字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:杜懿樺
研究生英文姓名:Du, Yi-Hua
中文論文名稱:以康普茶酵母與細菌共發酵海藻龍鬚菜水解液之抗氧化能力測試
英文論文名稱:Antioxidant activity of Gracilaria sp. hydrolysate fermented with kombucha consortium
指導教授姓名:林泓廷
口試委員中文姓名:教授︰蔡國珍
助理教授︰方銘志
教授︰鄭光成
教授︰郭建民
教授︰林泓廷
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932034
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:87
中文關鍵詞:龍鬚菜康普茶抗氧化揮發性氣味化合物
英文關鍵字:Gracilariakombuchaantioxidantvolatile compoundHS-SPME/GC/MS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本研究使用培養七天的康普茶菌群發酵 Gracilaria sp. 之 β-agarase 或 βagarase 加 cellulase 水解液,並觀察其發酵前後抗氧化能力及揮發性氣味化合物之組成。一般成分分析顯示 Gracilaria sp. 粉末中總碳水化合物含量為 (63.11 ± 0.54)%。在地康普茶菌群於含有 10% (w/v) 蔗糖的 2% (w/v) 紅茶中在 25℃ 下培養七天,ITS I 及 16S 全長定序分別顯示培養七天的康普茶中主要真菌和細菌分別為 Zygosaccharomyces sp. 和 Komagataeibacter rhaeticus,接種 10% (v/v)康普茶菌群至 5% (w/v) 海藻水解液中,於 25℃ 150 rpm 發酵 7 天。微生物分析顯示兩組海藻康普茶中的總酵母菌數與總細菌菌數於第一天快速上升至 7 及
6 Log CFU/mL 以上,並於發酵第七天分別達到 8 及 7 Log CFU/mL。理化特性分析顯示康普茶菌群於發酵期間會利用基質中部分的還原糖及有機酸。將發酵 7 天之海藻康普茶的 1% 乙酸乙酯萃取物進行抗氧化能力測試,結果顯示使用 βagarase 水解之 Gracilaria sp. 溶液經康普茶菌群發酵七天後,其銅離子還原抗氧化能力 (Cupric ion (II) reducing antioxidant capacity, CUPRAC)、DPPH 自由基清除能力及總酚含量分別提升 30%、400% 及 115%,並且保留 99.3% 氧自由基清除力 (Oxygen radical absorbance capacity, ORAC) 及 96.8% 亞鐵離子螯合力;使用 β-agarase 加 cellulase 水解之 Gracilaria sp. 溶液經康普茶菌群發酵七天之1% 乙酸乙酯萃取物,其 ORAC、CUPRAC、DPPH 自由基清除能力、亞鐵離子螯合力及總酚含量分別提升 100.3%、38%、39%、43.6% 及 18%。ORAC、CUPRAC、DPPH 自由基清除能力、亞鐵離子螯合力及總酚含量最大值分別為 66.12 ± 5.33 TE μmol/g dw、76.40 ± 11.33 TE mg/g dw、90.04 ± 3.51 TE mg/g dw、1.48 ± 0.02 EDTAE mg/g dw 及 14.59 ± 1.38 TE mg/g dw,出現在發酵第 0 或第 7 天的 β-agarase 組別。後續研究預計使用頂空固相微萃取結合氣相層析質譜儀分析海藻康普茶發酵前後之揮發性氣味化合物組成變化。
In this study, Gracilaria sp. was hydrolysed with β-agarase or β-agarase plus cellulase. The hydrolysates were then fermented by using a 7-day culture of kombucha consortium. Changes of their antioxidant capacity and composition of volatile compounds were observed after 7-day of fermentation. Proximate analysis showed that the total carbohydrate content of Gracilaria sp. powder was 63.11% ± 0.54%. Local kombucha culture was grown in 2% (w/v) of brewed black tea contain 10% of sucrose for 7 days at 25℃.The Internal transcribed spacer I and 16S full-length sequencing showed that the dominant fungi and bacteria genera in the kombucha were Zygosaccharomyces sp. and Komagataeibacter rhaeticus, respectively. 10% (v/v) of
consortium were applied to 5% of Gracilaria sp. hydrolysate. The fermentation was carried out at 25°C 150 rpm for 7 days . Microbiological analysis showed that the total yeast count and total bacterial count in the two groups of seaweed-based kombucha increased rapidly to over 7 and 6 Log CFU/mL on the first day, and reached 8 and 7 Log CFU/mL, respectively, on the seventh day of fermentation. Physical and chemical
analysis showed that the kombucha tea flora used some of the reducing sugars and organic acids in the matrix during fermentation. The antioxidant capacity of the 1% ethyl acetate extract from seaweed-based kombucha hydrolysed by β-agarase was investigated and the results showed that cupric ion (II) reducing antioxidant capacity (CUPRAC), DPPH radical scavenging capacity and total phenolic content (TPC) were increased by 30%, 400% and 115% respectively, and 99.3% Oxygen radical absorbance capacity (ORAC) and 96.8% ferrous ion chelating power (FIC) were retained after 7 days of fermentation. The ORAC, CUPRAC, DPPH radical scavenging capacity, FIC and TPC were increased by 100.3%, 38%, 39%, 43.6% and 18% respectively for the 1% ethyl acetate extract of seaweed-based kombucha with its matrix hydrolysed by βagarase plus cellulase before inoculation. The maximum values of ORAC, CUPRAC, DPPH, free radical scavenging capacity, ferric ion chelating power and total phenol
content were 66.12 ± 5.33 TE μmol/g dw, 76.40 ± 11.33 g/g dw, 90.04 ± 3.51 TE mg/g dw, 1.48 ± 0.02 EDTAE mg/g dw and 14.59 ± 1.38 TE mg/g dw, respectively, and all of which appeared on β-agarase-treated group by day 0 or 7 of fermentation. It is expected that the change in composition of volatile compounds before and after fermentation of the seaweed-based kombucha will be analysed by headspace solidphase microextraction coupled with gas chromatography mass spectrometry (HSSPME/GC/MS).
謝誌 iv
摘要 v
Abstract vi
圖目錄 ix
表目錄 x
附錄目錄 xi
縮寫表 xii
壹、前言 1
貳、文獻整理 2
2.1. 香氣化合物 2
2.1.1 香氣化合物簡介 2
2.1.2 香氣化合物分類 2
2.2 藻類 7
2.2.1 藻類簡介 7
2.2.2 藻類香氣化合物 7
2.2.3 發酵海帶選擇 10
2.2.4 龍鬚菜 (Gracilaria sp.) 10
2.2.5 自由基與藻類抗氧化活性 11
2.2.6 抗氧化能力測定 14
2.2.7 抗氧化方式選擇 16
2.3 康普茶簡介 16
2.3.1 康普茶中微生物 17
2.4 揮發性成分萃取方式 18
2.4.1 溶劑萃取 (SE) 19
2.4.2 蒸餾 (HD) 19
2.4.3 聚焦微波輔助水蒸餾 (FMA-HD) 19
2.4.4 超臨界流體萃取 (SFE) 20
2.4.5 頂空萃取 (HS) 20
2.5 頂空固相微萃取於揮發性化合物鑑定 22
2.5.1 GC-MS 23
參、實驗設計 24
肆、材料與方法 25
4.1 實驗材料 25
4.1.1 原料-康普茶與龍鬚菜 25
4.1.2 培養基 25
4.1.3 化學藥品 26
viii
4.1.4 酵素 27
4.1.5 實驗耗材 27
4.1.6 實驗儀器 27
4.2 實驗方法 28
4.2.1 海藻龍鬚菜前處理 28
4.2.2 海藻粉末一般組成分分析 29
4.2.3 康普茶製備與保存 30
4.2.4 康普茶菌叢鑑定 30
4.2.6 海藻溶液水解 32
4.2.7 康普茶菌群發酵海藻龍鬚菜水解液 32
4.2.10 海藻發酵液萃取物抗氧化能力測定 33
4.3 統計分析 35
伍、結果與討論 36
5.1 海藻龍鬚菜一般成分分析 36
5.2 康普茶菌叢鑑定結果 36
5.3 洋菜酶粗酵素液生產 37
5.3.1 粗酵素液蛋白質濃度定量與酵素活性測定 38
5.4 海藻康普茶發酵期間微生物計數 38
5.4.1 發酵期間康普茶菌群於 β-agarase 水解液之生菌 39
5.4.2 發酵期間康普茶菌群於 β-agarase 及 cellulase 水解液之生菌數 39
5.5 海藻康普茶發酵期間理化特性分析 40
5.5.1 pH 值 40
5.5.2 還原糖含量 40
5.5.3 可滴定酸度 40
5.5.4 理化特性討論 41
5.6 海藻康普茶萃取液抗氧化能力測試 42
5.6.1 ORAC 42
5.6.2 CUPRAC 43
5.6.3 DPPH 自由基清除力 43
5.6.4 亞鐵離子螯合力 43
5.6.5 總酚含量測定 (Folin-Ciocalteu assay, F-C assay) 43
5.6.6 抗氧化能力結果討論 44
陸、結論 45
柒、參考文獻 46
捌、圖表 62
玖、附錄 80
行政院農委會漁業署,2019。「民國 108 年漁業統計年報」。臺北:行政院農委會漁業署連結:https://www.fa.gov.tw。
危建翰。(2014)。Pseudomonas vesicularis MA103 之 agarase AgaA 的序列比對分析並在大腸桿菌表現達到產酵最佳化。國立臺灣海洋大學碩士論文,基隆。
莊淑雅。(2012)。酵素水解對龍鬚菜萃取物抗氧化活性之影響。國立臺灣海洋大學碩士論文,基隆。
洪郁嵐,黃培安,吳純衡。(2014)。龍鬚菜的養殖與應用。水試專訊,47,32-34。
翁健軒,(2015)。利用微管束陣列膜固定化 Kluyveromyces marxianus 發酵龍鬚菜酸水解液生產生質酒精。國立臺灣海洋大學碩士論文,基隆。
黃俊翰。(2005)。龍鬚菜的養殖與應用。水試專訊,11,44-46。
蘇惠美。(2010)。台灣的海藻養殖。水試專訊,32,18-22。
Al-Rubaye, A. F., Hameed, I. H., & Kadhim, M. J. (2017). A review: uses of gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive natural compounds of some plants. International Journal of Toxicological and Pharmacological Research, 9(1), 81-85.
Amarasinghe, H., Weerakkody, N. S., & Waisundara, V. Y. (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “tea fungus” during extended periods of fermentation. Food Science & Nutrition, 6(3), 659-665.
Amorati, R., & Valgimigli, L. (2015). Advantages and limitations of common testing methods for antioxidants. Free Radical Research, 49(5), 633-649.
Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC
method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoğlu, B., Berker, K. I., & Özyurt, D. (2007). Comparative evaluation of various total antioxidant
capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496-1547.
Apak, R., Capanoglu, E., & Shahidi, F. (2017). Measurement of antioxidant activity and capacity: Recent Trends and Applications.
Api, A. M., Belsito, D., Bhatia, S., Bruze, M., Calow, P., Dagli, M. L., Dekant, W., Fryer, A. D., Kromidas, L., La Cava, S., Lalko, J. F., Lapczynski, A., Liebler, D. C.,
Miyachi, Y., Politano, V. T., Ritacco, G., Salvito, D., Shen, J., Schultz, T. W., Sipes, I. G., Wall, B. & Wilcox, D. K. (2015). RIFM fragrance ingredient safety 47 assessment,(Z)-2-penten-1-ol, CAS Registry Number 1576-95-0. Food and Chemical Toxicology, 84, 66-75.
Arıkan, M., Mitchell, A. L., Finn, R. D., & Gürel, F. (2020). Microbial composition of kombucha determined using amplicon sequencing and shotgun metagenomics. Journal of Food Science, 85(2), 455-464.
Association of Official Agricultural Chemists. (1997). Offical Methods of Analysis. 16th edition. Association of Official Analytical Chemists. Washington, DC, U.S.A.
Ayed, L., Abid, S. B., & Hamdi, M. (2017). Development of a beverage from red grape juice fermented with the kombucha consortium. Annals of Microbiology, 67(1), 111-121.
Azwanida, N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal and Aromatic Plants, 4(196), 2167-0412.
Bajpai, P. (2018). Biermann's Handbook of Pulp and Paper: Volume 1: Raw Material and Pulp Making: Elsevier.
Barbosa, C. D. (2020). Molecular characterization of the microbiota and physicalchemical evaluation of the fermentative process of kombucha.
Basmal, J., Munifah, I., Rimmer, M., & Paul, N. (2020). Identification and characterization of solid waste from Gracilaria sp. extraction. IOP Conference Series: Earth and Environmental Science (Vol. 404, p. 012057): IOP Publishing.
Belitz, H.-D., Grosch, W., & Schieberle, P. (2009). Food Chemistry. Springer.
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
Bianchi, G., Falcinelli, B., Tosti, G., Bocci, L., & Benincasa, P. (2019). Taste quality traits and volatile profiles of sprouts and wheatgrass from hulled and non‐hulled Triticum species. Journal of Food Biochemistry, 43(7), e12869.
Bogdan, M., Justine, S., Filofteia, D. C., Petruta, C., Gabriela, L., Roxana, U., & Florentina, M. (2018). Lactic acid bacteria strains isolated from kombucha with potential probiotic effect. Romanian Biotechnological Letters, 23(3), 13592.
Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie-Food
science and Technology, 28(1), 25-30.
Cameleyre, M., Lytra, G., Tempere, S., & Barbe, J.-C. (2017). 2-Methylbutyl acetate in wines: Enantiomeric distribution and sensory impact on red wine fruity aroma.
Food Chemistry, 237(15), 364-371.
Cao, G., Alessio, H. M., & Cutler, R. G. (1993). Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biology and Medicine, 14(3), 303-311.
Ceriello, A., Bortolotti, N., Falleti, E., Taboga, C., Tonutti, L., Crescentini, A., Motz, E., Lizzio, S., Russo, A., & Bartoli, E. (1997). Total radical-trapping antioxidant parameter in NIDDM patients. Diabetes Care, 20(2), 194-197.
Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical
dynamics. International Journal of Food Microbiology, 220, 63-72.
Chang, A. L., Tuckerman, J. R., Gonzalez, G., Mayer, R., Weinhouse, H., Volman, G., Amikam, D., Benziman, M., & Gilles-Gonzalez, M. A. (2001). Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum,
is a heme-based sensor. Biochemistry, 40(12), 3420-3426.
Chan, P. T., Matanjun, P., Yasir, S. M., & Tan, T. S. (2015). Antioxidant activities and polyphenolics of various solvent extracts of red seaweed, Gracilaria changii. Journal of Applied Phycology, 27(6), 2377-2386.
Chen, C., & Liu, B. (2000). Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology, 89(5), 834-839.
Chu, S.-C., & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98(3), 502-507.
Cole, K. M., & Sheath, R. G. (1990). Biology of The Red Algae: Cambridge University Press.
Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. d. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., & Farias, E. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds.
Biomedicine & Pharmacotherapy, 64(1), 21-28.
Cotelle, N. (2001). Role of flavonoids in oxidative stress. Current Topics in Medicinal Chemistry, 1(6), 569-590.
Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352.
Dang, T. D. T., Mertens, L., Vermeulen, A., Geeraerd, A., Van Impe, J., Debevere, J., & Devlieghere, F. (2010). Modelling the growth/no growth boundary of Zygosaccharomyces bailii in acidic conditions: A contribution to the alternative method to preserve foods without using chemical preservatives. International Journal of Food Microbiology, 137(1), 1-12.
Dávalos, A., Gómez-Cordovés, C., & Bartolomé, B. (2004). Extending applicability of the oxygen radical absorbance capacity (ORAC− fluorescein) assay. Journal of Agricultural and Food Chemistry, 52(1), 48-54.
Decker, E. A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry, 38(3), 674-677.
De-La-Fuente-Blanco, A., Sáenz-Navajas, M.-P., & Ferreira, V. (2016). On the effects of higher alcohols on red wine aroma. Food Chemistry, 210(1), 107-114.
DeLange, R. J., & Glazer, A. N. (1989). Phycoerythrin fluorescence-based assay for peroxy radicals: A screen for biologically relevant protective agents. Analytical
Biochemistry, 177(2), 300-306.
Delattre, C., Fenoradosoa, T. A., & Michaud, P. (2011). Galactans: An overview of their most important sourcing and applications as natural polysaccharides.
Brazilian Archives of Biology and Technology, 54, 1075-1092.
Dufresne, C., & Farnworth, E. (2000). Tea, kombucha, and health: A review. Food Research International, 33(6), 409-421.
Dutta, H., & Paul, S. K. (2019). Kombucha drink: Production, quality, and safety aspects. In Production and Management of Beverages (pp. 259-288): Elsevier.
Emmerich, W., & Radler, F. (1983). The anaerobic metabolism of glucose and fructose ; by Saccharomyces bailii. Microbiology, 129(11), 3311-3318.
Farvin, K. S., & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities
of selected species of seaweeds from Danish coast. Food Chemistry, 138(2-3),
1670-1681.
Farvin, K. S., & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities
of selected species of seaweeds from Danish coast. Food Chemistry, 138(2-3),
1670-1681.
Food and Agriculture Organization of the United Nations. (2014). Fisheries and
Aquaculture Information and Statistics Service. www.fao.org.
Food and Agriculture Organization of the United Nations. (2021). Fisheries and
Aquaculture Information and Statistics Service. www.fao.org.
Fu, X. T., & Kim, S. M. (2010). Agarase: Review of major sources, categories,
purification method, enzyme characteristics and applications. Marine Drugs,
8(1), 200-218.
Goh, C. S., & Lee, K. T. (2010). A visionary and conceptual macroalgae-based thirdgeneration bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for
renewable and sustainable development. Renewable and Sustainable Energy
Reviews, 14(2), 842-848.
Goh, W., Rosma, A., Kaur, B., Fazilah, A., Karim, A., & Bhat, R. (2012).
Fermentation of black tea broth (kombucha): I. Effects of sucrose
concentration and fermentation time on the yield of microbial cellulose.
International Food Research Journal, 19(1).
Golmakani, M.-T., & Rezaei, K. (2008a). Comparison of microwave-assisted
50
hydrodistillation withthe traditional hydrodistillation method in the extractionof
essential oils from Thymus vulgaris L. Food Chemistry, 109(4), 925-930.
Golmakani, M. T., & Rezaei, K. (2008b). Microwave‐assisted hydrodistillation of
essential oil from Zataria multiflora Boiss. European Journal of Lipid Science
and Technology, 110(5), 448-454.
Greenwalt, C., Ledford, R., & Steinkraus, K. (1998). Determination and
characterization of the antimicrobial activity of the fermented tea kombucha.
LWT-Food science and Technology, 31(3), 291-296.
Gressler, V., Colepicolo, P., & Pinto, E. (2009). Useful strategies for algal volatile
analysis. Current Analytical Chemistry, 5(3), 271-292.
Gupta, S., & Abu-Ghannam, N. (2011). Recent developments in the application of
seaweeds or seaweed extracts as a means for enhancing the safety and quality
attributes of foods. Innovative Food Science & Emerging Technologies, 12(4),
600-609.
Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and
other constituents in licorice root: their relative astringency and radical
scavenging effects. Chemical and Pharmaceutical Bulletin, 36(6), 2090-2097.
Haytowitz, D. B., & Bhagwat, S. (2010). USDA database for the oxygen radical
absorbance capacity (ORAC) of selected foods, Release 2. US Department of
Agriculture, 3(1), 10-48.
Hidayati, J. R., Yudiati, E., Pringgenies, D., Oktaviyanti, D. T., & Kusuma, A. P.
(2020). Comparative study on antioxidant activities, total phenolic compound
and pigment contents of tropical Spirulina platensis, Gracilaria arcuata and
Ulva lactuca extracted in different solvents polarity. E3S Web of Conferences
(Vol. 147, p. 03012): EDP Sciences.
Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity
assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856.
Ibañez, E., & Cifuentes, A. (2013). Benefits of using algae as natural sources of
functional ingredients. Journal of the Science of Food and Agriculture, 93(4),
703-709.
James, S. A., & Stratford, M. (2003). Spoilage yeasts with special emphasis on the
genus Zygosaccharomyces. Yeasts in Food: Beneficial and Detrimental Aspects,
171-191.
James, S. A., & Stratford, M. (2011). Zygosaccharomyces Barker (1901). In The Yeasts
(pp. 937-947): Elsevier.
Jard, G., Marfaing, H., Carrère, H., Delgenès, J.-P., Steyer, J.-P., & Dumas, C. (2013).
French Brittany macroalgae screening: Composition and methane potential for
potential alternative sources of energy and products. Bioresource Technology,
51
144, 492-498.
Jarrell, J., Cal, T., & Bennett, J. (2000). The kombucha consortia of yeasts and bacteria.
Mycologist, 14(4), 166-170.
Jayabalan, R., Chen, P.-N., Hsieh, Y.-S., Prabhakaran, K., Pitchai, P., Marimuthu, S.,
Thangaraj, P., Swaminathan, K., & Yun, S. E. (2011). Effect of solvent fractions
of kombucha tea on viability and invasiveness of cancer cells—characterization
of dimethyl 2-(2-hydroxy-2-methoxypropylidine) malonate and vitexin.
Jayabalan, R., Malbasa, R. V., Loncar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A
review on kombucha tea-microbiology, composition, fermentation, beneficial
effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and
Food Safety, 13(4), 538-550.
Jayabalan, R., Malini, K., Sathishkumar, M., Swaminathan, K., & Yun, S. E. (2010).
Biochemical characteristics of tea fungus produced during kombucha
fermentation. Food Science and Biotechnology, 19(3), 843-847.
Jayabalan, R., Subathradevi, P., Marimuthu, S., Sathishkumar, M., & Swaminathan, K.
(2008). Changes in free-radical scavenging ability of kombucha tea during
fermentation. Food Chemistry, 109(1), 227-234.
Jayasekara, S., & Ratnayake, R. (2019). Microbial cellulases: An overview and
applications. Cellulose, 22.
Jiao, G., Yu, G., Zhang, J., & Ewart, H. S. (2011). Chemical structures and bioactivities
of sulfated polysaccharides from marine algae. Marine Drugs, 9(2), 196-223.
Kalathenos, P., Sutherland, J., & Roberts, T. (1995). Resistance of some wine spoilage
yeasts to combinations of ethanol and acids present in wine. Journal of
Applied Bacteriology, 78(3), 245-250.
Kamal‐Eldin, A., & Appelqvist, L. Å. (1996). The chemistry and antioxidant properties
of tocopherols and tocotrienols. Lipids, 31(7), 671-701.
Kapp, J. M., & Sumner, W. (2019). Kombucha: A systematic review of the empirical
evidence of human health benefit. Annals of Epidemiology, 30, 66-70.
Kataoka, H., Lord, H. L., & Pawliszyn, J. (2000). Applications of solid-phase
microextraction in food analysis. Journal of Chromatography A, 880(1-2), 35-
62.
Kaufmann, B., & Christen, P. (2002). Recent extraction techniques for natural products:
Microwave‐assisted extraction and pressurised solvent extraction.
Phytochemical Analysis: An International Journal of Plant Chemical and
Biochemical Techniques, 13(2), 105-113.
Kim, D. H. (1970). Economically important seaweeds, in Chile-I Gracilaria. From
the Journal, 13(2), 140-162.
Kiribuchi, T., & Yamanishi, T. (1963). Studies on the flavor of green tea part IV.
52
dimethyl sulfide and its precursor. Agricultural and Biological Chemistry, 27(1),
56-59.
Kiritsakis, A. (1998). Flavor components of olive oil—A review. Journal of the
American Oil Chemists' Society, 75(6), 673-681.
Kılınç, B., Cirik, S., Turan, G., Tekogul, H., & Koru, E. (2013). Seaweeds for food and
industrial applications. In Food Industry: IntechOpen.
Komagata, K., Iino, T., & Yamada, Y. (2014). The family acetobacteraceae. The
Prokaryotes, 3-78.
Komes, D., Ulrich, D., & Lovric, T. (2006). Characterization of odor-active compounds
in Croatian Rhine Riesling wine, subregion Zagorje. European Food Research
and Technology, 222(1), 1-7.
Laohakunjit, N., Selamassakul, O., & Kerdchoechuen, O. (2014). Seafood-like flavour
obtained from the enzymatic hydrolysis of the protein by-products of seaweed
(Gracilaria sp.). Food Chemistry, 158(1), 162-170.
Laureys, D., Britton, S. J., & De Clippeleer, J. (2020). Kombucha tea fermentation: A
review. Journal of the American Society of Brewing Chemists, 78(3), 165-174.
Lee, W.-K., Lim, Y.-Y., Leow, A. T.-C., Namasivayam, P., Abdullah, J. O., & Ho, C.-L.
(2017). Biosynthesis of agar in red seaweeds: A review. Carbohydrate Polymers,
164, 23-30.
Leal, M. J., Suárez, V. L., Jayabalan, R., Oros, H. J., & Escalante-Aburto, A. (2018). A
review on health benefits of kombucha nutritional compounds and metabolites.
CyTA-Journal of Food, 16(1), 390-399.
Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G.,
Testa, G., Cacciatore, F., & Bonaduce, D. (2018). Oxidative stress, aging, and
diseases. Clinical Interventions in Aging, 13, 757.
Lim, Y. Y., Lee, W. K., Leow, A. T. C., Namasivayam, P., Abdullah, J. O., & Ho, C. L.
(2018). Sulfated galactans from red seaweeds and their potential applications.
Pertanika Journal of Scholarly Research Reviews, 4(2).
Lin, H.-T. V., Huang, M.-Y., Kao, T.-Y., Lu, W.-J., Lin, H.-J., & Pan, C.-L. (2020).
Production of lactic acid from seaweed hydrolysates via lactic acid bacteria
fermentation. Fermentation, 6(1), 37.
Liu, C.-H., Hsu, W.-H., Lee, F.-L., & Liao, C.-C. (1996). The isolation and
identification of microbes from a fermented tea beverage, Haipao, and their
interactions during Haipao fermentation. Food Microbiology, 13(6), 407-415.
Liu, Z., & Sun, X. (2020). A critical review of the abilities, determinants, and possible
molecular mechanisms of seaweed polysaccharides antioxidants. International
Journal of Molecular Sciences, 21(20), 7774.
Longo, M. A., & Sanromán, M. A. (2006). Production of food aroma compounds:
53
microbial and enzymatic methodologies. Food Technology and Biotechnology,
44(3), 335-353.
Ludovico, P., Sansonetty, F., Silva, M. T., & Côrte-Real, M. (2003). Acetic acid induces
a programmed cell death process in the food spoilage yeast Zygosaccharomyces
bailii. FEMS Yeast Research, 3(1), 91-96.
Ludovico, P., Sousa, M. J., Silva, M. T., Leão, C. l., & Côrte-Real, M. (2001).
Saccharomyces cerevisiae commits to a programmed cell death process in
response to acetic acid. Microbiology, 147(9), 2409-2415.
Mabeau, S., & Fleurence, J. (1993). Seaweed in food products: Biochemical and
nutritional aspects. Trends in Food Science & Technology, 4(4), 103-107.
Marongiu, B., Piras, A., Porcedda, S., Tuveri, E., Sanjust, E., Meli, M., Sollai, F., Zucca,
P., & Rescigno, A. (2007). Supercritical CO2 extract of Cinnamomum
zeylanicum: Chemical characterization and antityrosinase activity. Journal of
Agricultural and Food Chemistry, 55(24), 10022-10027.
Mason, G. (1905). The occurrence of benzoic acid naturally in cranberries. Journal of
the American Chemical Society, 27(5), 613-614.
Matanjun, P., Mohamed, S., Mustapha, N. M., Muhammad, K., & Ming, C. H. (2008).
Antioxidant activities and phenolics content of eight species of seaweeds from
north Borneo. Journal of Applied Phycology, 20(4), 367-373.
Matsushita, K., & Matsutani, M. (2016). Distribution, evolution, and physiology of
oxidative fermentation. In Acetic Acid Bacteria (pp. 159-178): Springer.
Mayer, A. M., & Hamann, M. T. (2002). Marine Pharmacology in 1999: Compounds
with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory,
antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular,
endocrine, immune and nervous systems, and other miscellaneous mechanisms
of action. Comparative Biochemistry and Physiology Part C: Toxicology &
Pharmacology, 132(3), 315-339.
Mazumder, S., Ghosal, P. K., Pujol, C. A., Carlucci, M. a. J., Damonte, E. B., & Ray,
B. (2002). Isolation, chemical investigation and antiviral activity of
polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta).
International Journal of Biological Macromolecules, 31(1-3), 87-95.
McNair, H. M., Miller, J. M., & Snow, N. H. (2019). Basic Gas Chromatography: John
Wiley & Sons.
Milledge, J. J., Smith, B., Dyer, P. W., & Harvey, P. (2014). Macroalgae-derived biofuel:
A review of methods of energy extraction from seaweed biomass. Energies,
7(11), 7194-7222.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing
sugar. Analytical Chemistry, 31(3), 426-428.
54
Moio, L., & Etievant, P. (1995). Ethyl anthranilate, ethyl cinnamate, 2, 3-
dihydrocinnamate, and methyl anthranilate: Four important odorants identified
in Pinot noir wines of Burgundy. American Journal of Enology and Viticulture,
46(3), 392-398.
Morgan, K. C., Wright, J. L., & Simpson, F. (1980). Review of chemical constituents
of the red algae Palmaria palmata (Dulse). Economic Botany, 34(1), 27-50.
Morneau, A., Zuehlke, J., & Edwards, C. (2011). Comparison of media formulations
used to selectively cultivate Dekkera/Brettanomyces. Letters in Applied
Microbiology, 53(4), 460-465.
Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining
antioxidant activity: A review. International Journal of Molecular Sciences,
22(7), 3380.
Murano, E., Toffanin, R., Zanetti, F., Knutsen, S., Paoletti, S., & Rizzo, R. (1992).
Chemical and macromolecular characterisation of agar polymers from
Gracilaria dura (C. Agardh) J. Agardh (Gracilariaceae, Rhodophyta).
Carbohydrate polymers, 18(3), 171-178.
Mu, S., Yang, W., & Huang, G. (2021). Antioxidant activities and mechanisms of
polysaccharides. Chemical Biology & Drug Design, 97(3), 628-632.
Myung, S.-W., Min, H. K., Kim, S., Kim, M., Cho, J.-B., & Kim, T. J. (1998).
Determination of amphetamine, methamphetamine and dimethamphetamine in
human urine by solid-phase microextraction (SPME)-gas chromatography/mass
spectrometry. Journal of Chromatography B: Biomedical Sciences and
Applications, 716(1-2), 359-365.
Neffe-Skocińska, K., Sionek, B., Ścibisz, I., & Kołożyn-Krajewska, D. (2017). Acid
contents and the effect of fermentation condition of kombucha tea beverages on
physicochemical, microbiological and sensory properties. CyTA-Journal of
Food, 15(4), 601-607.
New, H., & Heppel, L. (1965). The release of enzyme from Escherichia coli by
osmotic shock and during the formation of spheroplast. Journal of Biological
Chemistry, 240, 3685-3691.
Ngo, D.-H., Wijesekara, I., Vo, T. S., Van Ta, Q., & Kim, S. K. (2011). Marine foodderived functional ingredients as potential antioxidants in the food industry: An
overview. Food Research International, 44(2), 523-529.
Nieto, G., Estrada, M., Jordán, M. J., Garrido, M. D., & Bañón, S. (2011). Effects in
ewe diet of rosemary by-product on lipid oxidation and the eating quality of
cooked lamb under retail display conditions. Food Chemistry, 124(4), 1423-
1429.
Nillson, J. L. G., Doyle Daves, G., and Folkers, K. (1968a). The oxidative dimerization
55
of α-, β-, γ-, and δ-tocopherols. Acta Chemica Scandinavica, 22, 207-218.
Nilsson, J. L. G., Daves Jr, G., & Folkers, K. (1968b). New tocopherol dimers. Acta
Chemica Scandinavica, 22, 200-206.
Nishizawa, M., Kohno, M., Nishimura, M., Kitagawa, A., & Niwano, Y. (2005). Nonreductive scavenging of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) by
peroxyradical: A useful method for quantitative analysis of peroxyradical.
Chemical and Pharmaceutical Bulletin, 53(6), 714-716.
Nomura, T., Kikuchi, M., Kubodera, A., & Kawakami, Y. (1997). Proton‐donative
antioxidant activity of fucoxanthin with 1, 1‐diphenyl‐2‐picrylhydrazyl
(DPPH). IUBMB Life, 42(2), 361-370.
Norziah, M. H., & Ching, C. Y. (2000). Nutritional composition of edible seaweed
Gracilaria changgi. Food Chemistry, 68(1), 69-76.
Nurikasari, M., Puspitasari, Y., & Siwi, R. P. Y. (2017). Characterization and analysis
kombucha tea antioxidant activity based on long fermentation as a beverage
functional. Journal of Global Research. Public Health, 2(2), 90-96.
Ometto, F., Quiroga, G., Pšenička, P., Whitton, R., Jefferson, B., & Villa, R. (2014).
Impacts of microalgae pre-treatments for improved anaerobic digestion:
Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis.
Water Research, 65(15), 350-361.
Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of
an improved oxygen radical absorbance capacity assay using fluorescein as the
fluorescent probe. Journal of Agricultural and Food Chemistry, 49(10), 4619-
4626.
Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J. A., & Deemer, E. K. (2002).
Analysis of antioxidant activities of common vegetables employing oxygen
radical absorbance capacity (ORAC) and ferric reducing antioxidant power
(FRAP) assays: A comparative study. Journal of Agricultural and Food
Chemistry, 50(11), 3122-3128.
Ozdemir, G., Horzum, Z., Sukatar, A., & Karabay-Yavasoglu, N. U. (2006).
Antimicrobial activities of volatile components and various extracts of
Dictyopteris membranaceae. and Cystoseira barbata. from the coast of Izmir,
Turkey. Pharmaceutical Biology, 44(3), 183-188.
Parker, J. K. (2015). Introduction to aroma compounds in foods. In Flavour
Development, Analysis and Perception in Food and Beverages (pp. 3-30):
Elsevier.
Pereira, L. (2011). A review of the nutrient composition of selected edible seaweeds.
Seaweed: Ecology, Nutrient Composition and Medicinal Uses; Pomin, VH, Ed,
15-47.
56
Perron, N. R., & Brumaghim, J. L. (2009). A review of the antioxidant mechanisms of
polyphenol compounds related to iron binding. Cell Biochemistry and
Biophysics, 53(2), 75-100.
Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in
disease and health. International Journal of Biomedical Science: IJBS, 4(2),
89.
Pokorny, J. (1987). Major factors affecting the autoxidation of lipids. Autoxidation of
Unsaturated Lipids, 141-206.
Pothakos, V., Illeghems, K., Laureys, D., Spitaels, F., Vandamme, P., & De Vuyst, L.
(2016). Acetic acid bacteria in fermented food and beverage ecosystems. In
Acetic Acid Bacteria (pp. 73-99): Springer.
Pratama, F., Devanthi, P. V. P., & Kho, K. (2021). Development of selective media for
Komagataeibacter intermedius and Dekkera bruxellensis from a mixed
culture. Nusantara Science and Technology Proceedings, 32-38.
Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the
determination of antioxidant capacity and phenolics in foods and dietary
supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302.
Rajauria, G. (2018). Optimization and validation of reverse phase HPLC method for
qualitative and quantitative assessment of polyphenols in seaweed. Journal of
Pharmaceutical and Biomedical Analysis, 148(30), 230-237.
Rankine, B., & Pilone, D. (1974). Yeast spoilage of bottled table wine and its prevention.
Australian Wine Brewing and Spirit Review, 92(11), 36-38.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C.
(1999). Antioxidant activity applying an improved ABTS radical cation
decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-
1237.
Rice-evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B.
(1995). The relative antioxidant activities of plant-derived polyphenolic
flavonoids. Free Radical Research, 22(4), 375-383.
Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity
relationships of flavonoids and phenolic acids. Free Radical Biology and
Medicine, 20(7), 933-956.
Rizvi, S. S., Benado, A., Zollweg, J., & Daniels, J. (1986). Supercritical fluid extraction:
Fundamental principles and modeling methods. Food Technology (USA).
Ross, J. R., Nam, K. H., D'Auria, J. C., & Pichersky, E. (1999). S-adenosyl-Lmethionine: Salicylic acid carboxyl methyltransferase, an enzyme involved in
floral scent production and plant defense, represents a new class of plant
methyltransferases. Archives of Biochemistry and Biophysics, 367(1), 9-16.
57
Rouseff, R. L., & Cadwallader, K. R. (2001). Headspace Analysis of Foods and Flavors:
Theory and Practice;[Proceedings of the American Chemical Society, Held
August 23-27, 1998, in Boston, Massachusetts]: Springer Science & Business
Media.
Rui-Peng, Y., Li-Ping, W., Chen-Kai, Z., Sheng-Fang, W., & Qi-Jun, S. (2020).
Determination of volatile metabolites in Microcystis aeruginosa using
headspace-solid phase microextraction arrow combined with gas
chromatography-mass spectrometry. Chinese Journal of Analytical Chemistry,
48(6), 750-756.
Ruperez, P. (2001). Antioxidant activity of sulphated polysaccharides from the Spanish
marine seaweed Nori. Proceedings of the COST 916 European Conference on
Bioactive Compounds in Plant Foods. Health Effects and Perspectives for the
Food Industry, Tenerife, Canary Islands, Spain, April (p. 114).
Sánchez-Moreno, C. (2002). Methods used to evaluate the free radical scavenging
activity in foods and biological systems. Food Science and Technology
International, 8(3), 121-137.
Shaoling, Y., Gang, Y., Bo, Q., Xianqing, Y., Jianchao, D., Yongqiang, Z., & Hui, R.
(2016). Analysis of volatile compounds of dried Gracilaria lemaneiformis by
HS-SPME method. 南方水产科学, 12(6), 115-122.
Sharma, Y. C., Singh, B., & Korstad, J. (2011). A critical review on recent methods used
for economically viable and eco-friendly development of microalgae as a
potential feedstock for synthesis of biodiesel. Green Chemistry, 13(11), 2993-
3006.
Shukla, R., Kumar, M., Chakraborty, S., Gupta, R., Kumar, S., Sahoo, D., & Kuhad,
R. C. (2016). Process development for the production of bioethanol from
waste algal biomass of Gracilaria verrucosa. Bioresource Technology, 220,
584-589.
Siddhanta, A. K., Chhatbar, M. U., Mehta, G. K., Sanandiya, N. D., Kumar, S., Oza,
M. D., Prasad, K., & Meena, R. (2011). The cellulose contents of Indian
seaweeds. Journal of Applied Phycology, 23(5), 919-923.
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with
phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology
and Viticulture, 16(3), 144-158.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of
total phenols and other oxidation substrates and antioxidants by means of
Folin-Ciocalteu reagent. In Methods in enzymology (pp. 152-178): Elsevier.
Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and
comparison with manual methods. American Journal of Enology and
58
Viticulture, 28(1), 49-55.
Sneddon, J., Masuram, S., & Richert, J. (2007). Gas chromatography‐mass
spectrometry‐basic principles, instrumentation and selected applications for
detection of organic compounds. Analytical Letters, 40(6), 1003-1012.
Sousa-Dias, S., Gonçalves, T., Leyva, J. S., Peinado, J. M., & Loureiro-Dias, M. C.
(1996). Kinetics and regulation of fructose and glucose transport systems are
responsible for fructophily in Zygosaccharomyces bailii. Microbiology,
142(7), 1733-1738.
Sousa, M. J., Rodrigues, F., Coôrte-Real, M., & Leão, C. (1998). Mechanisms
underlying the transport and intracellular metabolism of acetic acid in the
presence of glucose in the yeast Zygosaccharomyces bailii. Microbiology,
144(3), 665-670.
Souza, B. W., Cerqueira, M. A., Martins, J. T., Quintas, M. A., Ferreira, A. C., Teixeira,
J. A., & Vicente, A. A. (2011). Antioxidant potential of two red seaweeds from
the Brazilian coasts. Journal of Agricultural and Food Chemistry, 59(10), 5589-
5594.
Souza, B. W., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T.,
Teixeira, J. A., Coimbra, M. A., & Vicente, A. A. (2012). Chemical
characterization and antioxidant activity of sulfated polysaccharide from the
red seaweed Gracilaria birdiae. Food Hydrocolloids, 27(2), 287-292.
Stahl, W., & Sies, H. (2003). Antioxidant activity of carotenoids. Molecular Aspects of
Medicine, 24(6), 345-351.
Steensels, J., Daenen, L., Malcorps, P., Derdelinckx, G., Verachtert, H., & Verstrepen,
K. J. (2015). Brettanomyces yeasts—From spoilage organisms to valuable
contributors to industrial fermentations. International Journal of Food
Microbiology, 206, 24-38.
Stévant, P., Ólafsdóttir, A., Déléris, P., Dumay, J., Fleurence, J., Ingadóttir, B., Jónsdóttir,
B., Ragueneau, E., Rebours, C., Rustad, T. (2020). Semi-dry storage as a
maturation process for improving the sensory characteristics of the edible red
seaweed dulse (Palmaria palmata). Algal Research, 51, 106-343.
Steels, H., James, S. A., Roberts, I. N., Stratford, M. (2000). Sorbic acid resistance: The
inoculum effect. Yeast, 16(13), 1173-1183.
Sudhakar, M. P., Jegatheesan, A., Poonam, C., Perumal, K., & Arunkumar, K. (2017).
Biosaccharification and ethanol production from spent seaweed biomass using
marine bacteria and yeast. Renewable Energy, 105, 133-139.
Sudhakar, M. P., Kumar, B. R., Mathimani, T., & Arunkumar, K. (2019). A review on
bioenergy and bioactive compounds from microalgae and macroalgaesustainable energy perspective. Journal of Cleaner Production, 228(10), 1320-
59
1333.
Tabarsa, M., Rezaei, M., Ramezanpour, Z., & Waaland, J. R. (2012). Chemical
compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva
lactuca (Chlorophyta) as a potential food source. Journal of the Science of Food
and Agriculture, 92(12), 2500-2506.
Takahashi, H., Sumitani, H., Inada, Y., & Mori, D. (2002). Identification of volatile
compounds of kombu (Laminaria spp.) and their odor description. Journal of
the Japanese Society for Food Science and Technology, 49(4), 228-237.
Tee, E.-S., & Lim, C.-L. (1991). Carotenoid composition and content of Malaysian
vegetables and fruits by the AOAC and HPLC methods. Food Chemistry,
41(3), 309-339.
Thomas, D. S., & Davenport, R. R. (1985). Zygosaccharomyces bailii—A profile of
characteristics and spoilage activities. Food Microbiology, 2(2), 157-169.
Tziveleka, L.-A., Tammam, M. A., Tzakou, O., Roussis, V., & Ioannou, E. (2021).
Metabolites with antioxidant activity from marine macroalgae. Antioxidants,
10(9), 1431.
Vilar, E. G., O'Sullivan, M. G., Kerry, J. P., & Kilcawley, K. N. (2020). Volatile
compounds of six species of edible seaweed: A review. Algal Research, 45,
101740.
Villarreal‐Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., & Taillandier, P. (2018).
Understanding kombucha tea fermentation: A review. Journal of Food Science,
83(3), 580-588.
Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and
quality in foods: Fruits. Journal of Agricultural and Food Chemistry, 49(11),
5315-5321.
Voloshin, R. A., Rodionova, M. V., Zharmukhamedov, S. K., Veziroglu, T. N., &
Allakhverdiev, S. I. (2016). Biofuel production from plant and algal biomass.
International Journal of Hydrogen Energy,, 41(39), 17257-17273.
Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. (2016). Reviews on mechanisms of in
vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular
Longevity, 2016.
Wang, T., Jonsdottir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical
scavenging and metal chelation of extracts from Icelandic seaweeds. Food
Chemistry, 116(1), 240-248.
Watawana, M. I., Jayawardena, N., & Waisundara, V. Y. (2015). Enhancement of the
functional properties of coffee through fermentation by “tea fungus”(k
ombucha). Journal of Food Processing and Preservation, 39(6), 2596-2603.
Watawana, M. I., Jayawardena, N., Gunawardhana, C. B., & Waisundara, V. Y.
60
(2016). Enhancement of the antioxidant and starch hydrolase inhibitory
activities of king coconut water (Cocos nucifera var. aurantiaca) by
fermentation with kombucha ‘tea fungus’. International Journal of Food
Science and Technology, 51(2), 490-498.
Welsh, F. W., Murray, W. D., Williams, R. E., & Katz, I. (1989). Microbiological and
enzymatic production of flavor and fragrance chemicals. Critical Reviews in
Biotechnology, 9(2), 105-169.
Wernig, F., Buegger, F., Pritsch, K., & Splivallo, R. (2018). Composition and
authentication of commercial and home-made white truffle-flavored oils. Food
Control, 87, 9-16.
Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016).
Influence of microalgal N and P composition on wastewater nutrient
remediation. Water Research, 91(15), 371-378.
Williams, G. M., Iatropoulos, M., & Whysner, J. (1999). Safety assessment of butylated
hydroxyanisole and butylated hydroxytoluene as antioxidant food additives.
Food and Chemical Toxicology, 37(9-10), 1027-1038.
Wu, C. Y. (2012). Solid Phase Micro Extraction. Beijing: Chemical Industry Press.
Xu, T., Sutour, S., Casabianca, H., Tomi, F., Paoli, M., Garrido, M., Pasqualini,
V., Aiello, A., Castola, V., & Bighelli, A. (2015). Rapid Screening of Chemical
Compositions of Gracilaria dura and Hypnea mucisformis (Rhodophyta) from
Corsican Lagoon. International Journal of Phytocosmetics and Natural
Ingredients, 2(1), 8-8.
Yang, S.-S., & Wang, C.-Y. (1983). Effect of environmental factors on Gracilaria
cultivated in Taiwan. Bulletin of Marine Science, 33(3), 759-766.
Yavari, N., Assadi, M. M., Moghadam, M. B., & Larijani, K. (2011). Optimizing
glucuronic acid production using tea fungus on grape juice by response surface
methodology. Australian Journal of Basic and Applied Sciences, 5(11), 1788-
1794.
Yoshino, M., & Murakami, K. (1998). Interaction of iron with polyphenolic
compounds: Application to antioxidant characterization. Analytical
Biochemistry, 257(1), 40-44.
Yue, T. X., Chi, M., Song, C. Z., Liu, M. Y., Meng, J. F., Zhang, Z. W., & Li, M. H.
(2015). Aroma characterization of Cabernet Sauvignon wine from the Plateau
of Yunnan (China) with different altitudes using SPME-GC/MS. International
Journal of Food Properties, 18(7), 1584-1596.
Yu, S., Blennow, A., Bojko, M., Madsen, F., Olsen, C. E., & Engelsen, S. B. (2002).
Physico‐chemical characterization of floridean starch of red algae. Starch‐
Stärke, 54(2), 66-74.
61
Yu, Y. J., Lu, Z. M., Yu, N. H., Xu, W., Li, G. Q., Shi, J. S., & Xu, Z. H. (2012). HS‐
SPME/GC‐MS and chemometrics for volatile composition of Chinese
traditional aromatic vinegar in the Zhenjiang region. Journal of the Institute of
Brewing, 118(1), 133-141.
Zhang, C., Li, X., & Kim, S. K. (2012). Application of marine biomaterials for
nutraceuticals and functional foods. Food Science and Biotechnology, 21(3),
625-631.
Zhang, Y.-H., Song, X.-N., Lin, Y., Xiao, Q., Du, X.-P., Chen, Y.-H., & Xiao, A.-F.
(2019). Antioxidant capacity and prebiotic effects of Gracilaria neoagaro
oligosaccharides prepared by agarase hydrolysis. International Journal of
Biological Macromolecules, 137, 177-186.
Zhang, Z., Yang, M. J., & Pawliszyn, J. (1994). Solid-phase microextraction. A solventfree alternative for sample preparation. Analytical Chemistry, 66(17), 844-853.
Zulueta, A., Esteve, M. J., & Frígola, A. (2009). ORAC and TEAC assays comparison
to measure the antioxidant capacity of food products. Food Chemistry, 114(1),
310-316.
(此全文20270809後開放外部瀏覽)
電子全文
全文檔開放日期:2027/08/09
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *