字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:林芷恆
研究生英文姓名:Chih-Heng Lin
中文論文名稱:微生物發酵蝦殼及其降血糖與降血脂活性評估
英文論文名稱:Microbial fermentation of shrimp shell and evaluation of the hypoglycemic and hypolipidemic activity of the fermented shrimp shell
指導教授姓名:蔡國珍
口試委員中文姓名:助理教授︰陳建利
教授︰蔡國珍
教授︰蘇南維
教授︰鄭光成
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932059
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:123
中文關鍵詞:蝦殼蝦紅素複合菌株液態發酵調節血糖調節血脂
英文關鍵字:Shrimp shellAstaxanthinMixed strain fermentationHypoglycemic activityHypolipidemic activity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
蝦殼富含蛋白質、幾丁質和蝦紅素。本實驗室由南美白蝦 (Litopenaeus vannamei) 篩選而得Lactobacillus plantarum LV3204、Stenotrophomonas maltophilia LV2122 (蛋白質分解菌) 及Aeromonas dhakensis LV1111 (幾丁質分解菌),以此三株複合菌株液態發酵蝦殼。本研究旨探討蝦殼發酵產物的活性物含量,並探討餵食發酵蝦殼對第二型糖尿病大鼠之調節血糖與血脂功效。凍乾發酵蝦殼之總胜肽與蝦紅素含量分別為 16.36 與 1.13 mg/g,為未發酵蝦殼之 13.79 與 2.83 倍。雄性 Sprague - Dawley (SD) 大鼠除了正常控制組 (NC) 外,其餘以nicotinamide (NA) (230 mg/kg B.W.) - streptozotocin (STZ) (65 mg/kg B.W.) 誘導為第二型糖尿病大鼠,將其分為糖尿病控制組 (DC)、餵食未發酵蝦殼粉組 ( 9,000 mg/k g BW ,USS9000)、餵食低劑量發酵蝦殼粉組 (3000 mg/kg BW, FSS3000) 及高劑量發酵蝦殼粉組 (9,000 mg/kg BW, FSS9000) 及餵食蝦紅素標準品組 (20 mg/kg BW ,AST20)。餵食 7 週後,FSS9000 組之 OGTT 120 min血糖、空腹血糖及 HOMA-IR (Homeostasis Model Assessment-Insulin Resistance index) 均分別比 DC 組降低27.59%、22.54% 及50%。此外,FSS9000 組的相對脂肪重量 (Relative adipose weights)、血漿及肝臟 Total cholesterol (TC)、Triglyceride (TG)、及過氧化值均顯著降低。FSS9000 組肝臟六碳糖激酶 (Hexokinase) 與葡萄糖-6-磷酸脫氫酶 (Glucose-6-phosphate dehydrogenase) 分別比 DC 組提升 75.03% 與 83.16%,且其葡萄糖-6-磷酸酶活性顯著降低。此外,餵食發酵蝦殼顯著降低大鼠肝臟 Acetyl-CoA carboxylase 與 Fatty acid synthase 活性,並顯著提升脂肪組織 Hormone sensitive lipase 及 Lipoprotein lipase 活性。綜上所述,以複合菌株發酵蝦殼產品具作為調節血糖、血脂保健食品之潛力。
Shrimp shells (SS) are rich in protein, chitin and astaxanthin. Lactobacillus plantarum LV3204, Stenotrophomonas maltophilia LV2122 (proteolytic bacteria) and Aeromonas dhakensis LV1111 (chitin-decomposing bacteria) were screened from the white shrimp (Litopenaeus vannamei) in our laboratory, and these three composite strains were used to submerged ferment SS. The aim of this study were to investigate the active substance content of the fermented SS, and to conduct a feeding test on type 2 diabetic rats to explore the effect of fermented SS on hypoglycemic and hypolipidemic activity. The total peptide and astaxanthin contents of the fermented SS were 16.36 and 1.13 mg/g, respectively, which were 13.79 and 2.83 times that of the unfermented group. This shrimp shells fermented product was lyophilized into powders, and fed to type 2 diabetic rats to explore its hypoglycemic activity and hypolipidemic. The contents of total peptides and astaxanthin in freeze-dried fermented shrimp shells were 16.36 and 1.13 mg/g, respectively, which were 13.79 and 2.83 times that of unfermented shrimp shells. Except the normal control group (NC), male Sprague-Dawley (SD) rats were treated with nicotinamide (NA) (230 mg/kg B.W.) - streptozotocin (STZ) (65 mg/kg B.W.) to induce type 2 diabetes mellitus. These induced rats were divided into diabetes control group (DC), unfermented SS group (9,000 mg/kg BW, USS9000), low-dose (3000 mg/kg BW, FSS3000) and high-dose (9000 mg/kg BW, FSS9000) fermented SS groups, and astaxanthin standard group (20 mg/kg BW, AST20). After 7 weeks of feeding experiment, the values of OGTT 120 min blood glucose, fasting blood glucose and HOMA-IR (Homeostasis Model Assessment-Insulin Resistance index) in the FSS9000 group were significantly reduced by 27.59%, 22.54%, 50%, respectively, compared to those in the DC group. In addition, relative adipose weights, plasma and liver total cholesterol (TC), triglyceride (TG), and peroxide values were significantly reduced in the FSS9000 group. Compared with the DC group, the levels of hepatic Hexokinase and Glucose-6-phosphate dehydrogenase in the FSS9000 group were increased by 75.03% and 83.16%, respectively, and the activity of Glucose-6-phosphate was significantly decreased. In addition, feeding fermented SS significantly reduced the activities of Acetyl-CoA carboxylase and Fatty acid synthase in rat liver, and significantly increased the activities of hormone sensitive lipase and lipoprotein lipase in adipose tissue.
In conclusion, the fermented shrimp shell products with compound strains have the potential for a health food with hypoglycemic and hypolipidemic activity.
摘要 II
Abstract III
表目錄 xi
圖目錄 xii
附錄 xiv
壹、前言 1
貳、文獻整理 3
一、 糖尿病 3
1. 糖尿病之定義與分類 3
1.1 第一型糖尿病 (Type 1 diabetes mellitus) 3
1.2 第二型糖尿病 (Type 2 diabetes mellitus) 3
1.3 其他特異型糖尿病 (Other specific types of diabetes) 4
1.4 妊娠糖尿病 (Gestational diabetes mellitus, GDM) 4
2. 糖尿病診斷標準 5
3. 糖尿病對醣類代謝之影響 5
4 糖尿病併發症與治療 6
5. 第二型糖尿病動物誘導模式 6
5.1 Streptozotocin 誘導高血糖機制 7
5.2 Nicotinamid胰臟 β 細胞保護機制 8
5.3 Streptozotocin - Nicotinamide誘導第二型糖尿病機制 8
二、 胰島素 8
1. 胰島素訊息傳遞及其作用機制 9
2 胰島素阻抗 (Insulin resistance, IR) 9
三、 高脂/膽固醇飲食 10
1. 高脂飲食的定義 10
2. 高脂飲食對脂質代謝之影響 10
2.1 膽固醇的基本介紹 10
2.2 血脂質代謝 11
2.3 肝臟脂質代謝 12
2.4 下視丘 (Hypothalamic) 調控脂肪酸代謝 12
2.5 小腸維持脂肪代謝平衡 13
3. 脂肪組織脂質代謝相關酵素 13
3.1 荷爾蒙敏感性脂解酶 (Hormone-sensitive lipase, HSL) 13
3.2 脂蛋白脂解酶 (lipoprotein lipase, LPL) 14
四、 蝦殼 15
1. 蝦殼成分組成 15
1.1 幾丁質 17
1.2 蛋白質 18
1.3 類胡蘿蔔素 19
1.4 礦物質 19
2. 蝦殼之降血糖活性成分 19
2.1 蝦紅素 19
2.2 幾丁質衍生物 20
2.3 活性胜肽 21
2.4 其它 21
3. 蝦殼發酵 22
3.1 菌株篩選與發酵條件探討 22
參、實驗架構 24
一、 發酵蝦殼製備 24
二、 動物實驗 25
三、 犧牲後分析項目 26
肆、實驗材料與方法 27
一、實驗材料 27
1. 材料 27
2. 實驗菌株 27
3. 化學藥品 27
4. 培養基 28
5.動物實驗 28
5.1. 實驗動物 28
5.2. 實驗飼料 28
5.3. 分析套組 29
二、儀器設備 30
三、實驗方法 32
1. 菌株保存與活化 32
1.1 菌株保存 32
1.2 菌株活化 32
1.3 菌種鑑定 32
2. 實驗樣品製備與分析 32
2.1 蝦殼前處理 32
2.2蝦殼發酵基質配製 33
2.3 蝦殼發酵條件 33
2.4 分析 33
2.4.1 菌數分析 33
2.4.2 pH值 33
2.4.3 可滴定酸度分析 33
2.4.4 游離胺基態氮 34
2.4.6總胜肽含量 34
2.4.7蝦紅素含量 35
2.4.8 幾丁質含量 35
2.4.9 幾丁寡醣含量 36
2.5 一般成分組成 36
2.5.1 水分 37
2.5.2 灰分 37
2.5.3 粗脂肪 37
2.5.4 粗蛋白 37
2.5.5 碳水化合物 38
3. 動物飼養與分組 38
4. 動物犧牲及取樣 39
5. 動物實驗分析 40
5.1 血漿分析 40
5.1.1空腹血糖及葡萄糖耐量試驗 40
5.1.2血漿中總膽固醇濃度測定 40
5.1.3血漿中三酸甘油酯濃度測定 41
5.1.4血漿中胰島素含量測定 41
5.1.5血漿中天門冬氨酸胺基轉胺酶 (Aspartate aminotransferase, AST) 、丙氨酸胺基轉胺酶 (Alanine aminotransferase, ALT) 活性測定 42
5.1.6血漿中肌酸酐 (Creatinine) 含量測定 43
5.1.7血漿中尿素氮 (Blood urea nitrogen, BUN) 含量測定 43
5.1.8血漿中脂蛋白 (Lipoprotein) 分離與測定 44
5.2 肝臟分析 44
5.2.1 肝臟脂質萃取 44
5.2.2 肝臟總膽固醇及三酸甘油酯測定 45
5.2.3 肝臟 TBARS 含量測定 45
5.2.4 肝臟酵素活性測定-肝臟細胞質液製備 45
5.2.5 肝臟細胞質液蛋白濃度測定 46
5.2.7 六碳糖激酶 (Hexokinase, HK) 活性測定 46
5.2.8 葡萄糖 - 6 - 磷酸酶 (Glucose - 6 - phosphatase, G6Pase) 活性測定 47
5.2.9 葡萄糖 - 6 - 磷酸去氫酶 (Glucose - 6 - phosphate dehydrogenase, G6PD) 活性測定 48
5.2.10 脂肪酸合成酶 (fatty acid synthase, FAS) 活性測定 49
5.2.11 乙醯輔酶 A 羧化酶 (acetyl-CoA carboxylase, ACC) 活性測定 50
5.3 脂肪分析 51
5.3.1 脂肪細胞質液製備 51
5.3.2 荷爾蒙敏感性脂解酶 (Hormone sensitive lipase, HSL) 含量測定 51
5.3.3 脂蛋白脂解酶 (lipoprotein lipase, LPL) 含量測定 53
5.4 小腸分析 53
5.4.1 收集小腸黏膜 53
5.5 糞便分析 54
5.5.1 糞便乾重及濕重 54
5.5.2 糞便中脂質萃取 55
5.5.3 糞便中總膽固醇與三酸甘油酯分析 55
5.6 攝食量、飲水量及排尿量 55
6. 統計分析 55
伍、結果與討論 56
陸、結論 69
柒、參考文獻 71
捌、圖表 91
玖、附錄 116
行政院衛生福利部。(2022)。102 年主要死因死亡率。http://www.doh.gov.tw。
行政院農業委員會 (2002)。農委會91年年報。臺北。臺灣。
行政院經濟部標準檢驗局。2007。乳品檢驗法-酸度之測定。中華民國國家標準。CNS 總號 3441,類號N6057。
林維剛。(2015)。靈芝液態發酵液對於第 2 型糖尿病大鼠降血糖與降血脂效果之評估。國立臺灣海洋大學食品科學碩士學位論文。基隆。臺灣。
吳聲怡。(2012)。乳酸菌對糖尿病併發症的影響。中華醫事科技大學生物醫學碩士學位論文。台南。臺灣。
周慶新、劉婷婷、楊魯。 (2017)。 蝦青素的來源,生物功能及吸收研究進展。 食品研究與開發(16), 214-219.
陳淑娟與尹彙文 (2008)。臨床營養學:膳食療養。時新出版社。臺北。臺灣。
黃筱涵。(2020)。以分離自白蝦之複合菌株發酵蝦殼及發酵產物生理活性分析。國立臺灣海洋大學食品科學碩士學位論文。基隆。臺灣。
馮仕安。(2016)。幾丁聚醣及幾丁寡醣對大白鼠血糖及血脂之研究。國立臺灣海洋大學食品科學碩士學位論文。基隆。臺灣。
彭仁信。(2002)。醋酸酐乙醯化反應之幾丁聚醣特性及幾丁聚醣酵素水解產物對微生物生長之影響。國立臺灣海洋大學食品科學碩士學位論文。基隆。臺灣。
經濟部標準檢驗局。1984。中華民國國家標準。CNS總號5033,類號N114,食品中水分之檢驗方法。
經濟部標準檢驗局。1984。中華民國國家標準。CNS總號5034,類號N115,食品中粗灰分之檢驗方法。
經濟部標準檢驗局。1986。中華民國國家標準。CNS總號5035,類號N116,食品中粗蛋白之檢驗方法。
經濟部標準檢驗局。1984。中華民國國家標準。CNS總號5036,類號N117,食品中粗脂肪之檢驗方法。
衛生福利部國民健康署,糖尿病(2021)。檢自https://www.hpa.gov.tw/Pages/List.aspx?nodeid=359 (JμL. 30, 2021)
AOAC, A. (2000). AOAC official methods of analysis of AOAC international. (17th ed.).
A. O. A. C. (2003). Official methods of analysis. Association of official analytical chemists, 17th, Washington, D. C., USA.
AbdμLlah, A. C., Ali, S. S., Al-Ansari, N. A., & Knutsson, S. (2009). Scientific Research. International Journal of Communications, Network and System Sciences, 2(9).
Ahmad, F., Ahmad, P. M., Dickstein, R. and Greenfield, E. D. (1981). Detection of ligand-induced perturbations affecting the biotinyl group of mammalian acetyl-coenzyme A carboxylase by using biotin binding antibodies. Biochemical Journal, 197: 95-104.
Alabaraoye, E., Achilonu, M., & Hester, R. (2018). Biopolymer (Chitin) from various marine seashell wastes: isolation and characterization. Journal of Polymers and the Environment, 26(6), 2207-2218.
Al Sagheer, F., Al-Sughayer, M., Muslim, S., & Elsabee, M. (2009). Extraction and characterization of chitin and chitosan from marine sources in Arabian GμLf. Carbohydrate polymers, 77(2), 410-419.
Ambati, R. R., Phang, S.-M., Ravi, S., & Aswathanarayana, R. G. (2014). Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Marine Drugs, 12(1), 128-152.
American Diabetes Association. (2004). Gestational diabetes mellitus. Diabetes Care, 27, S88.
American Diabetes Association. (2021). Addendum. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021;44(Suppl. 1):S15–S33
Aoyama, T., Peters, J. M., Iritani, N., Nakajima, T., Furihata, K., Hashimoto, T., & Gonzalez, F. J. (1998). Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα). Journal of Biological Chemistry, 273(10), 5678-5684.
Arakaki, A., Shimizu, K., Oda, M., Sakamoto, T., Nishimura, T., & Kato, T. (2015). Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecμLar control of self-organization of hybrids. Organic & biomolecμLar chemistry, 13(4), 974-989.
Arbia, W., Arbia, L., Adour, L., & Amrane, A. (2013). Chitin extraction from crustacean shells using biological methods–a review. Food Technology and Biotechnology, 51(1), 12-25.
Armenta, R. E., & Guerrero-Legarreta, I. (2009). Stability studies on astaxanthin extracted from fermented shrimp byproducts. Journal of AgricμLtural and Food Chemistry, 57(14), 6095-6100.
Arunkumar, E., Bhuvaneswari, S., & Anuradha, C. V. (2012). An intervention study in obese mice with astaxanthin, a marine carotenoid–effects on insulin signaling and pro-inflammatory cytokines. Food & function, 3(2), 120-126.
Atshaves, B. P., McIntosh, A. L., Storey, S. M., Landrock, K. K., Kier, A. B., & Schroeder, F. (2010). High dietary fat exacerbates weight gain and obesity in female liver fatty acid binding protein gene-ablated mice. Lipids, 45(2), 97-110.
Bah, C. S., Carne, A., McConnell, M. A., Mros, S., & Bekhit, A. E. D. A. (2016). Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations. Food chemistry, 202, 458-466.
Bautista, J., Jover, M., Gutierrez, J., Corpas, R., Cremades, O., Fontiveros, E., Iglesias, F., & Vega, J. (2001). Preparation of crayfish chitin by in situ lactic acid production. Process Biochemistry, 37(3), 229-234.
Beisiegel, U., Weber, W., & Bengtsson-Olivecrona, G. (1991). Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proceedings of the National Academy of Sciences, 88(19), 8342-8346.
Bendich, A., & Olson, J. A. (1989). Biological actions of carotenoids 1. The FASEB journal, 3(8), 1927-1932.
Benhabiles, M., Salah, R., Lounici, H., Drouiche, N., Goosen, M., & Mameri, N. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29(1), 48-56.
Benhabiles, M., Abdi, N., Drouiche, N., Lounici, H., Pauss, A., Goosen, M. F., & Mameri, N. (2013). Protein recovery by μLtrafiltration during isolation of chitin from shrimp shells Parapenaeus longirostris. Food Hydrocolloids, 32(1), 28-34.
Berger, J. J. and Barnard, R. J. (1999). Effect of diet on fat cell size and hormone-sensitive lipase activity. Journal of Applied Physiology, 87: 227-232.
Bessesen, D. H. (2001). The role of carbohydrates in insulin resistance. The Journal of nutrition, 131(10), 2782S-2786S.
Bhuvaneswari, S., & Anuradha, C. V. (2012). Astaxanthin prevents loss of insulin signaling and improves glucose metabolism in liver of insulin resistant mice. Canadian Journal of Physiology and Pharmacology, 90(11), 1544-1552.
Biswas, A., & Gargi, C. (2013). Extraction of chitosan from prawn shell wastes and examination of its viable commercial applications. International Journal on Theoretical and Applied Research in Mechanical Engineering, 2(3), 17-24.
Botelho, P. B., Mariano, K. d. R., Rogero, M. M., & de Castro, I. A. (2013). Effect of Echium oil compared with marine oils on lipid profile and inhibition of hepatic steatosis in LDLr knockout mice. Lipids in Health and Disease, 12(1), 1-10.
Brasaemle, D. L., Levin, D. M., Adler-Wailes, D. C., & Londos, C. (2000). The lipolytic stimμLation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochimica et Biophysica Acta (BBA)-MolecμLar and Cell Biology of Lipids, 1483(2), 251-262.
Brewer, P. D., Habtemichael, E. N., Romenskaia, I., Mastick, C. C., & Coster, A. C. (2014). Insulin-regμLated Glut4 translocation: membrane protein trafficking with six distinctive steps. Journal of Biological Chemistry, 289(25), 17280-17298.
Brown, M. R., Barrett, S. M., Volkman, J. K., Nearhos, S. P., Nell, J. A., & Allan, G. L. (1996). Biochemical composition of new yeasts and bacteria evaluated as food for bivalve aquacμLture. AquacμLture, 143(3-4), 341-360.
Cahú, T. B., Santos, S. D., Mendes, A., CórdμLa, C. R., Chavante, S. F., Carvalho Jr, L. B., Nader, H. B., & Bezerra, R. S. (2012). Recovery of protein, chitin, carotenoids and glycosaminoglycans from Pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochemistry, 47(4), 570-577.
Cam, M. C., Rodrigues, B., & McNeill, J. H. (1999). Distinct glucose lowering and beta cell protective effects of vanadium and food restriction in streptozotocin-diabetes. European journal of endocrinology, 141(5), 546-554.
Campbell, R. K. (2011). Clarifying the role of incretin-based therapies in the treatment of type 2 diabetes mellitus. Clinical Therapeutics, 33(5), 511-527.
Cappai, G., Songini, M., Doria, A., Cavallerano, J., & Lorenzi, M. (2011). Increased prevalence of proliferative retinopathy in patients with type 1 diabetes who are deficient in glucose-6-phosphate dehydrogenase. Diab_tologia, 54(6), 1539-1542.
Cárdenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93(4), 1876-1885.
Cédola, N., Doria, I., Cabarrou, A., de León, H. P., Auciello, N., & Baylon, N. (1975). The liver in human diabetes. Concentration of some induced enzymes. Acta diabetologia latina, 12(5), 263-271.
Cheung, I. W. Y., & Li-Chan, E. C. Y. (2010). Angiotensin-I-converting enzyme inhibitory activity and bitterness of enzymatically-produced hydrolysates of shrimp (Pandalopsis dispar) processing byproducts investigated by Taguchi design. Food Chemistry, 122(4), 1003–1012.
Chiu, C.-H., Lu, T.-Y., Tseng, Y.-Y., & Pan, T.-M. (2006). The effects of Lactobacillus-fermented milk on lipid metabolism in hamsters fed on high-cholesterol diet. Applied Microbiology and Biotechnology, 71(2), 238-245.
Choi, C.-R., Kim, E.-K., Kim, Y.-S., Je, J.-Y., An, S.-H., Lee, J. D., Wang, J. H., Ki, S. S., Jeon, B.-T., & Moon, S.-H. (2012). Chitooligosaccharides decreases plasma lipid levels in healthy men. International Journal of Food Sciences and Nutrition, 63(1), 103-106.
Clifford, G. M., Londos, C., Kraemer, F. B., Vernon, R. G., & Yeaman, S. J. (2000). Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimμLation of rat adipocytes. Journal of Biological Chemistry, 275(7), 5011-5015.
Dahlqvist, A. (1968). Assay of intestinal disaccharidases. Analytical Biochemistry, 22:99-107.
Daneman, D. (2006). Type 1 diabetes. The Lancet, 367(9513), 847-858.246-253.
Darlington, G. J., Ross S. E. and MacDougald, O. A. (1998) The role of C/EBP genes inadipocyte differentiation. Journal of Biological Chemistry 273: 30057-30060.
Dayakar, B., Xavier, K. M., Das, O., Porayil, L., Balange, A. K., & Nayak, B. B. (2021). Application of extreme halophilic archaea as biocatalyst for chitin isolation from shrimp shell waste. Carbohydrate Polymer Technologies and Applications, 2, 100093.
De Queiroz Antonino, R. S. C. M., Lia Fook, B. R. P., de Oliveira Lima, V. A., de Farias Rached, R. I., Lima, E. P. N., da Silva Lima, R. J., Peniche Covas, C. A., & Lia Fook, M. V. (2017). Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Marine Drugs, 15(5), 141.
Dinneen, S., Gerich, J., & Rizza, R. (1992). Carbohydrate metabolism in non-insulin-dependent diabetes mellitus. New England Journal of Medicine, 327(10), 707-713.
Dong, J., Cai, F., Shen, R., & Liu, Y. (2011). Hypoglycaemic effects and inhibitory effect on intestinal disaccharidases of oat beta-glucan in streptozotocin-induced diabetic mice. Food Chemistry, 129(3), 1066-1071.
Eckel, R. H., Kahn, R., Robertson, R. M., & Rizza, R. A. (2006). Preventing cardiovascμLar disease and diabetes: a call to action from the American Diabetes Association and the American Heart Association. CircμLation, 113(25), 2943-2946.
Eckle, R. (1989). Lipoprotein lipase, a mμLtifunctional enzyme relevant to common metabolic disease. New Engl J Med, 320, 1060-1068.
Egan, J. J., Greenberg, A. S., Chang, M.-K., Wek, S. A., Moos Jr, M. C., & Londos, C. (1992). Mechanism of hormone-stimμLated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proceedings of the National Academy of Sciences, 89(18), 8537-8541.
Eisenberg, S., & Levy, R. I. (1975). Lipoprotein metabolism. Advances in Lipid Research, 13, 1-89.
Erickson, R. H., Zakim, D. and Vessey, D. A. (1978). Preparation and properties of aphosphorlipid-free from of microsomal UDP-glucuronyltransferase. Biochemistry, 17: 3706-3711.
Femlak, M., Gluba-Brzózka, A., Ciałkowska-Rysz, A., & Rysz, J. (2017). The role and function of HDL in patients with diabetes mellitus and the related cardiovascμLar risk. Lipids in health and disease, 16(1), 1-9.Ghidalia, W., Bliss, D., & Mantel, L. (1985). Structural and biological aspects of pigments. The biology of crustacea, 9, 301-395.
Foster, K. J., Alberti, K. G., Hinks, L., Lloyd, B., Postie, A., Smythe, P., Turnell, D. C. and Waiton, R. (1978). Blood intermediary metabolite and insulin concentrations after an overnight fast: references for adμLts and interrelations. Clinical Chemistry, 24: 1568-1572.
Fungwe, T. V., Cagen, L. M., Wilcox, H. G. and Heimberg, M. (1992). RegμLation of hepatic secretion of very low density lipoprotein by dietary cholesterol. Journal of Lipid Research, 33: 179-191.
Gamiz‐Hernandez, A. P., Angelova, I. N., Send, R., Sundholm, D., & Kaila, V. R. (2015). Protein‐Induced Color Shift of Carotenoids in β‐Crustacyanin. Angewandte Chemie International Edition, 54(39), 11564-11566.
Ginsberg, H. N. (2000). Insulin resistance and cardiovascμLar disease. The Journal of clinical investigation, 106(4), 453-458.
Goh, B.-H., Efendić, S., Khan, A., & Portwood, N. (2003). Evidence for the expression of both the hydrolase and translocase components of hepatic glucose-6-phosphatase in murine pancreatic islets. Biochemical and Biophysical Research Communications, 307(4), 935-941.
Goldberg, I. J., & Merkel, M. (2001). Lipoprotein lipase: physiology, biochemistry, and molecμLar biology. Frontiers in Bioscience-Landmark, 6(3), 388-405.
Gordon, S. M., Li, H., Zhu, X., Shah, A. S., Lu, L. J., & Davidson, W. S. (2015). A comparison of the mouse and human lipoproteome: suitability of the mouse model for studies of human lipoproteins. Journal of proteome research, 14(6), 2686-2695.
Gortari, M. C., & Hours, R. A. (2013). Biotechnological processes for chitin recovery out of crustacean waste: a mini-review. Electronic Journal of Biotechnology, 16(3), 14-14.
Goti, D., Balazs, Z., Panzenboeck, U., Hrzenjak, A., Reicher, H., Wagner, E., Zechner, R., Malle, E., & Sattler, W. (2002). Effects of lipoprotein lipase on uptake and transcytosis of low density lipoprotein (LDL) and LDL-associated α-tocopherol in a porcine in vitro blood-brain barrier model. Journal of Biological Chemistry, 277(32), 28537-28544.
Guerard, F., Sumaya-Martinez, M. T., Laroque, D., Chabeaud, A., & Dufossé, L. (2007). Optimization of free radical scavenging activity by response surface methodology in the hydrolysis of shrimp processing discards. Process Biochemistry, 42(11), 1486-1491.
Guerin, M., Huntley, M. E., & Olaizola, M. (2003). Haematococcus astaxanthin: applications for human health and nutrition. Trends in Biotechnology, 21(5), 210-216.
Guilherme, A., Virbasius, J. V., Puri, V., & Czech, M. P. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature reviews MolecμLar cell biology, 9(5), 367-377.
Haeusler, R. A., McGraw, T. E., & Accili, D. (2018). Biochemical and cellμLar properties of insulin receptor signalling. Nature reviews MolecμLar cell biology, 19(1), 31-44.
Halliwell, B. (1996). Antioxidants in human health and disease. Annual Review of Nutrition, 16(1), 33-50.
Hayes, M., Carney, B., Slater, J., & Brück, W. (2008). Mining marine shellfish wastes for bioactive molecμLes: Chitin and chitosan ndash; Part A: extraction methods. Biotechnology Journal: Healthcare Nutrition Technology, 3(7), 871-877.
Healy, M., Romo, C., & Bustos, R. (1994). Bioconversion of marine crustacean shell waste. Resources, Conservation and Recycling, 11(1-4), 139-147.
Herling, A. W., Burger, H.-J., Schwab, D., Hemmerle, H., Below, P., & Schubert, G. (1998). Pharmacodynamic profile of a novel inhibitor of the hepatic glucose-6-phosphatase system. American Journal of Physiology-Gastrointestinal and Liver Physiology, 274(6), G1087-G1093.
Holm, C., Osterlund, T., Laurell, H., & Contreras, J. A. (2000). MolecμLar mechanisms regμLating hormone-sensitive lipase and lipolysis. Annual Review of Nutrition, 20(1), 365-393.
Hotta, K., Funahashi, T., Arita, Y., Takahashi, M., Matsuda, M., Okamoto, Y., Iwahashi, H., Kuriyama, H., Ouchi, N., & Maeda, K. (2000). Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arteriosclerosis, Thrombosis, and VascμLar Biology, 20(6), 1595-1599.
Houstis, N., Rosen, E. D., & Lander, E. S. (2006). Reactive oxygen species have a causal role in mμLtiple forms of insulin resistance. Nature, 440(7086), 944-948.
Hu, X., Wang, T., Li, W., Jin, F., & Wang, L. (2013). Effects of NS Lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet. Lipids in Health and Disease, 12(1), 1-12.
Hu, S., Wang, Y., Wen, X., Wang, L., Jiang, Z., & Zheng, C. (2018). Effects of low-molecμLar-weight chitosan on the growth performance, intestinal morphology, barrier function, cytokine expression and antioxidant system of weaned piglets. BMC Veterinary Research, 14(1), 1-7.
Huang, J., Wang, Y., Ying, C., Liu, L., & Lou, Z. (2018). Effects of mμLberry leaf on experimental hyperlipidemia rats induced by high-fat diet. Experimental and therapeutic medicine, 16(2), 547-556.
Hubbard, S. R. (2013). The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harbor perspectives in biology, 5(3), a008946.
Hussein, G., Sankawa, U., Goto, H., Matsumoto, K., & Watanabe, H. (2006). Astaxanthin, a carotenoid with potential in human health and nutrition. Journal of Natural Products, 69(3), 443-449.
Islam, M. M., Masum, S. M., Rahman, M. M., Molla, M. A. I., Shaikh, A., & Roy, S. (2011). Preparation of chitosan from shrimp shell and investigation of its properties. International Journal of Basic & Applied Sciences, 11(1), 116-130.
Jahid, I. K., Lee, N.-Y., Kim, A., & Ha, S.-D. (2013). Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila. Journal of Food Protection, 76(2), 239-247.
Jeun, J., Kim, S., Cho, S.-Y., Jun, H.-j., Park, H.-J., Seo, J.-G., Chung, M.-J., & Lee, S.-J. (2010). Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition, 26(3), 321-330.
Jump, D. B. (2008). N-3 polyunsaturated fatty acid regμLation of hepatic gene transcription. Current Opinion in Lipidology, 19(3), 242.
Kannan, A., Hettiarachchy, N. S., Marshall, M., Raghavan, S., & Kristinsson, H. (2011). Shrimp shell peptide hydrolysates inhibit human cancer cell proliferation. Journal of the Science of Food and AgricμLture, 91(10), 1920-1924.
Kaur, S., & Dhillon, G. S. (2015). Recent trends in biological extraction of chitin from marine shell wastes: a review. Critical Reviews in Biotechnology, 35(1), 44-61.
Ketnawa, S., Martínez-Alvarez, O., Gómez-Estaca, J., del Carmen Gómez-Guillén, M., BenjakμL, S., & Rawdkuen, S. (2016). Obtaining of functional components from cooked shrimp (Penaeus vannamei) by enzymatic hydrolysis. Food Bioscience, 15, 55-63.
Kinnunen, P., Jackson, R. L., Smith, L. C., Gotto Jr, A., & Sparrow, J. T. (1977). Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein C-II. Proceedings of the National Academy of Sciences, 74(11), 4848-4851.
Ko, C. Y., Lin, H.-T. V., & Tsai, G. J. (2013). Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochemistry, 48(4), 559-568.
Kondeti, V. K., Badri, K. R., Maddirala, D. R., Mekala-Thur, S. K., Fatima, S. S., Kasetti, R. B., Rao, C. A. (2010). Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 48: 1281-1287.
Kong, C.-S., Kim, J.-A., Bak, S.-S., Byun, H.-G., & Kim, S.-K. (2011). Anti-obesity effect of carboxymethyl chitin by AMPK and aquaporin-7 pathways in 3T3-L1 adipocytes. The Journal of nutritional biochemistry, 22(3), 276-281.
Kong, S., Ding, C., Huang, L., Bai, Y., Xiao, T., Guo, J., & Su, Z. (2017). The effects of COST on the differentiation of 3T3-L1 preadipocytes and the mechanism of action. Saudi journal of biological sciences, 24(2), 251-255.
Kounnas, M., Chappell, D., Strickland, D. K., & Argraves, W. (1993). Glycoprotein 330, a member of the low density lipoprotein receptor family, binds lipoprotein lipase in vitro. Journal of Biological Chemistry, 268(19), 14176-14181.
Kraemer, F. B., & Shen, W.-J. (2002). Hormone-sensitive lipase. Journal of Lipid Research, 43(10), 1585-1594.
Kristinsson, H. G., & Rasco, B. A. (2000). Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of AgricμLtural and Food Chemistry, 48, 657–666.
Kruit, J. K., Groen, A. K., van Berkel, T. J., & Kuipers, F. (2006). Emerging roles of the intestine in control of cholesterol metabolism. World journal of gastroenterology: WJG, 12(40), 6429.
Kruszynska, Y. T., MμLford, M. I., Baloga, J., Yu, J. G., & Olefsky, J. M. (1998). RegμLation of skeletal muscle hexokinase II by insulin in nondiabetic and NIDDM subjects. Diabetes, 47(7), 1107-1113.
Kumar, R., Salwe, K. J., & Kumarappan, M. (2017). Evaluation of antioxidant, hypolipidemic, and antiatherogenic property of lycopene and astaxanthin in atherosclerosis-induced rats. Pharmacognosy research, 9(2), 161.
Lage, R., Diéguez, C., Vidal-Puig, A., & López, M. (2008). AMPK: a metabolic gauge regμLating whole-body energy homeostasis. Trends in molecμLar medicine, 14(12), 539-549.
Landon, R., Gueguen, V., Petite, H., Letourneur, D., Pavon-Djavid, G., & Anagnostou, F. (2020). Impact of astaxanthin on diabetes pathogenesis and chronic complications. Marine Drugs, 18(7), 357.
LeDoux, S., Woodley, S., Patton, N., & Wilson, G. (1986). Mechanisms of nitrosourea-induced β-cell damage: alterations in DNA. Diabetes, 35(8), 866-872.
Lee, Y. B., ELLIOTT, J. G., RICKANSRUD, D. A., & HAGBERG, E. Y. C. (1978). Predicting protein efficiency ratio by the chemical determination of connective tissue content in meat. Journal of Food Science, 43(5), 1359-1362.
Lemieux, I., Lamarche, B., Couillard, C., Pascot, A., Cantin, B., Bergeron, J., Dagenais, G. R., & Després, J.-P. (2001). Total cholesterol/HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: the Quebec CardiovascμLar Study. Archives of Internal Medicine, 161(22), 2685-2692.
Leroy, F., & De Vuyst, L. (2004). Lactic acid bacteria as functional starter cμLtures for the food fermentation industry. Trends in Food Science & Technology, 15(2), 67-78.
Levitan, I., Fang, Y., Rosenhouse-Dantsker, A., & Romanenko, V. (2010). Cholesterol and ion channels. Cholesterol Binding and Cholesterol Transport Proteins:, 509-549.
Li, T., Gong, H., Zhan, B., & Mao, X. (2022). Chitosan oligosaccharide attenuates hepatic steatosis in HepG2 cells via the activation of AMP‐activated protein kinase. Journal of Food Biochemistry, e14045.
Londos, C., Brasaemle, D. L., SchμLtz, C. J., ADLER‐WAILES, D. C., Levin, D. M., Kimmel, A. R., & Rondinone, C. M. (1999). On the control of lipolysis in adipocytes. Annals of the New York Academy of Sciences, 892(1), 155-168.
Long, S., Tian, Y., Zhang, R., Yang, L., Xu, Y., Jia, L., & Fu, M. (2006). Relationship between plasma HDL subclasses distribution and lipoprotein lipase gene HindIII polymorphism in hyperlipidemia. Clinica Chimica Acta, 366(1-2), 316-321.
López, M., Lelliott, C. J., & Vidal‐Puig, A. (2007). Hypothalamic fatty acid metabolism: a housekeeping pathway that regμLates food intake. Bioessays, 29(3), 248-261.
López, M., Lage, R., Saha, A. K., Pérez-Tilve, D., Vázquez, M. J., Varela, L., Sangiao-Alvarellos, S., Tovar, S., Raghay, K., & Rodríguez-Cuenca, S. (2008). Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell metabolism, 7(5), 389-399.
Lopez-Santamarina, A., Mondragon, A. d. C., Lamas, A., Miranda, J. M., Franco, C. M., & Cepeda, A. (2020). Animal-origin prebiotics based on chitin: an alternative for the future A critical review. Foods, 9(6), 782.
Maiti, R., Jana, D., Das, U., & Ghosh, D. (2004). Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 92(1), 85-91.
Marshall, E. K. (1913). A new method for the determination of urea in blood. The Journal of Biological Chemistry, 15: 487-494.
Martínez de Morentin, P. B., González, C. R., & López, M. (2010). AMP‐activated protein kinase:‘a cup of tea’against cholesterol‐induced neurotoxicity. The Journal of pathology, 222(4), 329-334.
Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., Novelli, M., & Ribes, G. (1998). Experimental NIDDM: development of a new model in adμLt rats administered streptozotocin and nicotinamide. Diabetes, 47(2), 224-229.
Mathew, G. M., Mathew, D. C., Sukumaran, R. K., Sindhu, R., Huang, C.-C., Binod, P., Sirohi, R., Kim, S.-H., & Pandey, A. (2020). Sustainable and eco-friendly strategies for shrimp shell valorization. Environmental Pollution, 115656.
Mauvais-Jarvis, F., & Kahn, C. R. (2000). Understanding the pathogenesis and treatment of insulin resistance and type 2 diabetes mellitus: what can we learn from transgenic and knockout mice? Diabetes and Metabolism, 26(6), 433-448.
Mayfield, J. A. (1998). Diagnosis and classification of diabetes mellitus: new criteria. American Family Physician, 58(6), 1355.
McIlhargey, T. L., Yang, Y., Wong, H., & Hill, J. S. (2003). Identification of a lipoprotein lipase cofactor-binding site by chemical cross-linking and transfer of apolipoprotein C-II-responsive lipolysis from lipoprotein lipase to hepatic lipase. Journal of Biological Chemistry, 278(25), 23027-23035.
Medh, J. D., Fry, G. L., Bowen, S. L., Ruben, S., Wong, H., & Chappell, D. A. (2000). Lipoprotein lipase-and hepatic triglyceride lipase-promoted very low density lipoprotein degradation proceeds via an apolipoprotein E-dependent mechanism. Journal of Lipid Research, 41(11), 1858-1871.
Merkel, M., Heeren, J. r., Dudeck, W., Rinninger, F., Radner, H., Breslow, J. L., Goldberg, I. J., Zechner, R., & Greten, H. (2002). Inactive lipoprotein lipase (LPL) alone increases selective cholesterol ester uptake in vivo, whereas in the presence of active LPL it also increases triglyceride hydrolysis and whole particle lipoprotein uptake. Journal of Biological Chemistry, 277(9), 7405-7411.
Merkel, M., Kako, Y., Radner, H., Cho, I. S., Ramasamy, R., Brunzell, J. D., Goldberg, I. J., & Breslow, J. L. (1998). Catalytically inactive lipoprotein lipase expression in muscle of transgenic mice increases very low density lipoprotein uptake: direct evidence that lipoprotein lipase bridging occurs in vivo. Proceedings of the National Academy of Sciences, 95(23), 13841-13846.
Miller, W. L., & Auchus, R. J. (2011). The molecμLar biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine Reviews, 32(1), 81-151.
Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y.-B., Lee, A., Xue, B., Mu, J., Foufelle, F., Ferré, P., & Birnbaum, M. J. (2004). AMP-kinase regμLates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 428(6982), 569-574.
Mohammad-Sadeghipour, M., Mahmoodi, M., Karimabad, M. N., Mirzaei, M. R., & Hajizadeh, M. R. (2021). Diosgenin and 4-hydroxyisoleucine from fenugreek are regμLators of genes involved in lipid metabolism in the human colorectal cancer cell line SW480. Cell Journal (Yakhteh), 22(4), 514.
Mourya, V., Inamdar, N., & Choudhari, Y. M. (2011). Chitooligosaccharides: Synthesis, characterization and applications. Polymer Science Series A, 53(7), 583-612.Mao, X., Guo, N., Sun, J., & Xue, C. (2017). Comprehensive utilization of shrimp waste based on biotechnological methods: A review. Journal of Cleaner Production, 143, 814-823.
Murdoch, S. J., & Breckenridge, W. C. (1995). Influence of lipoprotein lipase and hepatic lipase on the transformation of VLDL and HDL during lipolysis of VLDL. Atherosclerosis, 118(2), 193-212.
Murdoch, S. J., & Breckenridge, W. C. (1996). Effect of lipid transfer proteins on lipoprotein lipase induced transformation of VLDL and HDL. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1303(3), 222-232.
Mustad, V. A., & Kris-Etherton, P. M. (2000). Beyond cholesterol lowering: deciphering the benefits of dietary intervention on cardiovascμLar diseases. Current atherosclerosis reports, 2(6), 461-466.
Nagayama, F., Ohshima, H. and Umezawa, K. (1972). Distribution of glucose-6-phosphate metabolizing enzyme in fish. BμLletin of the Japanese Society of Scientific Fisheries, 38: 589-593.
Navar-Boggan, A. M., Peterson, E. D., D’Agostino Sr, R. B., Neely, B., Sniderman, A. D., & Pencina, M. J. (2015). Hyperlipidemia in early adμLthood increases long-term risk of coronary heart disease. CircμLation, 131(5), 451-458.
Nepokroeff, C. M., Lakshmanan, M. R. and Porter, J. W. (1975). Fatty-acid synthase from rat liver. Methods in Enzymology, 35: 37-44.
Nguyen, V. B., Nguyen, A. D., Le, T., Kuo, Y. H., & Wang, S. L. (2019). Bioprocessing shrimp shells for rat intestinal α-glucosidase inhibitor and its effect on reducing blood glucose in a mouse model. Research on Chemical Intermediates, 45(10), 4829-4846.
Nguyen, Q. V., Nguyen, A. D., & Wang, S. L. (2017). Screening and evaluation of α-glucosidase inhibitors from indigenous medicinal plants in Dak Lak Province, Vietnam. Research on Chemical Intermediates, 43(6), 3599-3612.
Nguyen, V. B., & Wang, S. L. (2019). Production of potent antidiabetic compounds from shrimp head powder via Paenibacillus conversion. Process Biochemistry, 76, 18-24.
No, H. K., Meyers, S. P., & Lee, K. S. (1989). Isolation and characterization of chitin from crawfish shell waste. Journal of AgricμLtural and Food Chemistry, 37(3), 575-579.
Novgorodtseva, T., Karaman, Y., Gvozdenko, T., & Zhukova, N. (2011). Modification of lipid composition of red blood cells of rats on condition nutritional stress. Russian Journal Physiol, 97, 718-724.
Núñez-Gastélum, J. A., Sánchez-Machado, D. I., López-Cervantes, J., Rodríguez-Núñez, J. R., Correa-Murrieta, M. A., Sánchez-Duarte, R. G., & Campas-Baypoli, O. N. (2016). Astaxanthin and its esters in pigmented oil from fermented shrimp by-products. Journal of Aquatic Food Product Technology, 25(3), 334-343.
Numa, S., Ringelmann, E. and Lynen, F. (1965). On inhibition of acetyl-CoA-carboxylase by fatty acid-coenzyme A compounds. Biochemische Zeitschrift, 343: 243-257.
Nyman, M., Asp, N.-G., Cummings, J., & Wiggins, H. (1986). Fermentation of dietary fibre in the intestinal tract: comparison between man and rat. British Journal of Nutrition, 55(3), 487-496.
Oliva, J., French, S. W., Li, J., & Bardag-Gorce, F. (2012). Proteasome inhibitor treatment reduced fatty acid, triacylglycerol and cholesterol synthesis. Experimental and MolecμLar Pathology, 93(1), 26-34.
Oosterveer, M. H., Van Dijk, T. H., Tietge, U. J., Boer, T., Havinga, R., Stellaard, F., Groen, A. K., Kuipers, F., & Reijngoud, D.-J. (2009). High fat feeding induces hepatic fatty acid elongation in mice. PLoS ONE, 4(6), e6066.
Oh, K. Y., Lee, J. H., Curtis-Long, M. J., Cho, J. K., Kim, J. Y., Lee, W. S., & Park, K. H. (2010). Glycosidase inhibitory phenolic compounds from the seed of Psoralea corylifolia. Food Chemistry, 121(4), 940-945.
Palm, W., Sampaio, J. L., Brankatschk, M., Carvalho, M., Mahmoud, A., Shevchenko, A., & Eaton, S. (2012). Lipoproteins in Drosophila melanogaster—assembly, function, and influence on tissue lipid composition. PLoS genetics, 8(7), e1002828.
Panesar, P. S., & Kaur, S. (2015). Bioutilisation of agro‐industrial waste for lactic acid production. International journal of food science & technology, 50(10), 2143-2151.
Panzenboeck, U., Wintersberger, A., Levak-Frank, S., Zimmermann, R., Zechner, R., Kostner, G., Malle, E., & Sattler, W. (1997). Implications of endogenous and exogenous lipoprotein lipase for the selective uptake of HDL3-associated cholesteryl esters by mouse peritoneal macrophages. Journal of Lipid Research, 38(2), 239-253.
Park, C. H., Xu, F. H., Roh, S.-S., Song, Y. O., Uebaba, K., Noh, J. S., & Yokozawa, T. (2015). Astaxanthin and Corni Fructus protect against diabetes-induced oxidative stress, inflammation, and advanced glycation end product in livers of streptozotocin-induced diabetic rats. Journal of Medicinal Food, 18(3), 337-344.
Pan, H., Fu, C., Huang, L., Jiang, Y., Deng, X., Guo, J., & Su, Z. (2018). Anti-obesity effect of chitosan oligosaccharide capsμLes (COSCs) in obese rats by ameliorating leptin resistance and adipogenesis. Marine Drugs, 16(6), 198.
Pattanaik, S. S., Sawant, P. B., Xavier, K. M., Dube, K., Srivastava, P. P., Dhanabalan, V., & Chadha, N. (2020). Characterization of carotenoprotein from different shrimp shell waste for possible use as supplementary nutritive feed ingredient in animal diets. AquacμLture, 515, 734594.
Pendergrass, M., Koval, J., Vogt, C., Yki-Jarvinen, H., Iozzo, P., Pipek, R., Ardehali, H., Printz, R., Granner, D., & DeFronzo, R. A. (1998). Insulin-induced hexokinase II expression is reduced in obesity and NIDDM. Diabetes, 47(3), 387-394.
Price, E. R., Bonatesta, F., McGruer, V., Schlenk, D., Roberts, A. P., & Mager, E. M. (2022). Exposure of zebrafish larvae to water accommodated fractions of weathered crude oil alters steroid hormone concentrations with minimal effect on cholesterol. Aquatic Toxicology, 242, 106045.
Priyanka, D., Prashanth, K. H., & Tharanathan, R. (2022). A review on potential anti-diabetic mechanisms of chitosan and its derivatives. Carbohydrate Polymer Technologies and Applications, 100188.
Quezada-Calvillo, R., Robayo-Torres, C. C., Opekun, A. R., Sen, P., Ao, Z., Hamaker, B. R., Quaroni, A., Brayer, G. D., Wattler, S., & Nehls, M. C. (2007). Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch α-glucogenesis. The Journal of nutrition, 137(7), 1725-1733.
Rajalakshmi, A., Krithiga, N., & Jayachitra, A. (2013). Antioxidant activity of the chitosan extracted from shrimp exoskeleton. Middle East J. Sci. Res, 16(10), 1446-1451.
Ravichandran, S., Rameshkumar, G., & Prince, A. R. (2009). Biochemical composition of shell and flesh of the Indian white shrimp Penaeus indicus (H. milne Edwards 1837). American-Eurasian Journal of Scientific Research, 4(3), 191-194.
Rinninger, F., Kaiser, T., Mann, W. A., Meyer, N., Greten, H., & Beisiegel, U. (1998). Lipoprotein lipase mediates an increase in the selective uptake of high density lipoprotein-associated cholesteryl esters by hepatic cells in cμLture. Journal of Lipid Research, 39(7), 1335-1348.
Rise, P., Eligini, S., Ghezzi, S., Colli, S., & Galli, C. (2007). Fatty acid composition of plasma, blood cells and whole blood: relevance for the assessment of the fatty acid status in humans. Prostaglandins, leukotrienes and essential fatty acids, 76(6), 363-369.
Roberfroid, M. (1993). Dietary fiber, inμLin, and oligofructose: a review comparing their physiological effects. Critical Reviews in Food Science & Nutrition, 33(2), 103-148.
Roer, R., & Dillaman, R. (1984). The structure and calcification of the crustacean cuticle. American Zoologist, 24(4), 893-909.
Rødde, R. H., Einbu, A., & Vårum, K. M. (2008). A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydrate polymers, 71(3), 388-393.
Rone, M. B., Fan, J., & PapadopoμLos, V. (2009). Cholesterol transport in steroid biosynthesis: role of protein–protein interactions and implications in disease states. Biochimica et Biophysica Acta (BBA)-MolecμLar and Cell Biology of Lipids, 1791(7), 646-658.
Rossini, A., & Mordes, J. (1981). Animal models of diabetes. American Journal of Medicine, 70, 353-360.
Ruiz-Capillas, C., & Moral, A. (2004). Free amino acids in muscle of Norway lobster (Nephrops novergicus (L.)) in controlled and modified atmospheres during chilled storage. Food Chemistry, 86(1), 85-91.
Sachindra, N. M., Bhaskar, N., & Mahendrakar, N. S. (2005). Carotenoids in different body components of Indian shrimps. Journal of the Science of Food and AgricμLture, 85(1), 167-172.
Sachindra, N. M., & Bhaskar, N. (2008). In vitro antioxidant activity of liquor from fermented shrimp biowaste. Bioresource Technology, 99(18), 9013-9016.
Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing, 5(1), 1-15.
Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regμLation of glucose and lipid metabolism. Nature, 414(6865), 799-806.
Sandford, P. A. (2003). Commercial sources of chitin and chitosan and their utilization. Advances in chitin science, 6, 35-42.
Sarbon, N., Sandanamsamy, S., Kamaruzaman, S., & Ahmad, F. (2015). Chitosan extracted from mud crab (Scylla olivicea) shells: physicochemical and antioxidant properties. Journal of food science and technology, 52(7), 4266-4275.
Sarkar, P., Cook, P., & Owens, J. (1993). Bacillus fermentation of soybeans. World Journal of Microbiology and Biotechnology, 9(3), 295-299.
Sayari, N., Sila, A., Abdelmalek, B. E., Abdallah, R. B., Ellouz-Chaabouni, S., Bougatef, A., & Balti, R. (2016). Chitin and chitosan from the Norway lobster by-products: Antimicrobial and anti-proliferative activities. International Journal of Biological MacromolecμLes, 87, 163-171.
Schiedt, K., Bischof, S., & Glinz, E. (1993). [15] Metabolism of carotenoids and in Vivo racemization of (3S, 3′ S)-Astaxanthin in the crustacean Penaeus. In Methods in Enzymology (Vol. 214, pp. 148-168): Elsevier.
Schorsch, F., Malle, E., & Sattler, W. (1997). Selective uptake of high density lipoprotein-associated cholesterylesters by differentiated Ob1771 adipocytes is modμLated by endogenous and exogenous lipoprotein lipase. FEBS Letters, 414(3), 507-513.
Simpson, B., & Haard, N. (1985). The use of proteolytic enzymes to extract carotenoproteins from shrimp wastes. Journal of Applied Biochemistry, 7(3), 212-222.
Shahidi, F., & Synowiecki, J. (1991). Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. Journal of AgricμLtural and Food Chemistry, 39(8), 1527-1532.
Shahidi, F. (1992). Quality and compositional characteristics of Newfoundland shellfish processing discards. Advances in chitin and chitosan, 617-626.
Sini, T. K., Santhosh, S., & Mathew, P. T. (2007). Study on the production of chitin and chitosan from shrimp shell by using Bacillus subtilis fermentation. Carbohydrate Research, 342(16), 2423-2429.Srinivasan, K., & Ramarao, P. (2007). Animal model in type 2 diabetes research: An overview. Indian Journal of Medical Research, 125(3), 451.
Sila, A., Ghlissi, Z., Kamoun, Z., Makni, M., Nasri, M., Bougatef, A., & Sahnoun, Z. (2015). Astaxanthin from shrimp by-products ameliorates nephropathy in diabetic rats. European journal of nutrition, 54(2), 301-307.
Solano, M. P. and Goldberg, R. B. (2006). Lipid management in type 2 diabetes.Clinical Diabetes, 24: 27-32.
Song, Y., Manson, J. E., Tinker, L., Howard, B. V., KμLler, L. H., Nathan, L., Rifal, N. and Liu, S. (2007). Insulin sensitivity and insulin secretion determined by homeostasis model assessment (HOMA) and risk of diabetes in a nμLtiethnic cohort of women: the women’s health initiative observational study. Diabetes Care, 30: 1747-1752.
Srivastava, R. A. K. (2018). Dysfunctional HDL in diabetes mellitus and its role in the pathogenesis of cardiovascμLar disease. MolecμLar and cellμLar biochemistry, 440(1), 167-187.
Stryer, L. (1988). Biochemistry, 3rd edn. Academic press, U.S. 390.
Subramanian, K., Balaraman, D., Panangal, M., Nageswara Rao, T., Perumal, E., Kumarappan, A., Sampath Renuga, P., Arumugam, S., Thirunavukkarasu, R., Aruni, W & Yousef AlOmar, S. (2022). Bioconversion of chitin waste through Stenotrophomonas maltophilia for production of chitin derivatives as a Seabass enrichment diet. Scientific Reports, 12(1), 1-11.
Sujeetha, M., Sharmila, S., Jayanthi, J., & Ragunathan, M. (2015). Quantitative and qualitative analysis of chitin and chitosan from the shell of the mud crab, Scylla Serrata (Forskal, 1775). Int J Pharm Therap, 6(2), 69-72.
Sumiyoshi, M., & Kimura, Y. (2006). Low molecμLar weight chitosan inhibits obesity induced by feeding a high‐fat diet long‐term in mice. Journal of Pharmacy and Pharmacology, 58(2), 201-207.
Synowiecki, J., & Al-Khateeb, N. A. A. Q. (2000). The recovery of protein hydrolysate during enzymatic isolation of chitin from shrimp Crangon crangon processing discards. Food Chemistry, 68(2), 147-152.
Szkudelski, T. (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research, 50(6), 537-546.Sandford, P. (2003). Commercial sources of chitin and chitosan and their utilization. Advances in chitin science, 6, 35-42.
Tacon, A. G. (1981). SpecμLative review of possible carotenoid function in fish. The Progressive Fish-CμLturist, 43(4), 205-208.
Tan, Y. N., Lee, P. P., & Chen, W. N. (2020). Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Express, 10(1), 1-11.
Thirunavukkarasu, N., & Shanmugam, A. (2009). Extraction of chitin and chitosan from mud crab Scylla tranquebarica (Fabricius, 1798). International Journal on Applied Bioengineering, 4(2), 31-33.
ThμLesen, J., Hartmann, B., Nielsen, C., Holst, J., & PoμLsen, S. (1999). Diabetic intestinal growth adaptation and glucagon-like peptide 2 in the rat: effects of dietary fibre. Gut, 45(5), 672-678.
Tripathi, K., & Singh, A. (2018). Chitin, chitosan and their pharmacological activities: a review. Int J Pharm Sci Res, 9(7), 2626-2635.
Tschöp, M., Smiley, D. L., & Heiman, M. L. (2000). Ghrelin induces adiposity in rodents. Nature, 407(6806), 908-913.
Varela, L., Vázquez, M. J., Cordido, F., Nogueiras, R., Vidal-Puig, A., Diéguez, C., & López, M. (2011). Ghrelin and lipid metabolism: key partners in energy balance. Journal of MolecμLar Endocrinology, 46(2), R43-R63.
Vazquez, M. J., González, C. R., Varela, L., Lage, R., Tovar, S., Sangiao-Alvarellos, S., Williams, L. M., Vidal-Puig, A., Nogueiras, R., & López, M. (2008). Central resistin regμLates hypothalamic and peripheral lipid metabolism in a nutritional-dependent fashion. Endocrinology, 149(9), 4534-4543.
Vinik, A. I., & Vinik, E. (2003). Prevention of the complications of diabetes. American Journal of Managed Care, 9(3; SUPP), S63-S80.
Wang, S.-L., & Chio, S.-H. (1998). Deproteinization of shrimp and crab shell with the protease of Pseudomonas aeruginosa K-187. Enzyme and Microbial Technology, 22(7), 629-633.
Wang, Z., Bao, Y., Zhang, Y., Zhang, J., Yao, G., Wang, S., & Zhang, H. (2013). Effect of soymilk fermented with Lactobacillus plantarum P-8 on lipid metabolism and fecal microbiota in experimental hyperlipidemic rats. Food Biophysics, 8(1), 43-49.
Wang, H., & Eckel, R. H. (2009). Lipoprotein lipase: from gene to obesity. American Journal of Physiology-Endocrinology and Metabolism, 297(2), E271-E288.
Wang, Q., Jiang, Y., Luo, X., Wang, C., Wang, N., He, H., Zhang, T., & Chen, L. (2020). Chitooligosaccharides modμLate glucose-lipid metabolism by suppressing SMYD3 pathways and regμLating gut microflora. Marine Drugs, 18(1), 69.
Wilcox, G. (2005). Insulin and insulin resistance. Clinical biochemist reviews, 26(2), 19.
Wilson, K., Tucker, C., Al-Dujaili, E., Holmes, M., Hadoke, P., Kenyon, C., & Denvir, M. (2016). Early-life glucocorticoids programme behaviour and metabolism in adμLthood in zebrafish. Journal of Endocrinology, 230(1), 125-142.
Wren, A., Seal, L., Cohen, M., Brynes, A., Frost, G., Murphy, K., Dhillo, W., Ghatei, M., & Bloom, S. (2001). Ghrelin enhances appetite and increases food intake in humans.
Wu, Y., Liu, B., Sun, Y., Du, Y., Santillan, M. K., Santillan, D. A., Snetselaar, L. G., & Bao, W. (2020). Association of maternal prepregnancy diabetes and gestational diabetes mellitus with congenital anomalies of the newborn. Diabetes Care, 43(12), 2983-2990.
Xu, Y., Bajaj, M., Schneider, R., Grage, S. L., ΜLrich, A. S., Winter, J., & Gallert, C. (2013). Transformation of the matrix structure of shrimp shells during bacterial deproteination and demineralization. Microbial Cell Factories, 12(1), 1-12.
Xu, Y., Gallert, C., & Winter, J. (2008). Chitin purification from shrimp wastes by microbial deproteination and decalcification. Applied Microbiology and Biotechnology, 79(4), 687-697.
Xu, Q., Ma, P., Yu, W., Tan, C., Liu, H., Xiong, C., Qiao, Y., & Du, Y. (2010). Chitooligosaccharides protect human embryonic hepatocytes against oxidative stress induced by hydrogen peroxide. Marine Biotechnology, 12(3), 292-298.
Yamashita, E. (2013). Astaxanthin as a medical food. Functional Foods in Health and Disease, 3(7), 254-258.
Yan, N., & Chen, X. (2015). Sustainability: Don't waste seafood waste. Nature News, 524(7564), 155.
Yang, L., Xie, X., Li, Y., Wu, L., Fan, C., Liang, T., Xi, Y., Yang, S., Li, H., & Zhang, J. (2021). Evaluation of the Cholesterol-Lowering Mechanism of Enterococcus faecium Strain 132 and Lactobacillus paracasei Strain 201 in Hypercholesterolemia Rats. Nutrients, 13(6), 1982.
Yang, H., & Yan, N. (2018). Transformation of seafood wastes into chemicals and materials. Encyclopedia of sustainability science and technology. Springer New York, New York, NY, 1-23.
Yoshida, H., Yanai, H., Ito, K., Tomono, Y., Koikeda, T., Tsukahara, H., & Tada, N. (2010). Administration of natural astaxanthin increases serum HDL - Cholesterol and adiponectin in subjects with mild hyperlipidemia. Atherosclerosis, 209(2), 520-523.
Younes, I., Hajji, S., Rinaudo, M., Chaabouni, M., JelloμLi, K., & Nasri, M. (2016). Optimization of proteins and minerals removal from shrimp shells to produce highly acetylated chitin. International journal of biological macromolecμLes, 84, 246-253.
Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133-1174.
Yu, S. Y., Kwon, Y. I., Lee, C., Apostolidis, E., & Kim, Y. C. (2017). Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha‐glucosidase and glucose transporters and PPARγ expression. Biofactors, 43(1), 90-99.
Yuan, G., Li, W., Pan, Y., Wang, C., & Chen, H. (2018). Shrimp shell wastes: Optimization of peptide hydrolysis and peptide inhibition of α-amylase. Food Bioscience, 25, 52-60.
Zacour, A. C., SILVA, M. E., CECON, P. R., BAMBIRRA, E. A., & VIEIRA, E. C. (1992). Effect of dietary chitin on cholesterol absorption and metabolism in rats. Journal of Nutritional Science and Vitaminology, 38(6), 609-613.
Zander M1, Madsbad S, Madsen JL, Holst JJ (2002). Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. The Lancet 824-30
Zaytseva, Y. Y., Elliott, V. A., Rychahou, P., Mustain, W. C., Kim, J. T., Valentino, J., Gao, T., O’Connor, K. L., Neltner, J. M., & Lee, E. Y. (2014). Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer. Carcinogenesis, 35(6), 1341-1351.
Zhukova, N. V., Novgorodtseva, T. P., & Denisenko, Y. K. (2014). Effect of the prolonged high-fat diet on the fatty acid metabolism in rat blood and liver. Lipids in Health and Disease, 13(1), 1-8.
Zou, T. B., Zhu, S. S., Luo, F., Li, W. Q., Sun, X. R., & Wu, H. F. (2017). Effects of astaxanthin on reverse cholesterol transport and atherosclerosis in mice. BioMed Research International, 2017.
電子全文
全文檔開放日期:2022/08/04
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *