, 6182-6193.
Barba, F. J., Esteve, M. J., & Frígola, A. (2012). High pressure treatment effect on physicochemical and nutritional properties of fluid foods during storage: A review. Comprehensive Reviews in Food Science & Food Safety, 11, 307-322.
Barba, F. J., Koubaa, M., do Prado-Silva, L., Orlien, V., & de Souza Sant’Ana, A. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends in Food Science & Technology, 66, 20-35.
Barton, B. A. (2002). Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integrative & Comparative Biology, 42, 517-525.
Barton, B. A., & Iwama, G. K. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases, 1, 3-26.
Beyari, E. A., Aly, M. M., & Jastaniah, S. D. (2021). Incidence of foodborne bacteria that cause serious health hazards in fish: a Review. Annals of Medical and Health Sciences Research, 11, 60-66.
Bhat, Z. F., Morton, J. D., Mason, S. L., & Bekhit, A. E. D. A. (2018). Applied and emerging methods for meat tenderization: A comparative perspective. Comprehensive Reviews in Food Science & Food Safety, 17, 841-859.
Bindu, J., Ginson, J., Kamalakanth, C. K., Asha, K. K., & Gopal, T. S. (2013). Physico-chemical changes in high pressure treated Indian white prawn (Fenneropenaeus indicus) during chill storage. Innovative Food Science & Emerging Technologies, 17, 37-42.
Blanc, M., Desurmont, A., & Beverly, S. (2005). Onboard handling of sashimi-grade tuna: A practical guide for crew members. Noumea, New Caledonia, Secretariat of the Pacific Community, 1-27.
Bojanić, K., Kozačinski, L., Filipović, I., Cvrtila, Ž., Zdolec, N., & Njari, B. (2009). Quality of sea bass meat during storage on ice. Meso, 11, 44-80.
Bonfim, R. C., Oliveira, F. A. D., Godoy, R. L. D. O., & Rosenthal, A. (2019). A review on high hydrostatic pressure for bivalve mollusk processing: Relevant aspects concerning safety and quality. Food Science & Technology, 39, 515-523.
Boziaris, I. S., & Parlapani, F. F. (2017). Specific spoilage organisms (SSOs) in fish. In The microbiological quality of food (pp. 61-98). Woodhead Publishing.
Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Eenzymology, 52, 302-310.
Butz, P., Garcı́a, A. F., Lindauer, R., Dieterich, S., Bognar, A., & Tauscher, B. (2003). Influence of ultra high pressure processing on fruit and vegetable products. Journal of Food Engineering, 56, 233-236.
Cartagena, L., Puertolas, E., & Martinez de Maranon, I. (2019). High-pressure processing (HPP) for decreasing weight loss of fresh albacore (Thunnus alalunga) steaks. Food and Bioprocess Technology, 12, 2074-2084.
Castro, P., Padrón, J. C. P., Cansino, M. J. C., Velázquez, E. S., & De Larriva, R. M. (2006). Total volatile base nitrogen and its use to assess freshness in European sea bass stored in ice. Food Control, 17, 245-248.
Cheng, J. H., Sun, D. W., Han, Z., & Zeng, X. A. (2014). Texture and structure measurements and analyses for evaluation of fish and fillet freshness quality: A review. Comprehensive Reviews in Food Science and Food Safety, 13, 52-61.
Chéret, R., Chapleau, N., Delbarre‐Ladrat, C., Verrez‐Bagnis, V., & Lamballerie, M. D. (2005). Effects of high pressure on texture and microstructure of sea bass (Dicentrarchus labrax L.) fillets. Journal of Food Science, 70, 477-483.
Chéret, R., Hernández-Andrés, A., Delbarre-Ladrat, C., de Lamballerie, M., & Verrez-Bagnis, V. (2006). Proteins and proteolytic activity changes during refrigerated storage in sea bass (Dicentrarchus labrax L.) muscle after high-pressure treatment. European Food Research and Technology, 222, 527-535.
Chouhan, A., Kaur, B. P., & Rao, P. S. (2015). Effect of high pressure processing and thermal treatment on quality of hilsa (Tenualosa ilisha) fillets during refrigerated storage. Innovative Food Science & Emerging Technologies, 29, 151-160.
Christensen, L. B., Hovda, M. B., & Rode, T. M. (2017). Quality changes in high pressure processed cod, salmon and mackerel during storage. Food Control, 72, 90-96.
Cook, D. W. (2003) Sensitivity of Vibrio species in phosphate buffered saline and in oysters to high-pressure processing. Journal of Food Protection, 66, 2276-2282.
Council, F. A. W., Britain, G., & Spedding, C. R. W. (1996). Report on the welfare of farmed fish. Farm Animal Welfare Council.
Cruz-Romero, M., Kelly, A. L., & Kerry, J. P. (2007). Effects of high-pressure and heat treatments on physical and biochemical characteristics of oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, 8, 30-38.
Cruz-Romero, M., Smiddy, M., Hill, C., Kerry, J. P., & Kelly, A. L. (2004). Effects of high pressure treatment on physicochemical characteristics of fresh oysters (Crassostrea gigas). Innovative Food Science & Emerging Technologies, 5, 161-169.
Datta, N., & Deeth, H. C. (1999). High pressure processing of milk and dairy products. Australian Journal of Dairy Technology, 54, 41-48.
Davis, T. L. O. (1987). Biology of wildstock Lates calcarifer in northern Australia. Management of wild and cultured sea bass/barramundi, Australian Centre for International Agricultural Research, 22-29.
Erkan, N., Üretener, G., & Alpas, H. (2010). Effects of high pressure treatment on physicochemical characteristics of fresh sea bass (Dicentrarchus labrax). Journal für Verbraucherschutz und Lebensmittelsicherheit, 5, 83-89.
European Food Safety Authority (EFSA). (2009). Species‐specific welfare aspects of the main systems of stunning and killing of farmed fish: Rainbow Trout. EFSA Journal, 7, 1-55.
Fam, S. N., Khosravi-Darani, K., Massoud, R., & Massoud, A. (2020). High-pressure processing in food. Biointerface Research in Apllied Chemistry, 11, 11553-11561.
Farkas, D. F., & Hoover, D. G. (2000). High pressure processing. Journal of Food Science, 65, 47-64.
Fletchenmacher, W. (1988). Bleeding of cod on board factory trawlers. National Research Council, Canada Institute for Scientific and Technical Information.
Genç, İ. Y., Esteves, E., Anibal, J., & Diler, A. (2013). Effects of chilled storage on quality of vacuum packed meagre fillets. Journal of Food Engineering, 115, 486-494.
Ginson, J., Kamalakanth, C. K., Bindu, J., Venkateswarlu, R., Das, S., Chauhan, O. P., & Gopal, T. K. (2013). Changes in K value, microbiological and sensory acceptability of high pressure processed Indian white prawn (Fenneropenaeus indicus). Food and Bioprocess Technology, 6, 1175-1180.
Govaris, A., & Pexara, A. (2021). Inactivation of foodborne viruses by high-pressure processing (HPP). Foods, 10, 215.
Hamada-Sato, N., Usui, K., Kobayashi, T., Imada, C., & Watanabe, E. (2005). Quality assurance of raw fish based on HACCP concept. Food Control, 16, 301-307.
Hogan, E., Kelly, A. L., & Sun, D. W. (2005). High pressure processing of foods: An overview. Emerging Technologies for Food Processing, 3-32.
Hong, H., Regenstein, J. M., & Luo, Y. (2017). The importance of ATP-related compounds for the freshness and flavor of post-mortem fish and shellfish muscle: A review. Critical Reviews in Food Science & Nutrition, 5, 1787-1798.
Hsu, K. C. (2008). Evaluation of processing qualities of tomato juice induced by thermal and pressure processing. LWT-Food Science & Technology, 41, 450-459.
Huang, H. W., Hsu, C. P., & Wang, C. Y. (2020). Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food & Drug Analysis, 28, 1-13.
Huijuan, Z., Jian, P., Juan, L., & Xiaoxiao, X. (2018). High-pressure effects on the mechanism of accumulated inosine 5′-monophosphate. Innovative Food Science & Emerging Technologies, 45, 330-334.
Huss, H. H. (Ed.). (1995). Quality and quality changes in fresh fish. (Vol. 348). Rome: Food and Agriculture Organization.
ICMSF, I. (1986). Microorganisms in foods. Sampling for microbiological analysis: Principles and specific applications.
Irmawati, I., Umar, M. T., Husain, A. A. A., Malina, A. C., Kadir, N. N., & Alimuddin, A. (2020, Sep). Distribution and characteristics of Asian seabass (Lates calcarifer Bloch, 1790) in South Sulawesi. IOP Conference Series: Earth and Environmental Science. South Sulawesi, Indonesia.
Karim, N. U., Kennedy, J. T., Linton, M., Patterson, M., Watson, S., & Gault, N. (2019). Determination of nucleotide and enzyme degradation in haddock (Melanogrammus aeglefinus) and herring (Clupea harengus) after high pressure processing. PeerJ, 7, e7527.
Karim, N. U., Kennedy, T., Linton, M., Watson, S., Gault, N., & Patterson, M. F. (2011). Effect of high pressure processing on the quality of herring (Clupea harengus) and haddock (Melanogrammus aeglefinus) stored on ice. Food Control, 22, 476-484.
Kestin, S. C., Robb, D. H., & van De Vis, J. W. (2002). Protocol for assessing brain function in fish and the effectiveness of methods used to stun and kill them. Veterinary Record, 150, 302-307.
Kim, H. H., Ryu, S. H., Jeong, S. M., Kang, W. S., Lee, J. E., Kim, S. R., Xu, X., Lee, G. H., & Ahn, D. H. (2021). Effect of high hydrostatic pressure treatment on urease activity and inhibition of fishy smell in mackerel (Scomber japonicus) during Storage. Journal of Microbiology and Biotechnology, 31, 1684-1691.
Kung, H. F., Lin, C. S., Liu, S. S., Huang, C. Y., Chiu, K., Lee, Y. C., & Tsai, Y. H. (2022). High pressure processing extend the shelf life of milkfish flesh during refrigerated storage. Food Control, 134, 108768.
Kyrana, V. R., & Lougovois, V. P. (2002). Sensory, chemical and microbiological assessment of farm‐raised European sea bass (Dicentrarchus labrax) stored in melting ice. International Journal of food science & technology, 37, 319-328.
Lee, Y. C., Kung, H. F., Chen, S. L., Lin, C. S., Huang, C. Y., Arakawa, O., Tseng, C. H., & Tsai, Y. H. (2022). Effect of high-pressure treatment on blue marlin (Makaira nigricans) quality during storage. Journal of Aquatic Food Product Technology, 31, 271-284.
Leon, J. S., Kingsley, D. H., Montes, J. S., Richards, G. P., Lyon, G. M., Abdulhafid, G. M., Seitz, S. R., Fernandez, M. L., Teunis, P. F., Flick, G. J., & Moel, C. L. (2011). Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing. Applied & Environmental Microbiology, 77, 5476-5482.
Li, D., Zhang, L., Song, S., Wang, Z., Kong, C., & Luo, Y. (2017). The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus carpio) fillets. Food Chemistry, 224, 347-352.
Li, Q., Zhang, J., Zhu, J., Lin, H., Sun, T., & Cheng, L. (2021). Effects of gallic acid combined with epsilon-polylysine hydrochloride incorporated in a pullulan–CMC edible coating on the storage quality of sea bass. RSC Advances, 11, 29675-29683.
Lin, C. S., Lee, Y. C., Ciou, J. W., Hwang, C. C., Kung, H. F., & Tsai, Y. H. (2021). Inhibitory effects of high pressure processing on microbial growth and histamine formation in spotted mackerel (Scomber australasicus) during refrigerated storage. CyTA-Journal of Food, 19, 762-770.
Lou, F., Neetoo, H., Chen, H., & Li, J. (2015). High hydrostatic pressure processing : A promising nonthermal technology to inactivate viruses in high-risk foods. Annual Review of Food Science & Technology, 6, 389-409.
Lougovois, V. P., & Kyrana, V. R. (2005). Freshness quality and spoilage of chill-stored fish. Food Policy, Control & Research, 1, 35-86.
Luong, J. H. T., Male, K. B., Masson, C., & Nguyen, A. L. (1992). Hypoxanthine ratio determination in fish extract using capillary electrophoresis and immobilized enzymes. Journal of Food Science, 57, 77-81.
Mandal, R., & Kant, R. (2017). High-pressure processing and its applications in the dairy industry. Food Science & Technology: An International Journal, 1, 33-45.
Maqsood, S., & Benjakul, S. (2011). Effect of bleeding on lipid oxidation and quality changes of Asian seabass (Lates calcarifer) muscle during iced storage. Food Chemistry, 124, 459-467.
Maria Poli, B. (2009). Farmed fish welfare-suffering assessment and impact on product quality. Italian Journal of Animal Science, 8, 139-160.
Marszałek, K., Woźniak, Ł., Skąpska, S., & Mitek, M. (2017). High pressure processing and thermal pasteurization of strawberry purée: Quality parameters and shelf life evaluation during cold storage. Journal of Food Science &Technology, 54, 832-841.
Mathew, G. (2009). Taxonomy, identification and biology of seabass (Lates calcarifer). Central Marine Fisheries Research Institute, Kochi, 38-43.
Matser, A. M., Stegeman, D., Kals, J., & Bartels, P. V. (2000). Effects of high pressure on colour and texture of fish. International Journal of High Pressure Research, 19, 109-115.
Medina-Meza, I. G., Barnaba, C., & Barbosa-Cánovas, G. V. (2014). Effects of high pressure processing on lipid oxidation: A review. Innovative Food Science & Emerging Technologies, 22, 1-10.
Mei, J., Ma, X., & Xie, J. (2019). Review on natural preservatives for extending fish shelf life. Foods, 8, 490.
de Melo, F. V. S. T., Eduardo Copatti, C., Melo, J. F. B., da Cruz Neto, M. A., Parisi, G., & Viegas, E. M. M. (2021). Effects of electronarcosis on frozen fillets quality of Cobia (Rachycentron canadum). Journal of Aquatic Food Product Technology, 30, 283-295.
Mendes, R., Quinta, R., & Nunes, M. L. (2001). Changes in baseline levels of nucleotides during ice storage of fish and crustaceans from the Portuguese coast. European Food Research and Technology, 212, 141-146.
Meral, R., Alav, A., Karakas, C., Dertli, E., Yilmaz, M. T., & Ceylan, Z. (2019). Effect of electrospun nisin and curcumin loaded nanomats on the microbial quality, hardness and sensory characteristics of rainbow trout fillet. LWT-Food Science & Technology, 113, 108292.
Mikš-Krajnik, M., Feng, L. X. J., Bang, W. S., & Yuk, H. G. (2017). Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control, 74, 54-60.
Minh, H. N. T., Durand, A., Loison, P., Perrier-Cornet, J. M., & Gervais, P. (2011). Effect of sporulation conditions on the resistance of Bacillus subtilis spores to heat and high pressure. Applied Microbiology & Biotechnology, 90, 1409-1417.
Mishima, T., Nonaka, T., Okamoto, A., Tsuchimoto, M., Ishiya, T., Tachibana, K., & Tsuchimoto, M. (2005). Influence of storage temperatures and killing procedures on post-mortem changes in the muscle of horse mackerel caught near Nagasaki Prefecture, Japan. Fisheries Science, 71, 187-194.
Misra, N. N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., Inácio, R. S., ... & Barba, F. J. (2017). Landmarks in the historical development of twenty first century food processing technologies. Food Research International, 97, 318-339.
Nardocci, G., Navarro, C., Cortés, P. P., Imarai, M., Montoya, M., Valenzuela, B., Jara, Pablo., Acuña-Castillo, C., & Fernández, R. (2014). Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish & Shellfish Immunology, 40, 531-538.
Nerantzaki, A., Tsiotsias, A., Paleologos, E. K., Savvaidis, I. N., Bezirtzoglou, E., & Kontominas, M. G. (2005). Effects of ozonation on microbiological, chemical and sensory attributes of vacuum-packaged rainbow trout stored at 4 ± 0.5℃. European Food Research and Technology, 221, 675-683.
Nikoo, M., Benjakul, S., & Xu, X. (2015). Antioxidant and cryoprotective effects of Amur sturgeon skin gelatin hydrolysate in unwashed fish mince. Food Chemistry, 181, 295-303.
Nishinari, K., Fang, Y., & Rosenthal, A. (2019). Human oral processing and texture profile analysis parameters: Bridging the gap between the sensory evaluation and the instrumental measurements. Journal of Texture Studies, 50, 369-380.
Olatunde, O. O., Benjakul, S., & Vongkamjan, K. (2019). Comparative study on nitrogen and argon-based modified atmosphere packaging on microbiological, chemical, and sensory attributes as well as on microbial diversity of Asian sea bass. Food Packaging and Shelf Life, 22, 100404.
Olatunde, O. O., Benjakul, S., & Vongkamjan, K. (2020). Shelf-life of refrigerated Asian sea bass slices treated with cold plasma as affected by gas composition in packaging. International Journal of Food Microbiology, 324, 108612.
Papadopoulos, V., Chouliara, I., Badeka, A., Savvaidis, I. N., & Kontominas, M. G. (2003). Effect of gutting on microbiological, chemical, and sensory properties of aquacultured sea bass (Dicentrarchus labrax) stored in ice. Food microbiology, 20, 411-420.
Pazos, M., Méndez, L., Fidalgo, L., Vázquez, M., Antonio Torres, J., Aubourg, S. P., & Saraiva, J. A. (2015). Effect of high-pressure processing of Atlantic mackerel (Scomber scombrus) on biochemical changes during commercial frozen storage. Food and Bioprocess Technology, 8, 2159-2170.
Peña-Ramos, E. A., & Xiong, Y. L. (2003). Whey and soy protein hydrolysates inhibit lipid oxidation in cooked pork patties. Meat Science, 64, 259-263.
Pilavtepe‐Çelik, M. U. T. L. U., Balaban, M. O., Alpas, H. A. M. İ., & Yousef, A. E. (2008). Image analysis based quantification of bacterial volume change with high hydrostatic pressure. Journal of Food Science, 73, M423-M429.
Pita-Calvo, C., Guerra-Rodríguez, E., Saraiva, J. A., Aubourg, S. P., & Vázquez, M. (2018). Effect of high-pressure processing pretreatment on the physical properties and colour assessment of frozen European hake (Merluccius merluccius) during long term storage. Food Research International, 112, 233-240.
Podolak, R., Whitman, D., & Black, D. G. (2020). Factors affecting microbial inactivation during high pressure processing in juices and beverages: A review. Journal of Food Protection, 83, 1561-1575.
Poli, B. M., Parisi, G., Scappini, F., & Zampacavallo, G. (2005). Fish welfare and quality as affected by pre-slaughter and slaughter management. Aquaculture International, 13, 29-49.
Portz, D. E., Woodley, C. M., & Cech, J. J. (2006). Stress-associated impacts of short-term holding on fishes. Reviews in Fish Biology & Fisheries, 16, 125-170.
Ramaswamy, H. S., Zaman, S. U., & Smith, J. P. (2008). High pressure destruction kinetics of Escherichia coli (O157: H7) and Listeria monocytogenes (Scott A) in a fish slurry. Journal of Food Engineering, 87, 99-106.
Ramirez-Suarez, J. C., & Morrissey, M. T. (2006). Effect of high pressure processing (HPP) on shelf life of albacore tuna (Thunnus alalunga) minced muscle. Innovative Food Science & Emerging Technologies, 7, 19-27.
Rasco, B., Down, K., & Ovissipour, M. (2015). Humane harvesting initiative: The influence of harvest and post-harvest handling practices on fish welfare and product quality. Journal of Aquaculture Research & Development, 6, 1.
Rastogi, N. K., Raghavarao, K. S. M. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science & Nutrition, 47, 69-112.
Rastogi, N. K., Subramanian, R., & Raghava Rao, K. S. M. S. (1994). Application of high pressure technology in food industry. Indian Food Industry, 13, 30-30.
Rendueles, E., Omer, M. K., Alvseike, O., Alonso-Calleja, C., Capita, R., Prieto, M. (2011). Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT-Food Science & Technology, 44, 1251-1260.
Richards, M. P., & Hultin, H. O. (2002). Contributions of blood and blood components to lipid oxidation in fish muscle. Journal of Agricultural & Food Chemistry, 50, 555-564.
Richards, M. P., Modra, A. M., & Li, R. (2002). Role of deoxyhemoglobin in lipid oxidation of washed cod muscle mediated by trout, poultry and beef hemoglobins. Meat Science, 62, 157-163.
Robb, D. H. F., & Kestin, S. C. (2002). Methods used to kill fish: Field observations and literature reviewed. Animal Welfare, 11, 269-282.
Robb, D. H. F., Wotton, S. B., McKinstry, J. L., Sørensen, N. K., Kestin, S. C., & Sørensen, N. K. (2000). Commercial slaughter methods used on Atlantic salmon: Determination of the onset of brain failure by electroencephalography. Veterinary Record, 147, 298-303.
Rode, T. M., & Hovda, M. B. (2016). High pressure processing extend the shelf life of fresh salmon, cod and mackerel. Food Control, 70, 242-248.
Roth, B., Slinde, E., & Robb, D. H. (2006). Field evaluation of live chilling with CO2 on stunning Atlantic salmon (Salmo salar) and the subsequent effect on quality. Aquaculture research, 37, 799-804.
Sahin, S., & Sumnu, S. G. (2006). Physical properties of foods. Springer Science & Business Media.
Saito, T. Ari, K., and Matsuyoshi, M. (1959). A New Method for Estimating the Freshness of Fish. Japanese Society of Fisheries Society, 24, 749-750.
Salman, J., Vannier, P., & Wierup, M. (2009). Species-specific welfare aspects of the main systems of stunning and killing of farmed tuna. Scientific opinion of the panel on animal health and welfare. ESFA Journal, 7, 1-53.
Sánchez-Muros, M. J., Villacreces, S., Miranda-de la Lama, G., de Haro, C., & García-Barroso, F. (2013). Effects of chemical and handling exposure on fatty acids, oxidative stress and morphological welfare indicators in gilt-head sea bream (Sparus aurata). Fish Physiology & Biochemistry, 39, 581-591.
Schreck, C. B., & Tort, L. (2016). The concept of stress in fish. Fish Physiology (Vol. 35, pp. 1-34). Academic Press.
Sehrawat, R., Kaur, B. P., Nema, P. K., Tewari, S., & Kumar, L. (2020). Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible. Food Science & Biotechnology, 1-17.
Sequeira-Munoz, A., Chevalier, D., LeBail, A., Ramaswamy, H. S., & Simpson, B. K. (2006). Physicochemical changes induced in carp (Cyprinus carpio) fillets by high pressure processing at low temperature. Innovative Food Science & Emerging Technologies, 7, 13-18.
Shigematsu, T., Murakami, M., Nakajima, K., Uno, Y., Sakano, A., Narahara, Y., ... & Fujii, T. (2010). Bioconversion of glutamic acid to γ-aminobutyric acid (GABA) in brown rice grains induced by high pressure treatment. Japan Journal of Food Engineering, 11, 189-199.
Smelt, J. P. P. M. (1998). Recent advances in the microbiology of high pressure processing. Trends in Food Science & Technology, 9, 152-158.
Sterniša, M., Dvořak, P., Lunda, R., Linhartova, Z., Možina, S. S., & Mraz, J. (2018). Bleeding of common carp (Cyprinus carpio) improves sensory quality of fillets and slows oxidative and microbiological changes during refrigerated aerobic storage. Food Technology and Biotechnology, 56, 524-532.
Stokes, J. C. (1963). Recent progorcess in microbiology. N. E. Giblons(ed). Univ. Toronto Press. Toronto, pp. 187-192.
Suemitsu, L., & Cristianini, M. (2019). Effects of high pressure processing (HPP) on quality attributes of tilapia (Oreochromis niloticus) fillets during refrigerated storage. LWT-Food Science & Technology, 101, 92-99.
Sun, Y., Ma, L., Ma, M., Zheng, H., Zhang, X., Cai, L., Li, J., & Zhang, Y. (2018). Texture characteristics of chilled prepared mandarin fish (Siniperca chuatsi) during storage. International Journal of Food Properties, 21, 242-254.
Tabilo-Munizaga, G., Aubourg, S., & Pérez-Won, M. (2016). Pressure effects on seafoods. High Pressure Processing of Food, (pp. 625-669). Springer.
Teixeira, B., Fidalgo, L., Mendes, R., Costa, G., Cordeiro, C., Marques, A., Saraiva, J. A., & Nunes, M. L. (2014a). Effect of high pressure processing in the quality of sea bass (Dicentrarchus labrax) fillets: Pressurization rate, pressure level and holding time. Innovative Food Science & Emerging Technologies, 22, 31-39.
Teixeira, B., Marques, A., Mendes, R., Gonçalves, A., Fidalgo, L., Oliveira, M., Saraiva J. A., & Nunes, M. L. (2014b). Effects of high-pressure processing on the quality of sea bass (Dicentrarchus labrax) fillets during refrigerated storage. Food and Bioprocess Technology, 7, 1333-1343.
Thakur, B. R., & Nelson, P. E. (1998). High‐pressure processing and preservation of food. Food Reviews International, 14, 427-447.
Tompkin, R. B. (2002). Microbiological testing in food safety management (Vol. 7). Springer Science & Business Media.
Truong, B. Q., Buckow, R., Nguyen, M. H., & Stathopoulos, C. E. (2016). High pressure processing of barramundi (Lates calcarifer) muscle before freezing: The effects on selected physicochemical properties during frozen storage. Journal of Food Engineering, 169, 72-78.
Tsai, Y. H., Kung, H. F., Lin, C. S., Hsieh, C. Y., Ou, T. Y., Chang, T. H., & Lee, Y. C. (2022). Impacts of high-pressure processing on quality and shelf-life of yellowfin tuna (Thunnus albacares) stored at 4°C and 15°C. International Journal of Food Properties, 25, 237-251.
Saito,T., Arai, K. I., & Matsuypshi, M. (1959). A new method for estimating the freshness of fish. Bulletin of the Japanese Society of Scientific Fisheries, 24, 749.
Voigt, D. D., Kelly, A. L., & Huppertz, T. (2015). High-pressure processing of milk and dairy products. Emerging Dairy Processing Technologies: Opportunities for the Dairy Industry, 1, 71-92.
Wang, R., Hu, X., Agyekumwaa, A. K., Li, X., Xiao, X., & Yu, Y. (2021). Synergistic effect of kojic acid and tea polyphenols on bacterial inhibition and quality maintenance of refrigerated sea bass (Lateolabrax japonicus) fillets. LWT-Food Science & Technology, 137, 110452.
Wendelaar Bonga, S. E. (1997). The stress response in fish. Physiological Reviews, 77, 591-625.
Wilkinson, R. J., Paton, N., & Porter, M. J. (2008). The effects of pre-harvest stress and harvest method on the stress response, rigor onset, muscle pH and drip loss in barramundi (Lates calcarifer). Aquaculture, 282, 26-32.
Xuan, X. T., Cui, Y., Lin, X. D., Yu, J. F., Liao, X. J., Ling, J. G., & Shang, H. T. (2018). Impact of high hydrostatic pressure on the shelling efficacy, physicochemical properties, and microstructure of fresh razor clam (Sinonovacula constricta). Journal of Food Science, 83, 284-293.
Yagiz, Y., Kristinsson, H. G., Balaban, M. O., & Marshall, M. R. (2007). Effect of high pressure treatment on the quality of rainbow trout (Oncorhynchus mykiss) and mahi mahi (Coryphaena hippurus). Journal of Food Science, 72, 509-515.
Ye, M., Huang, Y., Gurtler, J. B., Niemira, B. A., Sites, J. E., & Chen, H. (2013). Effects of pre-or post-processing storage conditions on high-hydrostatic pressure inactivation of Vibrio parahaemolyticus and V. vulnificus in oysters. International Journal of Food Microbiology, 163, 146-152.
Yokoyama, Y., Sakaguchi, M., Kawai, F., & Kanamori, M. (1994). Chemical indices for assessing freshness of shellfish during storage. Fisheries Science, 60, 329-333.
Yordanov, D. G., & Angelova, G. V. (2010). High pressure processing for foods preserving. Biotechnology & Biotechnological Equipment, 24, 1940-1945.
Zemser, R. (2015). A clean label challenge for product developers. Food Processing.
Zhang, L., Li, Q., Lyu, J., Kong, C., Song, S., & Luo, Y. (2017). The impact of stunning methods on stress conditions and quality of silver carp (Hypophthalmichthys molitrix) fillets stored at 4℃ during 72 h postmortem. Food Chemistry, 216, 130-137.
Zhang, Y., Wei, J., Yuan, Y., & Yue, T. (2019). Diversity and characterization of spoilage-associated psychrotrophs in food in cold chain. International Journal of Food Microbiology, 290, 86-95.
Zhang, Z., Yang, Y., Tang, X., Chen, Y., & You, Y. (2015). Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chemistry, 188, 111-118.
Zhao, Y. M., de Alba, M., Sun, D. W., & Tiwari, B. (2019). Principles and recent applications of novel non-thermal processing technologies for the fish industry—A review. Critical Reviews in Food Science & Nutrition, 59, 728-742.
(此全文限內部瀏覽)
電子全文
全文檔開放日期:不公開
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *