字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:蘇建豪
研究生英文姓名:Su, Chien-Hao
中文論文名稱:由大腸桿菌表現之重組反轉錄酶其生產與保存之最適化條件探討
英文論文名稱:Studies on Optimal Conditions for Production and Storage of Recombinant Reverse Transcriptase Expressed by Escherichia coli
指導教授姓名:方翠筠
口試委員中文姓名:教授︰唐世杰
教授︰曾文祺
教授︰方翠筠
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932045
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:57
中文關鍵詞:反轉錄酶發酵槽高密度細胞培養分子伴護蛋白RT-PCR
英文關鍵字:Reverse transcriptaseFermenterHigh cell density cultivationMolecular chaperonesRT-PCR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
壹、 前言 1
一、 研究背景 1
二、 研究目的 1
貳、 文獻回顧 2
一、 反轉錄酶 (reverse transcriptase) 2
二、 大腸桿菌之蛋白質表現系統 2
1. 大腸桿菌表現載體 2
2. E. coli BL21 (DE3) 3
3. E. coli BL21 StarTM (DE3) 3
4. ClearColiTM BL21 (DE3) 3
三、 分子伴護蛋白 4
四、 發酵技術 4
1. 發酵槽種類 4
2. 發酵槽培養方式 5
2.1. 連續式發酵 (continuous fermentation) 5
2.2. 批式發酵 (batch fermentation) 5
2.3. 饋料批式發酵 (fed-batch fermentation) 5
五、 蛋白質濃縮 6
1. 透析膜濃縮法 6
2. 冷凍乾燥濃縮法 6
3. 超濾膜濃縮法 6
4. 其他濃縮法 6
六、 酵素穩定性與活性保存 7
1. 海藻糖 7
2. 金屬離子 7
參、 實驗設計與流程 8
肆、 材料與方法 9
一、 實驗材料 9
1. 菌株 9
2. 載體 9
3. 培養基 9
4. 抗生素 9
5. 標準品 9
6. 市售套組 9
7. 化學藥品 10
二、 實驗設備 11
三、 實驗方法 13
1. 製備電穿孔之勝任細胞 13
2. 電穿孔轉形作用 13
3. 菌種保存 13
4. 抽取質體 DNA 13
5. 細胞破碎 14
6. SDS-PAGE 15
7. 目標重組 RT 在大腸桿菌的表現 16
8. 發酵槽生產重組 RT 18
9. 目標重組 RT 的萃取與純化 19
10. 重組 RT 的蛋白質定量 21
11. 重組 RT 的酵素活性測定 22
12. 重組 RT 的儲存安定性試驗 24
伍、 結果與討論 25
一、 重組蛋白之製備最適條件探討 25
1. 最佳表現菌株之篩選 25
2. 最適IPTG誘導濃度之篩選 25
3. 最適chaperone之篩選 25
二、 利用高密度細胞培養添加饋料之方式生產重組RT 26
三、 重組RT之親和性管柱純化及儲存安定性試驗 27
陸、 結論 29
柒、 參考文獻 30
捌、 圖表 34
玖、 附錄 55

Andrew, S. M., Titus, J. A., & Zumstein, L. (2001). Dialysis and concentration of protein solutions. Current Protocols in Toxicology, 10(1), A-3H.
Arezi, B., & Hogrefe, H. (2009). Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic acids research, 37(2), 473-481.
Baba, M., Kakue, R., Leucht, C., Rasor, P., Walch, H., Ladiges, D., Bell, C., Kojima, K., Takita, T., & Yasukawa, K. (2017). Further increase in thermostability of Moloney murine leukemia virus reverse transcriptase by mutational combination. Protein Engineering, Design and Selection, 30(8), 551-557.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
Choi, J. H., Keum, K. C., & Lee, S. Y. (2006). Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical engineering science, 61(3), 876-885.
Chua, L. H., Tan, S. C., & Liew, M. W. (2018). Process intensification of core streptavidin production through high-cell-density cultivation of recombinant E. coli and a temperature-based refolding method. Journal of biotechnology, 276, 34-41.
De Vuyst, L., & Vandamme, E. J. (1991). Microbial manipulation of nisin biosynthesis and. Nisin and novel lantibiotics, 397.
Finka, A., Mattoo, R. U., & Goloubinoff, P. (2016). Experimental milestones in the discovery of molecular chaperones as polypeptide unfolding enzymes. Annual review of biochemistry, 85, 715-742.
Gay, G., Wagner, D. T., Keatinge-Clay, A. T., & Gay, D. C. (2014). Rapid modification of the pET-28 expression vector for ligation independent cloning using homologous recombination in Saccharomyces cerevisiae. Plasmid, 76, 66-71.
Glatz, A., Pilbat, A.-M., Németh, G. L., Vince-Kontár, K., Jósvay, K., Hunya, Á., Udvardy, A., Gombos, I., Péter, M., & Balogh, G. (2016). Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. Cell Stress and Chaperones, 21(2), 327-338.
Grunberg-Manago, M. (1999). Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annual review of genetics, 33(1), 193-227.
Johnston, W., Cord-Ruwisch, R., & Cooney, M. J. (2002). Industrial control of recombinant E. coli fed-batch culture: new perspectives on traditional controlled variables. Bioprocess and Biosystems Engineering, 25(2), 111-120.
Kim, H.-K., Rasnik, I., Liu, J., Ha, T., & Lu, Y. (2007). Dissecting metal ion–dependent folding and catalysis of a single DNAzyme. Nature chemical biology, 3(12), 763-768.
Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M., & Ulrich Hartl, F. (2013). Molecular chaperone functions in protein folding and proteostasis. Annual review of biochemistry, 82, 323-355.
Kotewicz, M. L., D'Alessio, J. M., Driftmier, K. M., Blodgett, K. P., & Gerard, G. F. (1985). Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene, 35(3), 249-258.
Lin, L., Wan, F., & Hu, J. (2008). Functional and structural dynamics of hepadnavirus reverse transcriptase during protein-primed initiation of reverse transcription: effects of metal ions. Journal of virology, 82(12), 5703-5714.
Lin, T., Quinn, T., Walsh, M., Grandgenett, D., & Lee, J. (1991). Avian myeloblastosis virus reverse transcriptase. Effect of glycerol on its hydrodynamic properties. Journal of Biological Chemistry, 266(3), 1635-1640.
Lopez, P. J., Marchand, I., Joyce, S. A., & Dreyfus, M. (1999). The C‐terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Molecular microbiology, 33(1), 188-199.
Mamat, U., Wilke, K., Bramhill, D., Schromm, A. B., Lindner, B., Kohl, T. A., Corchero, J. L., Villaverde, A., Schaffer, L., & Head, S. R. (2015). Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microbial cell factories, 14(1), 1-15.
Mamat, U., Woodard, R. W., Wilke, K., Souvignier, C., Mead, D., Steinmetz, E., Terry, K., Kovacich, C., Zegers, A., & Knox, C. (2013). Endotoxin-free protein production—ClearColi™ technology. Nature Methods, 10(9), 916-916.
Matthey, B., Engert, A., Klimka, A., Diehl, V., & Barth, S. (1999). A new series of pET-derived vectors for high efficiency expression of Pseudomonas exotoxin-based fusion proteins. Gene, 229(1-2), 145-153.
Mitraki, A., & King, J. (1989). Protein folding intermediates and inclusion body formation. Bio/technology, 7(7), 690-697.
Nolan, T., Hands, R. E., & Bustin, S. A. (2006). Quantification of mRNA using real-time RT-PCR. Nature protocols, 1(3), 1559-1582.
Ohtake, S., & Wang, Y. J. (2011). Trehalose: current use and future applications. Journal of pharmaceutical sciences, 100(6), 2020-2053.
Page-Sharp, M., Behm, C. A., & Smith, G. D. (1999). Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils. Biochimica et Biophysica Acta (BBA)-General Subjects, 1472(3), 519-528.
Petsch, D., & Anspach, F. B. (2000). Endotoxin removal from protein solutions. Journal of biotechnology, 76(2-3), 97-119.
Pinsach, J., de Mas, C., & López-Santín, J. (2008). Induction strategies in fed-batch cultures for recombinant protein production in Escherichia coli: Application to rhamnulose 1-phosphate aldolase. Biochemical Engineering Journal, 41(2), 181-187.
Potts, M., Slaughter, S. M., Hunneke, F.-U., Garst, J. F., & Helm, R. F. (2005). Desiccation tolerance of prokaryotes: application of principles to human cells. Integrative and Comparative Biology, 45(5), 800-809.
Restaino, O. F., Cimini, D., De Rosa, M., Catapano, A., & Schiraldi, C. (2011). High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production. Microbial cell factories, 10(1), 1-10.
Ringe, D., & Petsko, G. A. (2009). Q&A: What are pharmacological chaperones and why are they interesting?. Journal of biology, 8(9), 80.
Rodgers, D., Gamblin, S., Harris, B., Ray, S., Culp, J., Hellmig, B., Woolf, D., Debouck, C., & Harrison, S. (1995). The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proceedings of the National Academy of Sciences, 92(4), 1222-1226.
Sabbioni, E., Blanch, N., Baricevic, K., & Serra, M.-á. (1999). Effects of trace metal compounds on HIV-1 reverse transcriptase. Biological trace element research, 68(2), 107-119.
Shilling, P. J., Mirzadeh, K., Cumming, A. J., Widesheim, M., Köck, Z., & Daley, D. O. (2020). Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. Communications biology, 3(1), 1-8.
Šiurkus, J., Panula-Perälä, J., Horn, U., Kraft, M., Rimšeliene, R., & Neubauer, P. (2010). Novel approach of high cell density recombinant bioprocess development: Optimisation and scale-up from microlitre to pilot scales while maintaining the fed-batch cultivation mode of E. coli cultures. Microbial cell factories, 9(1), 1-17.
Taherimehr, Z., Zaboli, M., & Torkzadeh-Mahani, M. (2020). New insight into the molecular mechanism of the trehalose effect on urate oxidase stability. Journal of Biomolecular Structure and Dynamics, 1-11.
Tejayadi, S., & Cheryan, M. (1995). Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor. Applied microbiology and biotechnology, 43(2), 242-248.
Tereshina, V. (2005). Thermotolerance in fungi: the role of heat shock proteins and trehalose. Microbiology, 74(3), 247-257.
Thiry, M., & Cingolani, D. (2002). Optimizing scale-up fermentation processes. TRENDS in Biotechnology, 20(3), 103-105.
Thomas, J. G., Ayling, A., & Baneyx, F. (1997). Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Applied biochemistry and biotechnology, 66(3), 197-238.
Toyoda, T., Wang, Y., Wen, Y., & Tanaka, Y. (2020). Fluorescence-based biochemical analysis of human hepatitis B virus reverse transcriptase activity. Analytical biochemistry, 597, 113642.
Valasatava, Y., Rosato, A., Furnham, N., Thornton, J. M., & Andreini, C. (2018). To what extent do structural changes in catalytic metal sites affect enzyme function? Journal of inorganic biochemistry, 179, 40-53.
Valverde-Garduño, V., Gariglio, P., & Gutiérrez, L. (1998). Functional analysis of HIV-1 reverse transcriptase motif C: site-directed mutagenesis and metal cation interaction. Journal of molecular evolution, 47(1), 73-80.
Walter, S., & Buchner, J. (2002). Molecular chaperones—cellular machines for protein folding. Angewandte Chemie International Edition, 41(7), 1098-1113.
Wang, H., Wang, F., Wang, W., Yao, X., Wei, D., Cheng, H., & Deng, Z. (2014). Improving the expression of recombinant proteins in E. coli BL21 (DE3) under acetate stress: an alkaline pH shift approach. PloS one, 9(11), 112777.
Waterman, K. C. (2009). Understanding and predicting pharmaceutical product shelf-life. In Handbook of stability testing in pharmaceutical development (pp. 115-135). Springer, New York, NY.
Xin, F., Dong, W., Dai, Z., Jiang, Y., Yan, W., Lv, Z., Fang, Y., & Jiang, M. (2019). Biosynthetic Technology and Bioprocess Engineering. In Current Developments in Biotechnology and Bioengineering (pp. 207-232). Elsevier.
Yasukawa, K., Mizuno, M., Konishi, A., & Inouye, K. (2010). Increase in thermal stability of Moloney murine leukaemia virus reverse transcriptase by site-directed mutagenesis. Journal of biotechnology, 150(3), 299-306.
Zhang, J., Suflita, M., Fiaschetti, C., Li, G., Li, L., Zhang, F., Dordick, J., & Linhardt, R. (2015). High cell density cultivation of a recombinant Escherichia coli strain expressing a 6‐O‐sulfotransferase for the production of bioengineered heparin. Journal of applied microbiology, 118(1), 92-98.
Zhou, Y., Ma, X., Hou, Z., Xue, X., Meng, J., Li, M., Jia, M., & Luo, X. (2012). High cell density cultivation of recombinant Escherichia coli for prodrug of recombinant human GLPs production. Protein expression and purification, 85(1), 38-43.
Zucha, D., Androvic, P., Kubista, M., & Valihrach, L. (2020). Performance comparison of reverse transcriptases for single-cell studies. Clinical chemistry, 66(1), 217-228.
(此全文20270731後開放外部瀏覽)
電子全文
全文檔開放日期:2027/07/31
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 嗜高溫海藻糖生成相關酵素之基因選殖以及海藻糖苷糊精生成酶的生產與特性探討
2. 嗜高溫古細菌之重組肝醣支切酶的純化及其特性之探討
3. 利用羧酸化磁珠固定 C 端帶有離胺酸標籤之Thermoanaerobacterium saccharolyticum NTOU1 L-鼠李糖異構酶
4. Agrobacterium sp. ATCC 31750 菌株經基因重組後所產阿洛酮糖表異構酶對於活性及特性之影響
5. 源自Synechocystis sp. PCC6803 藍藻蛋白合成酶在大腸桿菌之表現及特性探討
6. 源自Thermoanaerobacterium saccharolyticum NTOU1 之 L-鼠李糖異構酶的固定化探討
7. Agrobacterium sp. ATCC 31750菌株所產阿洛酮糖表異構酶之基因選殖、表現、純化及特性探討
8. Geodermatophilus obscurus DSM 43160 來源之 L-核糖異構酶之基因選殖、表現、純化及特性探討
9. 由攜帶藍藻蛋白合成酶基因的重組乳酸菌生產藍藻蛋白與利用反應曲面法進行培養基最適化之探討
10. 熱穩定鼠李糖異構酶之表現、純化、特性探討及蛋白質工程
11. 海藻糖生成酶的生產與特性探討
12. 活性部位芳香族殘基對於海藻糖苷糊精生成酶之轉糖基與水解作用的影響
13. 鹽濃度對於嗜熱性肝醣支切酶的活性及構形之影響
14. 活性部位殘基突變後對於海藻糖生成酶之活性與基質選擇性的影響
15. 活性部位苯丙胺酸殘基突變後對於海藻糖苷糊精生成酶之轉糖基與水解作用的影響
 
* *