字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:楊竣傑
研究生英文姓名:Yang, Jun-Jie
中文論文名稱:利用蛋白質工程提升Kitasatospora sp. Root187 來源重組幾丁聚醣酶之熱穩定性
英文論文名稱:Enhancing Thermostability of Recombinant Chitosanase from Kitasatospora sp. Root187 by Protein Engineering
指導教授姓名:方翠筠
口試委員中文姓名:教授︰方翠筠
教授︰蔡國珍
教授︰曾文祺
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932043
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:66
中文關鍵詞:幾丁聚醣酶幾丁寡醣定位突變熱穩定性
英文關鍵字:chitosanasechitooligosaccharidesite-directed mutagenesisthermostability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
目錄

壹、 研究背景與目的 1
一、 研究背景 1
二、 研究目的 2
貳、 文獻整理 3
一、 幾丁質及其相關醣類 3
1. 幾丁質 (chitin) 3
2. 幾丁聚醣 (chitosan) 4
3. 幾丁寡醣 (COS) 5
二、 幾丁聚醣酶 (chitosanase) 7
三、 不同來源之幾丁聚醣酶的特性 8
1. Streptomyces albolongus ATCC 27414 來源之幾丁聚醣酶 8
2. Streptomyces sp. N174 來源之幾丁聚醣酶 8
3. Streptomyces griseus HUT 6037 來源之幾丁聚醣酶 8
4. Streptomyces coelicolor A3 (2) 來源之幾丁聚醣酶 8
5. Streptomyces sp. no. 6 來源之幾丁聚醣酶 9
6. Streptomyces roseolus 來源之幾丁聚醣酶 9
7. Amycolatopsis sp. CsO-2 來源之幾丁聚醣酶 9
四、 Kitasatospora sp. Root187 來源之 CSNK 介紹 9
五、 提升酵素熱穩定性 10
1. 氫鍵 (hydrogen bond) 10
2. 鹽橋 (salt bridges) 10
3. 疏水性交互作用 (hydrophobic interactions) 11
4. 芳香基團之交互作用 (aromatic interactions) 11
5. 導入雙硫鍵 (disulfide bonds) 11
6. 增加脯胺酸 (proline, Pro, P) 或減少甘胺酸 (glycine, Gly, G) 12
7. 酵素表面導入精胺酸 (arginine, Arg, R) 12
六、 電腦輔助軟體介紹 13
1. SWISS-MODEL 13
2. PyMOL 13
3. Disulfide by Design 2 13
參、 實驗設計與流程 15
肆、 材料與方法 16
一、 實驗材料 16
1. 菌株與載體 16
2. 抗生素 16
3. 培養基 16
4. 標準品 16
5. 市售套組 16
6. 酵素 16
7. 化學藥品 17
8. 實驗設備 19
9. 電腦輔助軟體 20
二、 實驗步驟與方法 21
1. 選擇突變點 21
2. 定位突變 21
3. 轉形至表現宿主 E. coli BL21 (DE3) 26
4. 菌種保存 26
5. 突變型酵素熱穩定篩選 27
6. CSNK表現與純化 28
7. 蛋白質特性探討 30
伍、 結果與討論 33
一、 突變點選擇及引子設計並進行定位突變 33
二、 以酵素活性及熱穩定性篩選突變型酵素 33
三、 探討純化突變型 CSNK 特性 34
1. 大量表現與純化 34
2. 熱穩定性 34
3. 最適作用 pH 值 35
4. 最適作用溫度 35
陸、 結論 37
柒、 參考文獻 38
捌、 圖表 46
玖、 附錄 65

參考文獻

劉俐妤,2020,源自 Kitasatospora sp. Root187 與 Streptomyces xanthocidicus 之重組幾丁聚醣酶的表現及特性探討,國立臺灣海洋大學食品科學系碩士論文,基隆。
卓憲駿,2007,不同高效能液相層析法測定幾丁質/幾丁聚醣 N-乙醯化程度之比較,國立臺灣海洋大學食品科學系碩士論文,基隆。
周哲永,2020,利用蛋白質工程將 Actinotalea fermentans ATCC 43279 來源重組 L-核糖異構酶表面導入精胺酸以改變其熱穩定性,國立臺灣海洋大學食品科學系碩士論文,基隆。
陳澄河,2003,蝦蟹殼傳奇,科學發展,369,62-67。
陳榮輝,2001,幾丁質、幾丁聚醣的生產製造、檢測與應用,科學發展,29,10。
顏艾,2021,Deinococcus indicus DSM 15307 來源重組澱粉蔗糖酶之特性探討並以蛋白質工程改變其熱穩定性,國立臺灣海洋大學食品科學系碩士論文,基隆。
Akbulut, N., Öztürk, M. T., Pijning, T., Öztürk, S. İ., & Gümüşel, F. (2013). Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. Journal of Biotechnology 164(1), 123-129.
Borders Jr, C., Broadwater, J. A., Bekeny, P. A., Salmon, J. E., Lee, A. S., Eldridge, A. M., & Pett, V. B. (1994). A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Protein Science, 3(4), 541-548.
Bosshard, H. R., Marti, D. N., & Jelesarov, I. (2004). Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. Journal of Molecular Recognition, 17(1), 1-16.
Boucher, I., Dupuy, A., Vidal, P., Neugebauer, W. A., & Brzezinski, R. (1992). Purification and characterization of a chitosanase from Streptomyces N174. Applied Microbiology and Biotechnology 38(2), 188-193.
Brayan, P. N., Rollence, M. L., Pantoliano, M. W., Wood, J., Finzel, B. C., Gilliland, G. L., . . . Poulos, T. L. (1986). Proteases of enhanced stability: characteization of a thermostable variant of subtilisin. Proteins: Structure, Function, and Bioinformatics, 1(4), 326-334.
Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic acids research, 37(suppl_1), D233-D238.
Chakravorty, D., Khan, M. F., & Patra, S. (2017). Multifactorial level of extremostability of proteins: can they be exploited for protein engineering? Extremophiles, 21(3), 419-444.
Chang, C.-T., Lin, Y.-L., Lu, S.-W., Huang, C.-W., Wang, Y.-T., & Chung, Y.-C. (2016). Characterization of a chitosanase from jelly fig (Ficus awkeotsang Makino) latex and its application in the production of water-soluble low molecular weight chitosans. Plos one, 11(3), e0150490.
Cheng, C.-Y., Chang, C.-H., Wu, Y.-J., & Li, Y.-K. (2006). Exploration of glycosyl hydrolase family 75, a chitosanase from Aspergillus fumigatus. Journal of Biological Chemistry 281(6), 3137-3144.
Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC bioinformatics, 14(1), 1-7.
Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in polymer science, 36(8), 981-1014.
de Bakker, P. I., HuÈnenberger, P. H., & McCammon, J. A. (1999). Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability. Journal of molecular biology, 285(4), 1811-1830.
Deng, Z., Yang, H., Shin, H.-d., Li, J., & Liu, L. (2014). Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability. Applied Microbiology and Biotechnology 98(21), 8937-8945.
Dombkowski, A. A., Sultana, K. Z., & Craig, D. B. (2014). Protein disulfide engineering. FEBS letters, 588(2), 206-212.
Dong, H., Wang, Y., Zhao, L., Zhou, J., Xia, Q., Jiang, L., & Fan, L. (2014). Purification of DP 6 to 8 chitooligosaccharides by nanofiltration from the prepared chitooligosaccharides syrup. Bioresources and Bioprocessing, 1(1), 1-12.
Erwin, C., Barnett, B., Oliver, J., & Sullivan, J. (1990). Effects of engineered salt bridges on the stability of subtilisin BPN'. Protein Engineering, Design and Selection, 4(1), 87-97.
Feng, X., Tang, H., Han, B., Lv, B., & Li, C. (2016). Enhancing the Thermostability of β-Glucuronidase by rationally redesigning the catalytic domain based on sequence alignment strategy. Industrial & Engineering Chemistry Research, 55(19), 5474-5483.
Fuchs, P. F., & Alix, A. J. (2005). High accuracy prediction of β‐turns and their types using propensities and multiple alignments. Proteins: Structure, Function, and Bioinformatics, 59(4), 828-839.
Fukamizo, T., & Brzezinski, R. (1997). Chitosanase from Streptomyces sp. strain N174: a comparative review of its structure and function. Biochemistry and cell biology, 75(6), 687-696.
Fukamizo, T., Fleury, A., Côté, N., Mitsutomi, M., & Brzezinski, R. (2006). Exo-β-D-glucosaminidase from Amycolatopsis orientalis: Catalytic residues, sugar recognition specificity, kinetics, and synergism. Glycobiology, 16(11), 1064-1072.
Gromiha, M. M., Pathak, M. C., Saraboji, K., Ortlund, E. A., & Gaucher, E. A. (2013). Hydrophobic environment is a key factor for the stability of thermophilic proteins. Proteins: Structure, Function, and Bioinformatics, 81(4), 715-721.
Guo, N., Sun, J., Wang, W., Gao, L., Liu, J., Liu, Z., . . . Mao, X. (2019). Cloning, expression and characterization of a novel chitosanase from Streptomyces albolongus ATCC 27414. Food chemistry, 286, 696-702.
Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in food science & technology, 48, 40-50.
Huang, J.-r., Huang, C.-y., Huang, Y.-w., & Chen, R.-h. (2007). Shelf-life of fresh noodles as affected by chitosan and its Maillard reaction products. LWT - Food Science and Technology, 40(7), 1287-1291.
Huang, J., Xie, D.-F., & Feng, Y. (2017). Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations. Biochemical and biophysical research communications, 483(1), 397-402.
Je, J.-Y., & Kim, S.-K. (2012). Chitooligosaccharides as potential nutraceuticals: production and bioactivities. Advances in food and nutrition research, 65, 321-336.
Jeon, Y.-J., Shahidi, F., & Kim, S.-K. (2000). Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Reviews International, 16(2), 159-176.
Jiang, T., Feng, L., & Li, J. (2012). Changes in microbial and postharvest quality of shiitake mushroom (Lentinus edodes) treated with chitosan–glucose complex coating under cold storage. Food chemistry, 131(3), 780-786.
Jiang, X., Chen, D., Chen, L., Yang, G., & Zou, S. (2012). Purification, characterization, and action mode of a chitosanase from Streptomyces roseolus induced by chitin. Carbohydrate research, 355, 40-44.
Jiang, X., Chen, G., & Wang, L. (2016). Structural and dynamic evolution of the amphipathic N-terminus diversifies enzyme thermostability in the glycoside hydrolase family 12. Physical Chemistry Chemical Physics, 18(31), 21340-21350.
Jo, B. H., Park, T. Y., Park, H. J., Yeon, Y. J., Yoo, Y. J., & Cha, H. J. (2016). Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration. Scientific reports, 6(1), 1-9.
Kanatt, S. R., Chander, R., & Sharma, A. (2008). Chitosan glucose complex–A novel food preservative. Food chemistry, 106(2), 521-528.
Kim, S.-K., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate polymers, 62(4), 357-368.
King, N. P., Lee, T. M., Sawaya, M. R., Cascio, D., & Yeates, T. O. (2008). Structures and functional implications of an AMP-binding cystathionine β-synthase domain protein from a hyperthermophilic archaeon. Journal of molecular biology, 380(1), 181-192.
Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), 1-27.
Kumar, S., Tsai, C.-J., & Nussinov, R. (2000). Factors enhancing protein thermostability. Protein engineering, 13(3), 179-191.
Lam, W. W., & Siu, S. W. (2017). PyMOL mControl: Manipulating molecular visualization with mobile devices. Biochemistry and Molecular Biology Education, 45(1), 76-83.
Lang, E., Kienzle-Sterzer, C., Rodriguez-Sanchez, D., & Rha, C. (1982). Rheological behavior of a typical random coil polyelectrolyte: Chitosan. Paper presented at the In Chitin Chitosan; Proceeding 2nd International Conference.
Larsen, D. M., Nyffenegger, C., Swiniarska, M. M., Thygesen, A., Strube, M. L., Meyer, A. S., & Mikkelsen, J. D. (2015). Thermostability enhancement of an endo-1, 4-β-galactanase from Talaromyces stipitatus by site-directed mutagenesis. Applied Microbiology and Biotechnology 99(10), 4245-4253.
Li, K., Xing, R., Liu, S., & Li, P. (2016). Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydrate polymers, 139, 178-190.
Li, L., Liao, H., Yang, Y., Gong, J., Liu, J., Jiang, Z., . . . Ni, H. (2018). Improving the thermostability by introduction of arginines on the surface of α-L-rhamnosidase (r-Rha1) from Aspergillus niger. International journal of biological macromolecules, 112, 14-21.
Loladze, V. V., & Makhatadze, G. I. (2005). Both helical propensity and side‐chain hydrophobicity at a partially exposed site in α‐helix contribute to the thermodynamic stability of ubiquitin. Proteins: Structure, Function, and Bioinformatics, 58(1), 1-6.
Luan, Z.-J., Yu, H.-L., Ma, B.-D., Qi, Y.-K., Chen, Q., & Xu, J.-H. (2016). Dramatically improved performance of an esterase for cilastatin synthesis by cap domain engineering. Industrial & Engineering Chemistry Research, 55(47), 12167-12172.
Mabrouk, S. B., Aghajari, N., Ali, M. B., Messaoud, E. B., Juy, M., Haser, R., & Bejar, S. (2011). Enhancement of the thermostability of the maltogenic amylase MAUS149 by Gly312Ala and Lys436Arg substitutions. Bioresource technology, 102(2), 1740-1746.
Martinou, A., Koutsioulis, D., & Bouriotis, V. (2002). Expression, purification, and characterization of a cobalt-activated chitin deacetylase (Cda2p) from Saccharomyces cerevisiae. Protein expression and purification, 24(1), 111-116.
Matthews, B., Nicholson, H., & Becktel, W. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proceedings of the National Academy of Sciences, 84(19), 6663-6667.
Mei, Y.-x., Chen, H.-x., Zhang, J., Zhang, X.-d., & Liang, Y.-x. (2013). Protective effect of chitooligosaccharides against cyclophosphamide-induced immunosuppression in mice. International journal of biological macromolecules, 62, 330-335.
Muzzarelli, R. A., & Rocchetti, R. (1985). Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate polymers, 5(6), 461-472.
Nata, I. F., Wang, S. S.-S., Wu, T.-M., & Lee, C.-K. (2012). β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydrate polymers, 90(4), 1509-1514.
Nawani, N., & Kapadnis, B. (2005). Optimization of chitinase production using statistics based experimental designs. Process Biochemistry, 40(2), 651-660.
Okajima, S., Ando, A., Shinoyama, H., & Fujii, T. (1994). Purification and characterization of an extracellular chitosanase produced by Amycolatopsis sp. CsO-2. Journal of Fermentation and Bioengineering 77(6), 617-620.
Ordu, E. B., Sessions, R. B., Clarke, A. R., & Karagüler, N. G. (2013). Effect of surface electrostatic interactions on the stability and folding of formate dehydrogenase from Candida methylica. Journal of Molecular Catalysis B: Enzymatic, 95, 23-28.
Pantoliano, M. W., Whitlow, M., Wood, J. F., Dodd, S. W., Hardman, K. D., Rollence, M. L., & Bryan, P. N. (1989). Large increases in general stability for subtilisin BPN'through incremental changes in the free energy of unfolding. Biochemistry, 28(18), 7205-7213.
Perry, L. J., & Wetzel, R. (1984). Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation. Science, 226(4674), 555-557.
Price, J. S., & Storck, R. (1975). Production, purification, and characterization of an extracellular chitosanase from Streptomyces. Journal of bacteriology, 124(3), 1574-1585.
Rao, M., Chawla, S., Chander, R., & Sharma, A. (2011). Antioxidant potential of Maillard reaction products formed by irradiation of chitosan–glucose solution. Carbohydrate polymers, 83(2), 714-719.
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in polymer science, 31(7), 603-632.
Riordan, J., McElvany, K., & Borders, C. (1977). Arginyl residues: anion recognition sites in enzymes. Science, 195(4281), 884-886.
Roberts, G. A. (1992). Chitin chemistry: Macmillan International Higher Education.
Scott, K. A., Alonso, D. O., Sato, S., Fersht, A. R., & Daggett, V. (2007). Conformational entropy of alanine versus glycine in protein denatured states. Proceedings of the National Academy of Sciences, 104(8), 2661-2666.
Ser, H.-L., Tan, L. T.-H., Law, J. W.-F., Chan, K.-G., Duangjai, A., Saokaew, S., . . . Goh, B.-H. (2017). Focused review: cytotoxic and antioxidant potentials of mangrove-derived Streptomyces. Frontiers in microbiology, 8, 2065.
Shahidi, F., Arachchi, J. K. V., & Jeon, Y.-J. (1999). Food applications of chitin and chitosans. Trends in food science & technology, 10(2), 37-51.
Shimahara, K., & Takiguchi, Y. (1988). Preparation of crustacean chitin. Methods in enzymology, 161, 417-423.
Sinha, S., Chand, S., & Tripathi, P. (2016). Recent progress in chitosanase production of monomer-free chitooligosaccharides: bioprocess strategies and future applications. Applied Microbiology and Biotechnology 180(5), 883-899.
Szilágyi, A., & Závodszky, P. (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 8(5), 493-504.
Tanabe, T., Kawase, T., Watanabe, T., Uchida, Y., & Mitsutomi, M. (2000). Purification and characterization of a 49-kDa chitinase from Streptomyces griseus HUT 6037. Journal of bioscience and bioengineering, 89(1), 27-32.
Tatko, C. D., & Waters, M. L. (2002). Selective aromatic interactions in β-hairpin peptides. Journal of the American Chemical Society, 124(32), 9372-9373.
Thadathil, N., & Velappan, S. P. (2014). Recent developments in chitosanase research and its biotechnological applications: a review. Food chemistry, 150, 392-399.
Tseng, W.-C., Lin, J.-W., Wei, T.-Y., & Fang, T.-Y. (2008). A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Analytical biochemistry, 375(2), 376-378.
Veno, J., Ahmad Kamarudin, N. H., Mohamad Ali, M. S., & Masomian, M. (2017). Directed evolution of recombinant C-terminal truncated Staphylococcus epidermidis lipase AT2 for the enhancement of thermostability. International journal of molecular sciences, 18(11), 2202.
Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and molecular biology reviews, 65(1), 1-43.
Viens, P., Lacombe-Harvey, M.-È., & Brzezinski, R. (2015). Chitosanases from family 46 of glycoside hydrolases: from proteins to phenotypes. Marine drugs, 13(11), 6566-6587.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., . . . Bordoli, L. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296-W303.
Xing, R., Liu, Y., Li, K., Yu, H., Liu, S., Yang, Y., . . . Li, P. (2017). Monomer composition of chitooligosaccharides obtained by different degradation methods and their effects on immunomodulatory activities. Carbohydrate polymers, 157, 1288-1297.
Xu, W., Jiang, C., Kong, X., Liang, Y., Rong, M., & Liu, W. (2012). Chitooligosaccharides and N-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell-mediated antitumor immune responses. Molecular Medicine Reports, 6(2), 385-390.
Xu, Z., Cai, T., Xiong, N., Zou, S.-P., Xue, Y.-P., & Zheng, Y.-G. (2018). Engineering the residues on “A” surface and C-terminal region to improve thermostability of nitrilase. Enzyme and microbial technology, 113, 52-58.
Xu, Z., Cen, Y.-K., Zou, S.-P., Xue, Y.-P., & Zheng, Y.-G. (2020). Recent advances in the improvement of enzyme thermostability by structure modification. Critical reviews in biotechnology, 40(1), 83-98.
Yin, H., Du, Y., & Dong, Z. (2016). Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Frontiers in plant science, 7, 522.
Yokota, K., Satou, K., & Ohki, S.-y. (2006). Comparative analysis of protein thermostability: Differences in amino acid content and substitution at the surfaces and in the core regions of thermophilic and mesophilic proteins. Science and Technology of Advanced Materials, 7(3), 255.
Yuan, X., Zheng, J., Jiao, S., Cheng, G., Feng, C., Du, Y., & Liu, H. (2019). A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydrate polymers, 220, 60-70.
Zhang, J., Cao, H., Li, S., Zhao, Y., Wang, W., Xu, Q., . . . Yin, H. (2015). Characterization of a new family 75 chitosanase from Aspergillus sp. W-2. International journal of biological macromolecules, 81, 362-369.
Zhu, K.-X., Li, J., Li, M., Guo, X.-N., Peng, W., & Zhou, H.-M. (2013). Functional properties of chitosan–xylose Maillard reaction products and their application to semi-dried noodle. Carbohydrate polymers, 92(2), 1972-1977.
(此全文20270727後開放外部瀏覽)
電子全文
全文檔開放日期:2027/07/27
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 幾丁寡醣的生產-幾丁質酶工程法
2. 利用蛋白質工程提昇 D-阿洛酮糖表異構酶之活性回收及熱穩定性
3. 以蛋白質工程提昇 Agrobacterium sp. ATCC 31750來源之重組 D-阿洛酮糖表異構酶之熱穩定性與利用固定化菌體由果糖生產阿洛酮糖
4. 利用蛋白質工程將 Actinotalea fermentans ATCC 43279 來源重組 L-核糖異構酶表面導入精胺酸以改變其熱穩定性
5. Lactococcus lactis subsp. cremoris NZ9000 來源重組L-精胺酸脫亞胺酶特性與蛋白質工程改變其熱穩定性以生產L-瓜胺酸
6. Deinococcus indicus DSM 15307 來源重組澱粉蔗糖酶之特性探討並以蛋白質工程改變其熱穩定性
7. 嗜高溫海藻糖生成相關酵素之基因選殖以及海藻糖苷糊精生成酶的生產與特性探討
8. 嗜高溫古細菌之重組肝醣支切酶的純化及其特性之探討
9. 利用羧酸化磁珠固定 C 端帶有離胺酸標籤之Thermoanaerobacterium saccharolyticum NTOU1 L-鼠李糖異構酶
10. Agrobacterium sp. ATCC 31750 菌株經基因重組後所產阿洛酮糖表異構酶對於活性及特性之影響
11. 源自Synechocystis sp. PCC6803 藍藻蛋白合成酶在大腸桿菌之表現及特性探討
12. 源自Thermoanaerobacterium saccharolyticum NTOU1 之 L-鼠李糖異構酶的固定化探討
13. Agrobacterium sp. ATCC 31750菌株所產阿洛酮糖表異構酶之基因選殖、表現、純化及特性探討
14. Geodermatophilus obscurus DSM 43160 來源之 L-核糖異構酶之基因選殖、表現、純化及特性探討
15. 由攜帶藍藻蛋白合成酶基因的重組乳酸菌生產藍藻蛋白與利用反應曲面法進行培養基最適化之探討
 
* *