|
參考文獻
劉俐妤,2020,源自 Kitasatospora sp. Root187 與 Streptomyces xanthocidicus 之重組幾丁聚醣酶的表現及特性探討,國立臺灣海洋大學食品科學系碩士論文,基隆。 卓憲駿,2007,不同高效能液相層析法測定幾丁質/幾丁聚醣 N-乙醯化程度之比較,國立臺灣海洋大學食品科學系碩士論文,基隆。 周哲永,2020,利用蛋白質工程將 Actinotalea fermentans ATCC 43279 來源重組 L-核糖異構酶表面導入精胺酸以改變其熱穩定性,國立臺灣海洋大學食品科學系碩士論文,基隆。 陳澄河,2003,蝦蟹殼傳奇,科學發展,369,62-67。 陳榮輝,2001,幾丁質、幾丁聚醣的生產製造、檢測與應用,科學發展,29,10。 顏艾,2021,Deinococcus indicus DSM 15307 來源重組澱粉蔗糖酶之特性探討並以蛋白質工程改變其熱穩定性,國立臺灣海洋大學食品科學系碩士論文,基隆。 Akbulut, N., Öztürk, M. T., Pijning, T., Öztürk, S. İ., & Gümüşel, F. (2013). Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. Journal of Biotechnology 164(1), 123-129. Borders Jr, C., Broadwater, J. A., Bekeny, P. A., Salmon, J. E., Lee, A. S., Eldridge, A. M., & Pett, V. B. (1994). A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Protein Science, 3(4), 541-548. Bosshard, H. R., Marti, D. N., & Jelesarov, I. (2004). Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. Journal of Molecular Recognition, 17(1), 1-16. Boucher, I., Dupuy, A., Vidal, P., Neugebauer, W. A., & Brzezinski, R. (1992). Purification and characterization of a chitosanase from Streptomyces N174. Applied Microbiology and Biotechnology 38(2), 188-193. Brayan, P. N., Rollence, M. L., Pantoliano, M. W., Wood, J., Finzel, B. C., Gilliland, G. L., . . . Poulos, T. L. (1986). Proteases of enhanced stability: characteization of a thermostable variant of subtilisin. Proteins: Structure, Function, and Bioinformatics, 1(4), 326-334. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic acids research, 37(suppl_1), D233-D238. Chakravorty, D., Khan, M. F., & Patra, S. (2017). Multifactorial level of extremostability of proteins: can they be exploited for protein engineering? Extremophiles, 21(3), 419-444. Chang, C.-T., Lin, Y.-L., Lu, S.-W., Huang, C.-W., Wang, Y.-T., & Chung, Y.-C. (2016). Characterization of a chitosanase from jelly fig (Ficus awkeotsang Makino) latex and its application in the production of water-soluble low molecular weight chitosans. Plos one, 11(3), e0150490. Cheng, C.-Y., Chang, C.-H., Wu, Y.-J., & Li, Y.-K. (2006). Exploration of glycosyl hydrolase family 75, a chitosanase from Aspergillus fumigatus. Journal of Biological Chemistry 281(6), 3137-3144. Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC bioinformatics, 14(1), 1-7. Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in polymer science, 36(8), 981-1014. de Bakker, P. I., HuÈnenberger, P. H., & McCammon, J. A. (1999). Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability. Journal of molecular biology, 285(4), 1811-1830. Deng, Z., Yang, H., Shin, H.-d., Li, J., & Liu, L. (2014). Structure-based rational design and introduction of arginines on the surface of an alkaline α-amylase from Alkalimonas amylolytica for improved thermostability. Applied Microbiology and Biotechnology 98(21), 8937-8945. Dombkowski, A. A., Sultana, K. Z., & Craig, D. B. (2014). Protein disulfide engineering. FEBS letters, 588(2), 206-212. Dong, H., Wang, Y., Zhao, L., Zhou, J., Xia, Q., Jiang, L., & Fan, L. (2014). Purification of DP 6 to 8 chitooligosaccharides by nanofiltration from the prepared chitooligosaccharides syrup. Bioresources and Bioprocessing, 1(1), 1-12. Erwin, C., Barnett, B., Oliver, J., & Sullivan, J. (1990). Effects of engineered salt bridges on the stability of subtilisin BPN'. Protein Engineering, Design and Selection, 4(1), 87-97. Feng, X., Tang, H., Han, B., Lv, B., & Li, C. (2016). Enhancing the Thermostability of β-Glucuronidase by rationally redesigning the catalytic domain based on sequence alignment strategy. Industrial & Engineering Chemistry Research, 55(19), 5474-5483. Fuchs, P. F., & Alix, A. J. (2005). High accuracy prediction of β‐turns and their types using propensities and multiple alignments. Proteins: Structure, Function, and Bioinformatics, 59(4), 828-839. Fukamizo, T., & Brzezinski, R. (1997). Chitosanase from Streptomyces sp. strain N174: a comparative review of its structure and function. Biochemistry and cell biology, 75(6), 687-696. Fukamizo, T., Fleury, A., Côté, N., Mitsutomi, M., & Brzezinski, R. (2006). Exo-β-D-glucosaminidase from Amycolatopsis orientalis: Catalytic residues, sugar recognition specificity, kinetics, and synergism. Glycobiology, 16(11), 1064-1072. Gromiha, M. M., Pathak, M. C., Saraboji, K., Ortlund, E. A., & Gaucher, E. A. (2013). Hydrophobic environment is a key factor for the stability of thermophilic proteins. Proteins: Structure, Function, and Bioinformatics, 81(4), 715-721. Guo, N., Sun, J., Wang, W., Gao, L., Liu, J., Liu, Z., . . . Mao, X. (2019). Cloning, expression and characterization of a novel chitosanase from Streptomyces albolongus ATCC 27414. Food chemistry, 286, 696-702. Hamed, I., Özogul, F., & Regenstein, J. M. (2016). Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in food science & technology, 48, 40-50. Huang, J.-r., Huang, C.-y., Huang, Y.-w., & Chen, R.-h. (2007). Shelf-life of fresh noodles as affected by chitosan and its Maillard reaction products. LWT - Food Science and Technology, 40(7), 1287-1291. Huang, J., Xie, D.-F., & Feng, Y. (2017). Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations. Biochemical and biophysical research communications, 483(1), 397-402. Je, J.-Y., & Kim, S.-K. (2012). Chitooligosaccharides as potential nutraceuticals: production and bioactivities. Advances in food and nutrition research, 65, 321-336. Jeon, Y.-J., Shahidi, F., & Kim, S.-K. (2000). Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Reviews International, 16(2), 159-176. Jiang, T., Feng, L., & Li, J. (2012). Changes in microbial and postharvest quality of shiitake mushroom (Lentinus edodes) treated with chitosan–glucose complex coating under cold storage. Food chemistry, 131(3), 780-786. Jiang, X., Chen, D., Chen, L., Yang, G., & Zou, S. (2012). Purification, characterization, and action mode of a chitosanase from Streptomyces roseolus induced by chitin. Carbohydrate research, 355, 40-44. Jiang, X., Chen, G., & Wang, L. (2016). Structural and dynamic evolution of the amphipathic N-terminus diversifies enzyme thermostability in the glycoside hydrolase family 12. Physical Chemistry Chemical Physics, 18(31), 21340-21350. Jo, B. H., Park, T. Y., Park, H. J., Yeon, Y. J., Yoo, Y. J., & Cha, H. J. (2016). Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration. Scientific reports, 6(1), 1-9. Kanatt, S. R., Chander, R., & Sharma, A. (2008). Chitosan glucose complex–A novel food preservative. Food chemistry, 106(2), 521-528. Kim, S.-K., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate polymers, 62(4), 357-368. King, N. P., Lee, T. M., Sawaya, M. R., Cascio, D., & Yeates, T. O. (2008). Structures and functional implications of an AMP-binding cystathionine β-synthase domain protein from a hyperthermophilic archaeon. Journal of molecular biology, 380(1), 181-192. Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), 1-27. Kumar, S., Tsai, C.-J., & Nussinov, R. (2000). Factors enhancing protein thermostability. Protein engineering, 13(3), 179-191. Lam, W. W., & Siu, S. W. (2017). PyMOL mControl: Manipulating molecular visualization with mobile devices. Biochemistry and Molecular Biology Education, 45(1), 76-83. Lang, E., Kienzle-Sterzer, C., Rodriguez-Sanchez, D., & Rha, C. (1982). Rheological behavior of a typical random coil polyelectrolyte: Chitosan. Paper presented at the In Chitin Chitosan; Proceeding 2nd International Conference. Larsen, D. M., Nyffenegger, C., Swiniarska, M. M., Thygesen, A., Strube, M. L., Meyer, A. S., & Mikkelsen, J. D. (2015). Thermostability enhancement of an endo-1, 4-β-galactanase from Talaromyces stipitatus by site-directed mutagenesis. Applied Microbiology and Biotechnology 99(10), 4245-4253. Li, K., Xing, R., Liu, S., & Li, P. (2016). Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydrate polymers, 139, 178-190. Li, L., Liao, H., Yang, Y., Gong, J., Liu, J., Jiang, Z., . . . Ni, H. (2018). Improving the thermostability by introduction of arginines on the surface of α-L-rhamnosidase (r-Rha1) from Aspergillus niger. International journal of biological macromolecules, 112, 14-21. Loladze, V. V., & Makhatadze, G. I. (2005). Both helical propensity and side‐chain hydrophobicity at a partially exposed site in α‐helix contribute to the thermodynamic stability of ubiquitin. Proteins: Structure, Function, and Bioinformatics, 58(1), 1-6. Luan, Z.-J., Yu, H.-L., Ma, B.-D., Qi, Y.-K., Chen, Q., & Xu, J.-H. (2016). Dramatically improved performance of an esterase for cilastatin synthesis by cap domain engineering. Industrial & Engineering Chemistry Research, 55(47), 12167-12172. Mabrouk, S. B., Aghajari, N., Ali, M. B., Messaoud, E. B., Juy, M., Haser, R., & Bejar, S. (2011). Enhancement of the thermostability of the maltogenic amylase MAUS149 by Gly312Ala and Lys436Arg substitutions. Bioresource technology, 102(2), 1740-1746. Martinou, A., Koutsioulis, D., & Bouriotis, V. (2002). Expression, purification, and characterization of a cobalt-activated chitin deacetylase (Cda2p) from Saccharomyces cerevisiae. Protein expression and purification, 24(1), 111-116. Matthews, B., Nicholson, H., & Becktel, W. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proceedings of the National Academy of Sciences, 84(19), 6663-6667. Mei, Y.-x., Chen, H.-x., Zhang, J., Zhang, X.-d., & Liang, Y.-x. (2013). Protective effect of chitooligosaccharides against cyclophosphamide-induced immunosuppression in mice. International journal of biological macromolecules, 62, 330-335. Muzzarelli, R. A., & Rocchetti, R. (1985). Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate polymers, 5(6), 461-472. Nata, I. F., Wang, S. S.-S., Wu, T.-M., & Lee, C.-K. (2012). β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydrate polymers, 90(4), 1509-1514. Nawani, N., & Kapadnis, B. (2005). Optimization of chitinase production using statistics based experimental designs. Process Biochemistry, 40(2), 651-660. Okajima, S., Ando, A., Shinoyama, H., & Fujii, T. (1994). Purification and characterization of an extracellular chitosanase produced by Amycolatopsis sp. CsO-2. Journal of Fermentation and Bioengineering 77(6), 617-620. Ordu, E. B., Sessions, R. B., Clarke, A. R., & Karagüler, N. G. (2013). Effect of surface electrostatic interactions on the stability and folding of formate dehydrogenase from Candida methylica. Journal of Molecular Catalysis B: Enzymatic, 95, 23-28. Pantoliano, M. W., Whitlow, M., Wood, J. F., Dodd, S. W., Hardman, K. D., Rollence, M. L., & Bryan, P. N. (1989). Large increases in general stability for subtilisin BPN'through incremental changes in the free energy of unfolding. Biochemistry, 28(18), 7205-7213. Perry, L. J., & Wetzel, R. (1984). Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation. Science, 226(4674), 555-557. Price, J. S., & Storck, R. (1975). Production, purification, and characterization of an extracellular chitosanase from Streptomyces. Journal of bacteriology, 124(3), 1574-1585. Rao, M., Chawla, S., Chander, R., & Sharma, A. (2011). Antioxidant potential of Maillard reaction products formed by irradiation of chitosan–glucose solution. Carbohydrate polymers, 83(2), 714-719. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in polymer science, 31(7), 603-632. Riordan, J., McElvany, K., & Borders, C. (1977). Arginyl residues: anion recognition sites in enzymes. Science, 195(4281), 884-886. Roberts, G. A. (1992). Chitin chemistry: Macmillan International Higher Education. Scott, K. A., Alonso, D. O., Sato, S., Fersht, A. R., & Daggett, V. (2007). Conformational entropy of alanine versus glycine in protein denatured states. Proceedings of the National Academy of Sciences, 104(8), 2661-2666. Ser, H.-L., Tan, L. T.-H., Law, J. W.-F., Chan, K.-G., Duangjai, A., Saokaew, S., . . . Goh, B.-H. (2017). Focused review: cytotoxic and antioxidant potentials of mangrove-derived Streptomyces. Frontiers in microbiology, 8, 2065. Shahidi, F., Arachchi, J. K. V., & Jeon, Y.-J. (1999). Food applications of chitin and chitosans. Trends in food science & technology, 10(2), 37-51. Shimahara, K., & Takiguchi, Y. (1988). Preparation of crustacean chitin. Methods in enzymology, 161, 417-423. Sinha, S., Chand, S., & Tripathi, P. (2016). Recent progress in chitosanase production of monomer-free chitooligosaccharides: bioprocess strategies and future applications. Applied Microbiology and Biotechnology 180(5), 883-899. Szilágyi, A., & Závodszky, P. (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 8(5), 493-504. Tanabe, T., Kawase, T., Watanabe, T., Uchida, Y., & Mitsutomi, M. (2000). Purification and characterization of a 49-kDa chitinase from Streptomyces griseus HUT 6037. Journal of bioscience and bioengineering, 89(1), 27-32. Tatko, C. D., & Waters, M. L. (2002). Selective aromatic interactions in β-hairpin peptides. Journal of the American Chemical Society, 124(32), 9372-9373. Thadathil, N., & Velappan, S. P. (2014). Recent developments in chitosanase research and its biotechnological applications: a review. Food chemistry, 150, 392-399. Tseng, W.-C., Lin, J.-W., Wei, T.-Y., & Fang, T.-Y. (2008). A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Analytical biochemistry, 375(2), 376-378. Veno, J., Ahmad Kamarudin, N. H., Mohamad Ali, M. S., & Masomian, M. (2017). Directed evolution of recombinant C-terminal truncated Staphylococcus epidermidis lipase AT2 for the enhancement of thermostability. International journal of molecular sciences, 18(11), 2202. Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and molecular biology reviews, 65(1), 1-43. Viens, P., Lacombe-Harvey, M.-È., & Brzezinski, R. (2015). Chitosanases from family 46 of glycoside hydrolases: from proteins to phenotypes. Marine drugs, 13(11), 6566-6587. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., . . . Bordoli, L. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296-W303. Xing, R., Liu, Y., Li, K., Yu, H., Liu, S., Yang, Y., . . . Li, P. (2017). Monomer composition of chitooligosaccharides obtained by different degradation methods and their effects on immunomodulatory activities. Carbohydrate polymers, 157, 1288-1297. Xu, W., Jiang, C., Kong, X., Liang, Y., Rong, M., & Liu, W. (2012). Chitooligosaccharides and N-acetyl-D-glucosamine stimulate peripheral blood mononuclear cell-mediated antitumor immune responses. Molecular Medicine Reports, 6(2), 385-390. Xu, Z., Cai, T., Xiong, N., Zou, S.-P., Xue, Y.-P., & Zheng, Y.-G. (2018). Engineering the residues on “A” surface and C-terminal region to improve thermostability of nitrilase. Enzyme and microbial technology, 113, 52-58. Xu, Z., Cen, Y.-K., Zou, S.-P., Xue, Y.-P., & Zheng, Y.-G. (2020). Recent advances in the improvement of enzyme thermostability by structure modification. Critical reviews in biotechnology, 40(1), 83-98. Yin, H., Du, Y., & Dong, Z. (2016). Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Frontiers in plant science, 7, 522. Yokota, K., Satou, K., & Ohki, S.-y. (2006). Comparative analysis of protein thermostability: Differences in amino acid content and substitution at the surfaces and in the core regions of thermophilic and mesophilic proteins. Science and Technology of Advanced Materials, 7(3), 255. Yuan, X., Zheng, J., Jiao, S., Cheng, G., Feng, C., Du, Y., & Liu, H. (2019). A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production. Carbohydrate polymers, 220, 60-70. Zhang, J., Cao, H., Li, S., Zhao, Y., Wang, W., Xu, Q., . . . Yin, H. (2015). Characterization of a new family 75 chitosanase from Aspergillus sp. W-2. International journal of biological macromolecules, 81, 362-369. Zhu, K.-X., Li, J., Li, M., Guo, X.-N., Peng, W., & Zhou, H.-M. (2013). Functional properties of chitosan–xylose Maillard reaction products and their application to semi-dried noodle. Carbohydrate polymers, 92(2), 1972-1977.
|