字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:石湘婕
研究生英文姓名:Shih, Siang-Jie
中文論文名稱:幾丁聚醣對 Alicyclobacillus acidoterrestris 之抗菌活性及於柳橙汁保存之研究
英文論文名稱:Antibacterial activity of chitosan against Alicyclobacillus acidoterrestris and its preservation in orange juice
指導教授姓名:蔡國珍
口試委員中文姓名:教授︰蘇南維
教授︰蔡國珍
教授︰鄭光成
教授︰方翠筠
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932061
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:74
中文關鍵詞:Alicyclobacillus acidoterrestris幾丁聚醣有機酸抗菌活性癒創木酚
英文關鍵字:Alicyclobacillus acidoterrestrisChitosanOrganic acidAntibacterial activityGuaiacol
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
摘要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VI
附錄目錄 VIII
壹、前言 1
貳、文獻整理 3
一、Alicyclobacillus acidoterrestris 3
1. 菌種特性 3
2. 對食品之影響 3
二、Alicyclobacillus acidoterrestris 之抑制方法 7
1. 物理處理 7
2. 化學處理 9
3. 天然化合物 11
三、幾丁聚醣 12
1. 簡介 12
2. 抗菌活性 13
3. 抗菌機制 16
四、有機酸 17
1. 簡介 17
2. 抗菌活性 17
3. 抗菌機制 18
4. 常見之有機酸 19
參、實驗設計 21
肆、實驗材料與方法 22
一、實驗材料 22
1. 材料 22
2. 實驗菌株 22
3. 培養基 22
4. 化學藥品 23
二、儀器設備 23
三、實驗方法 25
1. 菌種保存與活化 25
2. 環境因子對 A. acidoterrestris 生長之影響 25
3. 不同分子量幾丁聚醣對 A. acidoterrestris 生長之影響 26
4. 有機酸對 A. acidoterrestris 生長之影響 27
5. 幾丁聚醣與有機酸共同作用對 A. acidoterrestris 生長之影響 27
6. 柳橙汁抗菌試驗 28
7. 柳橙汁儲存試驗 28
8. 分析方法 28
伍、結果與討論 31
陸、結論 41
柒、參考文獻 42
捌、圖表 54
玖、附錄 71



王怡文。2021。幾丁聚醣與乳酸鏈球菌素製成聚乳酸複合薄膜之抗菌穩定性及其水產品保鮮之應用。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
邱源章。2007。細菌素對 Alicyclobacillus acidoterrestris 在葡萄汁中生長之影響。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
陳映如。2020。幾丁聚醣與乳酸鏈球菌素抗菌活性及其與聚乳酸製備之薄膜於石斑魚保鮮之應用。國立臺灣海洋大學食品科學系碩士學位論文。基隆,臺灣。
Ali, H. K. Q., & Zulkali, M. M. D. (2011). Utilization of agro-residual ligno-cellulosic substances by using solid state fermentation: A review. Hrvatski časopis za prehrambenu tehnologiju, biotehnologiju i nutricionizam, 6(1-2), 5-12.
Alighourchi, H., Barzegar, M., & Abbasi, S. (2008). Effect of gamma irradiation on the stability of anthocyanins and shelf-life of various pomegranate juices. Food Chemistry, 110(4), 1036-1040.
Andres, Y. A., Giraud, L., Gerente, C., & Le Cloirec, P. (2007). Antibacterial effects of chitosan powder: Mechanisms of action. Environmental Technology, 28(12), 1357-1363.
Anjos, M. M. D., Ruiz, S. P., Nakamura, C. V., & de Abreu Filho, B. A. (2013). Resistance of Alicyclobacillus acidoterrestris spores and biofilm to industrial sanitizers. Journal of Food Protection, 76(8), 1408-1413.
Bahçeci, K. S., Gökmen, V., Serpen, A., & Acar, J. (2003). The effects of different technologies on Alicyclobacillus acidoterrestris during apple juice production. European Food Research and Technology, 217(3), 249-252.
Barbosa, A. A. T., de Araújo, H. G. S., Matos, P. N., Carnelossi, M. A. G., & de Castro, A. A. (2013). Effects of nisin-incorporated films on the microbiological and physicochemical quality of minimally processed mangoes. International Journal of Food Microbiology, 164(2-3), 135-140.
Barbosa-Cánovas, G. V., & Juliano, P. (2008). Food sterilization by combining high pressure and thermal energy. In Food Engineering: Integrated Approaches (pp. 9-46). Springer, New York, NY.
Bayan, M. A. G. (2013). Effects of ascorbic acid, citric acid, lactic acid, NaCl, potassium sorbate and Thymus vulgaris extract on Staphylococcus aureus and Escherichia coli. African Journal of Microbiology Research, 7(1), 7-12.
Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2008). Inhibition of Alicyclobacillus acidoterrestris spores by natural compounds. International Journal of Food Science & Technology, 43(7), 1271-1275.
Bevilacqua, A., Sinigaglia, M., & Corbo, M. R. (2009). Effects of pH, cinnamaldehyde and heat‐treatment time on spore viability of Alicyclobacillus acidoterrestris. International Journal of Food Science & Technology, 44(2), 380-385.
Bintsis, T., Litopoulou-Tzanetaki, E., & Robinson, R. K. (2000). Existing and potential applications of ultraviolet light in the food industry-a critical review. Journal of the Science of Food and Agriculture, 80(6), 637-645.
Bizri, J. N., & Wahem, I. A. (1994). Citric acid and antimicrobials affect microbiological stability and quality of tomato juice. Journal of Food Science, 59(1), 130-135.
Borlinghaus, A. (1997). Alicyclobacillus incidence in commercial apple juice concentrate (AJC) supplies-method development and validation. Fruit Processing, 7, 262-266.
Bukzem, A. L., Signini, R., dos Santos, D. M., Lião, L. M., Ascheri, & D. P. R. (2016). Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. International Journal of Biological Macromolecules, 85, 615-624.
Cai, R., Yuan, Y., Wang, Z., Guo, C., Liu, B., & Yue, T. (2015a). Reduction of Alicyclobacillus acidoterrestris spores on apples by chlorine dioxide in combination with ultrasound or shaker. Food and Bioprocess Technology, 8(12), 2409-2417.
Cai, R., Yuan, Y., Wang, Z., Guo, C., Liu, B., Pan, C., Liu, L., & Yue, T. (2015b). Effects of preservatives on Alicyclobacillus acidoterrestris growth and guaiacol production. International Journal of Food Microbiology, 214, 145-150.
Caminiti, I. M., Palgan, I., Muñoz, A., Noci, F., Whyte, P., Morgan, D. J., Cronin, D. A., & Lyng, J. G. (2012). The effect of ultraviolet light on microbial inactivation and quality attributes of apple juice. Food and Bioprocess Technology, 5(2), 680-686.
Campus, M. (2010). High pressure processing of meat, meat products and seafood. Food Engineering Reviews, 2(4), 256-273.
Cerny, G., Hennlich, W., & Poralla, K. (1984). Spoilage of fruit juice by bacilli: Isolation and characterization of the spoiling microorganisms. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung, 179(3), 224-227.
Chang, S. H., Lin, H. T. V., Wu, G. J., & Tsai, G. J. (2015). pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydrate Polymers, 134, 74-81.
Chang, S. S., & Kang, D. H. (2004). Alicyclobacillus spp. in the fruit juice industry: History, characteristics, and current isolation/detection procedures. Critical Reviews in Microbiology, 30(2), 55-74.
Chen, D. (2012). Applications of ultrasound in water and wastewater treatment. In Handbook on application of ultrasound: Sonochemistry for sustainability. eds., 373-406. Boca Raton: CRC Press.
Chen, Y. L., & Chou, C. C. (2005). Factors affecting the susceptibility of Staphylococcus aureus CCRC 12657 to water soluble lactose chitosan derivative. Food Microbiology, 22(1), 29-35.
Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International journal of Food Microbiology, 71(1), 1-20.
Coma, V., Martial‐Gros, A., Garreau, S., Copinet, A., Salin, F., & Deschamps, A. (2002). Edible antimicrobial films based on chitosan matrix. Journal of Food Science, 67(3), 1162-1169.
Danyluk, M. D., Friedrich, L. M., Jouquand, C., Goodrich-Schneider, R., Parish, M. E., & Rouseff, R. (2011). Prevalence, concentration, spoilage, and mitigation of Alicyclobacillus spp. in tropical and subtropical fruit juice concentrates. Food Microbiology, 28(3), 472-477.
Deinhard, G., Blanz, P., Poralla, K., & Altan, E. (1987). Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Systematic and Applied Microbiology, 10(1), 47-53.
Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: Antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21(6), 703-714.
Duong, H. A., & Jensen, N. (2000). Spoilage of iced tea by Alicyclobacillus.
Eiroa, M. N. U., Junqueira, V. C. A., & Schmidt, F. L. (1999). Alicyclobacillus in orange juice: Occurrence and heat resistance of spores. Journal of Food Protection, 62(8), 883-886.
El-Tahlawy, K. F., El-Bendary, M. A., Elhendawy, A. G., & Hudson, S. M. (2005). The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydrate Polymers, 60(4), 421-430.
Fan, Q., Liu, C., Gao, Z., Hu, Z., Wang, Z., Xiao, J., Yuan, Y., & Yue, T. (2021). Inactivation effect of thymoquinone on Alicyclobacillus acidoterrestris vegetative cells, spores, and biofilms. Frontiers in Microbiology, 12, 1188.
Flodin, C., & Whitfield, F. B. (1999). 4-Hydroxybenzoic acid: A likely precursor of 2, 4, 6-tribromophenol in Ulva lactuca. Phytochemistry, 51(2), 249-255.
Foley, D. M., Pickett, K., Varon, J., Lee, J., Mln, D. B., Caporaso, R., & Prakash, A. (2002). Pasteurization of fresh orange juice using gamma irradiation: Microbiological, flavor, and sensory analyses. Journal of Food Science, 67(4), 1495-1501.
Goy, R. C., Britto, D. D., & Assis, O. B. (2009). A review of the antimicrobial activity of chitosan. Polímeros, 19, 241-247.
Groenewald, W. H., Gouws, P. A., & Witthuhn, R. C. (2013). Thermal inactivation of Alicyclobacillus acidoterrestris spores isolated from a fruit processing plant and grape juice concentrate in South Africa. African Journal of Microbiology Research, 7(22), 2736-2740.
Hippchen, B., Röll, A., & Poralla, K. (1981). Occurrence in soil of thermo-acidophilic bacilli possessing ω-cyclohexane fatty acids and hopanoids. Archives of Microbiology, 129(1), 53-55.
Hoppe-Seyler, F. (1894). Ueber chitin und cellulose. Ber Dtsch Chem Ges 27: 3329-3331.
Hosseinnejad, M., & Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules, 85, 467-475.
Hsiao, C. P., & Siebert, K. J. (1999). Modeling the inhibitory effects of organic acids on bacteria. International Journal of Food Microbiology, 47(3), 189-201.
Hu, C. H., Ren, L. Q., Zhou, Y., & Ye, B. C. (2019). Characterization of antimicrobial activity of three Lactobacillus plantarum strains isolated from Chinese traditional dairy food. Food Science & Nutrition, 7(6), 1997-2005.
Huang, Z., Dostal, L., & Rosazza, J. P. (1993). Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. Journal of Biological Chemistry, 268(32), 23954-23958.
Huertas, J. P., Esteban, M. D., Antolinos, V., & Palop, A. (2014). Combined effect of natural antimicrobials and thermal treatments on Alicyclobacillus acidoterrestris spores. Food Control, 35(1), 73-78.
Jensen, N. (1999). Alicyclobacillus: A new challenge for the food industry. Food Australia, 51(1-2), 33-36.
Jensen, N. (2000). Alicyclobacillus in Australia [Paper based on a presentation at the 10th World Congress of Food Science and Technology (1999: Sydney)]. Food Australia, 52(7), 282-285.
Jensen, N., & Whitfield, F. B. (2003). Role of Alicyclobacillus acidoterrestris in the development of a disinfectant taint in shelf‐stable fruit juice. Letters in Applied Microbiology, 36(1), 9-14.
Jeon, Y. J., Park, P. J., & Kim, S. K. (2001). Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydrate Polymers, 44(1), 71-76.
Jeon, Y. J., Shahidi, F., & Kim, S. K. (2000). Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Reviews International, 16(2), 159-176.
Jin, T., & Zhang, H. (2008). Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging. Journal of Food Science, 73(3), M127-M134.
Kannenberg, E., Blume, A., & Poralla, K. (1984). Properties of ω-cyclohexane fatty acids in membranes. FEBS Letters, 172(2), 331-334.
Keyser, M., Műller, I. A., Cilliers, F. P., Nel, W., & Gouws, P. A. (2008). Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science & Emerging Technologies, 9(3), 348-354.
Khan, I., Khan, M., Umar, M. N., & Oh, D. H. (2015). Nanobiotechnology and its applications in drug delivery system: A review. The Institution of Engineering and Technology Nanobiotechnology, 9(6), 396-400.
Knorr, D. (1986). Nutritional quality, food processing, and biotechnology aspects of chitin and chitosan: A review. Process Biochemistry, 21(3), 90-92.
Komitopoulou, E., Boziaris, I. S., Davies, E. A., Delves-Broughton, J., & Adams, M. R. (1999). Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. International Journal of Food Science & Technology, 34(1), 81-85.
Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbiology, 144(1), 51-63.
Lado, B. H., & Yousef, A. E. (2002). Alternative food-preservation technologies: Efficacy and mechanisms. Microbes and Infection, 4(4), 433-440.
Langworthy, T. A. (1978). Microbial life in extreme pH values. Microbial life in extreme environments, 279-315.
Lee, S. Y., Park, S. H., & Kang, D. H. (2014). Inactivation of Alicyclobacillus acidoterrestris spores in apple and orange juice concentrates by gamma irradiation. Journal of Food Protection, 77(2), 339-344.
Li, Z., Yang, F., & Yang, R. (2015). Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups. International Journal of Biological Macromolecules, 75, 378-387.
Liu, H., Du, Y., Wang, X., & Sun, L. (2004). Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 95(2), 147-155.
Mahapatra, A. K., Muthukumarappan, K., & Julson, J. L. (2005). Applications of ozone, bacteriocins and irradiation in food processing: A review. Critical Reviews in Food Science and Nutrition, 45(6), 447-461.
Maldonado, M. C., Aban, M. P., & Navarro, A. R. (2013). Chemicals and lemon essential oil effect on Alicyclobacillus acidoterrestris viability. Brazilian Journal of Microbiology, 44, 1133-1137.
Mani-López, E., García, H. S., & López-Malo, A. (2012). Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 45(2), 713-721.
Martín-Diana, A. B., Rico, D., Barat, J. M., & Barry-Ryan, C. (2009). Orange juices enriched with chitosan: Optimisation for extending the shelf-life. Innovative Food Science and Emerging Technologies, 10(4), 590-600.
Mathew, S., Abraham, T. E., & Sudheesh, S. (2007). Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii. Journal of Molecular Catalysis B: Enzymatic, 44(2), 48-52.
McIntyre, S., Ikawa, J. Y., Parkinson, N., Haglund, J., & Lee, J. (1995). Characteristics of an acidophilic Bacillus strain isolated from shelf-stable juices. Journal of Food Protection, 58(3), 319-321.
Merle, J., & Montville, T. J. (2014). Alicyclobacillus acidoterrestris: The organism, the challenge, potential interventions. Journal of Food Processing and Preservation, 38(1), 153-158.
Mújica-Paz, H., Valdez-Fragoso, A., Samson, C. T., Welti-Chanes, J., & Torres, J. A. (2011). High-pressure processing technologies for the pasteurization and sterilization of foods. Food and Bioprocess Technology, 4(6), 969-985.
Nawani, N. N., & Kapadnis, B. P. (2005). Optimization of chitinase production using statistics based experimental designs. Process Biochemistry, 40(2), 651-660.
Neidleman, S. L., & Geigert, J. (1986). The halogenating enzymes (haloperoxidases) sources and reactions. Biohalogenation: Principles, Basic Roles, and Applications. Horwood, Chichester, 46-84.
No, H. K., Kim, S. H., Lee, S. H., Park, N. Y., & Prinyawiwatkul, W. (2006). Stability and antibacterial activity of chitosan solutions affected by storage temperature and time. Carbohydrate Polymers, 65(2), 174-178.
No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74(1-2), 65-72.
Okuyama, K., Noguchi, K., Kanenari, M., Egawa, T., Osawa, K., & Ogawa, K. (2000). Structural diversity of chitosan and its complexes. Carbohydrate Polymers, 41(3), 237-247.
Orlowski, M. (1991). Mucor dimorphism. Microbiological Reviews, 55(2), 234-258.
Orr, R. V., Shewfelt, R. L., Huang, C. J., Tefera, S., & Beuchat, L. R. (2000). Detection of guaiacol produced by Alicyclobacillus acidoterrestris in apple juice by sensory and chromatographic analyses, and comparison with spore and vegetative cell populations. Journal of Food Protection, 63(11), 1517-1522.
Osopale, B. A., Witthuhn, C. R., Albertyn, J., & Oguntoyinbo, F. A. (2017). Inhibitory spectrum of diverse guaiacol-producing Alicyclobacillus acidoterrestris by poly dimethyl ammonium chloride disinfectant. LWT-Food Science and Technology, 84, 241-247.
Oteiza, J. M., Soto, S., Alvarenga, V. O., Sant'Ana, A. S., & Giannuzzi, L. (2014). Flavorings as new sources of contamination by deteriogenic Alicyclobacillus of fruit juices and beverages. International Journal of Food Microbiology, 172, 119-124.
Over, K. F., Hettiarachchy, N., Johnson, M. G., & Davis, B. (2009). Effect of organic acids and plant extracts on Escherichia coli O157: H7, Listeria monocytogenes, and Salmonella Typhimurium in broth culture model and chicken meat systems. Journal of Food Science, 74(9), M515-M521.
Peleg, H., Naim, M., Zehavi, U., Rouseff, R. L., & Nagy, S. (1992). Pathways of 4-vinylguaiacol formation from ferulic acid in model solutions of orange juice. Journal of Agricultural and Food Chemistry, 40(5), 764-767.
Pena, W. E. L., De Massaguer, P. R., Zuniga, A. D. G., & Saraiva, S. H. (2011). Modeling the growth limit of Alicyclobacillus acidoterrestris CRA7152 in apple juice: effect of pH, oBrix, temperature and nisin concentration. Journal of Food Processing and Preservation, 35(4), 509-517.
Pettipher, G. L., & Osmundson, M. E. (2000). Methods for the detection, enumeration and identification of Alicyclobacillus acidoterrestris: Alicyclobacillus in the food industry. Food Australia, 52(7), 293-294.
Pettipher, G. L., Osmundson, M. E., & Murphy, J. M. (1997). Methods for the detection and enumeration of Alicyclobacillus acidoterrestris and investigation of growth and production of taint in fruit juice and fruit juice-containing drinks. Letters in Applied Microbiology, 24(3), 185-189.
Pontius, A. J., Rushing, J. E., & Foegeding, P. M. (1998). Heat resistance of Alicyclobacillus acidoterrestris spores as affected by various pH values and organic acids. Journal of Food Protection, 61(1), 41-46.
Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J., & Du, Y. (2006). Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, 63(3), 367-374.
Raafat, D., Von Bargen, K., Haas, A., & Sahl, H. G. (2008). Insights into the mode of action of chitosan as an antibacterial compound. Applied and Environmental Microbiology, 74(12), 3764-3773.
Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4(6), 1457-1465.
Rastogi, N. K., Raghavarao, K. S. M. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition, 47(1), 69-112.
Raybaudi-Massilia, R. M., Mosqueda-Melgar, J., & Martín-Belloso, O. (2009). Antimicrobial activity of malic acid against Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli O157: H7 in apple, pear and melon juices. Food Control, 20(2), 105-112.
Raybaudi‐Massilia, R. M., Mosqueda‐Melgar, J., Soliva‐Fortuny, R., & Martín‐Belloso, O. (2009). Control of pathogenic and spoilage microorganisms in fresh‐cut fruits and fruit juices by traditional and alternative natural antimicrobials. Comprehensive Reviews in Food Science and Food Safety, 8(3), 157-180.
Reddy, M. B., Belkacemi, K., Corcuff, R., Castaigne, F., & Arul, J. (2000). Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biology and Technology, 20(1), 39-51.
Ribeiro, A. M., Paiva, A. D., Cruz, A. M., Vanetti, M. C., Ferreira, S. O., & Mantovani, H. C. (2022). Bovicin HC5 and nisin reduce cell viability and the thermal resistance of Alicyclobacillus acidoterrestris endospores in fruit juices. Journal of the Science of Food and Agriculture, 102, 3994-4002
Ribeiro, L. R., & Cristianini, M. (2020). Effect of high pressure processing combined with temperature on the inactivation and germination of Alicyclobacillus acidoterrestris spores: Influence of heat-shock on the counting of survivors. LWT- Food Science and Technology, 118, 108781.
Rouget, C. (1859). Des substances amylacées dans les tissus des animaux, spécialement des Articulés (chitine). Comp. Rend, 48, 792-795.
Rusmana, I., Suwanto, A., & Mubarik, N. R. (2020). Organic acid produced by lactic acid bacteria from bekasam as food biopreservatives. In IOP Conference Series: Earth and Environmental Science (Vol. 414, No. 1, p. 012003). IOP Publishing.
Sekiguchi, S., Miura, Y., Kaneko, H., Nishimura, S. I., Nishi, N., Iwase, M., & Tokura, S. (1994). Molecular weight dependency of antimicrobial activity by chitosan oligomers. In Food Hydrocolloids (pp. 71-76). Springer, Boston, MA.
Severino, R., Ferrari, G., Vu, K. D., Donsì, F., Salmieri, S., & Lacroix, M. (2015). Antimicrobial effects of modified chitosan based coating containing nanoemulsion of essential oils, modified atmosphere packaging and gamma irradiation against Escherichia coli O157: H7 and Salmonella Typhimurium on green beans. Food Control, 50, 215-222.
Silva, F. M., Gibbs, P., Vieira, M. C., & Silva, C. L. (1999). Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes. International Journal of Food Microbiology, 51(2-3), 95-103.
Silva, F. V. (2016). High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control, 62, 365-372.
Silva, F. V. M., Gibbs, P. A., Nunez, H., Almonacid, S., & Simpson, R. (2014). Encyclopedia of food microbiology. In Thermal Processes: Pasteurization (pp. 577-595). Elsevier Netherlands.
Silva, F. V., & Gibbs, P. (2001). Alicyclobacillus acidoterrestris spores in fruit products and design of pasteurization processes. Trends in Food Science & Technology, 12(2), 68-74.
Silva, F. V., & Gibbs, P. (2004). Target selection in designing pasteurization processes for shelf-stable high-acid fruit products. Critical Reviews in Food Science and Nutrition, 44(5), 353-360.
Sivakumar, D., Bill, M., Korsten, L., & Thompson, K. (2016). Integrated application of chitosan coating with different postharvest treatments in the control of postharvest decay and maintenance of overall fruit quality. In Chitosan in the Preservation of Agricultural Commodities (pp. 127-153). Academic Press.
Smit, Y., Cameron, M., Venter, P., & Witthuhn, R. C. (2011). Alicyclobacillus spoilage and isolation-A review. Food Microbiology, 28(3), 331-349.
Sokolowska, B., Niezgoda, J., & Chotkiewicz, M. (2013). Opportunities to germinate and grow of Alicyclobacillus acidoterrestris spores in the presence of organic acids. Focusing on Modern Food Industry, 2, 10-16.
Song, H. P., Kim, D. H., Jo, C., Lee, C. H., Kim, K. S., & Byun, M. W. (2006). Effect of gamma irradiation on the microbiological quality and antioxidant activity of fresh vegetable juice. Food Microbiology, 23(4), 372-378.
Sorrells, K. M., Enigl, D. C., & Hatfield, J. R. (1989). Effect of pH, acidulant, time, and temperature on the growth and survival of Listeria monocytogenes. Journal of Food Protection, 52(8), 571-573.
Splittstoesser, D. F., Churey, D. F., & Lee, J. J. CY (1994) Growth characteristics of aciduric sporeforming Bacilli isolated from fruit juices. Journal of Food Protection, 57(12), 1080.
Springett, M. B. (1996). Formation of off-flavours due to microbiological and enzymic action. In Food Taints and Off-Flavours (pp. 274-289). Springer, Boston, MA.
Steyn, C. E., Cameron, M., & Witthuhn, R. C. (2011). Occurrence of Alicyclobacillus in the fruit processing environment-a review. International Journal of Food Microbiology, 147(1), 1-11.
Tajkarimi, M. M., Ibrahim, S. A., & Cliver, D. O. (2010). Antimicrobial herb and spice compounds in food. Food Control, 21(9), 1199-1218.
Takahashi, T., Kokubo, R., & Sakaino, M. (2004). Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculata. Letters in Applied Microbiology, 39(1), 60-64.
Tao, Y., Sun, D. W., Hogan, E., & Kelly, A. L. (2014). High-pressure processing of foods: An overview. Emerging Technologies for Food Processing, 3-24.
Tianli, Y., Jiangbo, Z., & Yahong, Y. (2014). Spoilage by Alicyclobacillus bacteria in juice and beverage products: Chemical, physical, and combined control methods. Comprehensive Reviews in Food Science and Food Safety, 13(5), 771-797.
Tokura, S., Tamura, H., & Azuma, I. (1999). Immunological aspects of chitin and chitin derivatives administered to animals. Exs, 87, 279-292.
Torlak, E. (2014). Efficacy of ozone against Alicyclobacillus acidoterrestris spores in apple juice. International Journal of Food Microbiology, 172, 1-4.
Tremarin, A., Brandão, T. R., & Silva, C. L. (2017). Inactivation kinetics of Alicyclobacillus acidoterrestris in apple juice submitted to ultraviolet radiation. Food Control, 73, 18-23.
Tsai, G. J., & Hwang, S. P. (2004). In vitro and in vivo antibacterial activity of shrimp chitosan against some intestinal bacteria. Fisheries Science, 70(4), 675-681.
Tsai, G. J., & Su, W. H. (1999). Antibacterial activity of shrimp chitosan against Escherichia coli. Journal of Food Protection, 62(3), 239-243.
Tsai, G. J., Tsai, M. T., Lee, J. M., & Zhong, M. Z. (2006). Effects of chitosan and a low-molecular-weight chitosan on Bacillus cereus and application in the preservation of cooked rice. Journal of Food Protection, 69(9), 2168-2175.
Tsai, G. J., Zhang, S. L., & Shieh, P. L. (2004). Antimicrobial activity of a low-molecular-weight chitosan obtained from cellulase digestion of chitosan. Journal of Food Protection, 67(2), 396-398.
Tsai, G. U. O., Su, W. H., Chen, H. C., & Pan, C. L. (2002). Antimicrobial activity of shrimp chitin and chitosan from different treatments. Fisheries Science, 68(1), 170-177.
Vargas, C. (2017). Organic Acids. Nova Science Publishers, Incorporated.
Verlee, A., Mincke, S., & Stevens, C. V. (2017). Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydrate Polymers, 164, 268-283.
Vishu Kumar, A. B., Varadaraj, M. C., Gowda, L. R., & Tharanathan, R. N. (2005). Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Biochemical Journal, 391(2), 167-175.
Walker, M., & Phillips, C. A. (2008a). Alicyclobacillus acidoterrestris: An increasing threat to the fruit juice industry? International Journal of Food Science & Technology, 43(2), 250-260.
Walker, M., & Phillips, C. A. (2008b). The effect of preservatives on Alicyclobacillus acidoterrestris and Propionibacterium cyclohexanicum in fruit juice. Food Control, 19(10), 974-981.
Walls, I. (1998). Alicyclobacillus-historical perspective and preliminary characterization study. Dairy, Food Enviromental Sanitation, 18(8), 499-503.
Walls, I., & Chuyate, R. (2000). Spoilage of fruit juices by Alicyclobacillus acidoterrestris: Alicyclobacillus in the food industry. Food Australia, 52(7), 286-288.
Wang, Z., Li, X., Zhao, Y., Yuan, Y., Cai, R., & Yue, T. (2018). Synthesis of multifunctional fluorescent magnetic nanoparticles for the detection of Alicyclobacillus spp. in apple juice. Food Research International, 114, 104-113.
Wang, Z., Yue, T., Yuan, Y., Cai, R., Niu, C., & Guo, C. (2013b). Preparation of immunomagnetic nanoparticles for the separation and enrichment of Alicyclobacillus spp. in apple juice. Food Research International, 54(1), 302-310.
Wang, Z., Yue, T., Yuan, Y., Cai, R., Niu, C., & Guo, C. (2013c). Development and evaluation of an immunomagnetic separation-ELISA for the detection of Alicyclobacillus spp. in apple juice. International Journal of Food Microbiology, 166(1), 28-33.
Wisotzkey, J. D., Jurtshuk JR, P., Fox, G. E., Deinhard, G., & Poralla, K. (1992). Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology, 42(2), 263-269.
Wong, H. C., & Chen, Y. L. (1988). Effects of lactic acid bacteria and organic acids on growth and germination of Bacillus cereus. Applied and Environmental Microbiology, 54(9), 2179-2184.
Xing, K., Chen, X. G., Liu, C. S., Cha, D. S., & Park, H. J. (2009). Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. International Journal of Food Microbiology, 132(2-3), 127-133.
Xu, X., Ran, J., Jiao, L., Liang, X., & Zhao, R. (2019). Label free quantitative analysis of Alicyclobacillus acidoterrestris spore germination subjected to low ambient pH. Food Research International, 115, 580-588.
Yamazaki, K., Murakami, M., Kawai, Y., Inoue, N., & Matsuda, T. (2000). Use of nisin for inhibition of Alicyclobacillus acidoterrestris in acidic drinks. Food Microbiology, 17(3), 315-320.
Yamazaki, K., Teduka, H., & Shinano, H. (1996). Isolation and identification of Alicyclobacillus acidoterrestris from acidic beverages. Bioscience, Biotechnology, and Biochemistry, 60(3), 543-545.
Yang, T. C., Li, C. F., & Chou, C. C. (2007). Cell age, suspending medium and metal ion influence the susceptibility of Escherichia coli O157: H7 to water-soluble maltose chitosan derivative. International Journal of Food Microbiology, 113(3), 258-262.
Yasothai, R., & Giriprasad, R. (2015). Weak organic acids in food technology. International Journal of Environmental Science and Technology, 4, 164-166.
Yuan, G., Lv, H., Tang, W., Zhang, X., & Sun, H. (2016). Effect of chitosan coating combined with pomegranate peel extract on the quality of Pacific white shrimp during iced storage. Food Control, 59, 818-823.
Yuan, Y., Hu, Y., Yue, T., Chen, T., & Lo, Y. M. (2009). Effect of ultrasonic treatments on thermoacidophilic Alicyclobacillus acidoterrestris in apple juice. Journal of Food Processing and Preservation, 33(3), 370-383.
Zhang, J., Yue, T., & Yuan, Y. (2013). Alicyclobacillus contamination in the production line of kiwi products in China. PloS one, 8(7), e67704.
Sourri, P., Tassou, C. C., Nychas, G. J. E., & Panagou, E. Z. (2022). Fruit juice spoilage by Alicyclobacillus: Detection and control methods-A comprehensive review. Foods, 11(5), 747.
Back, S. Y., Jin, H. H., & Lee, S. Y. (2009). Inhibitory effect of organic acids against Enterobacter sakazakii in laboratory media and liquid foods. Food Control, 20(10), 867-872.
Molva, C., & Baysal, A. H. (2015). Antimicrobial activity of grape seed extract on Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores in apple juice. LWT-Food Science and Technology, 60(1), 238-245.
(此全文20270807後開放外部瀏覽)
電子全文
全文檔開放日期:2027/08/07
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *