|
行政院農委會漁業署,2019。「民國 108 年漁業統計年報」。臺北:行政院農委會漁業署連結:https://www.fa.gov.tw。 危建翰。(2014)。Pseudomonas vesicularis MA103 之 agarase AgaA 的序列比對分析並在大腸桿菌表現達到產酵最佳化。國立臺灣海洋大學碩士論文,基隆。 莊淑雅。(2012)。酵素水解對龍鬚菜萃取物抗氧化活性之影響。國立臺灣海洋大學碩士論文,基隆。 洪郁嵐,黃培安,吳純衡。(2014)。龍鬚菜的養殖與應用。水試專訊,47,32-34。 翁健軒,(2015)。利用微管束陣列膜固定化 Kluyveromyces marxianus 發酵龍鬚菜酸水解液生產生質酒精。國立臺灣海洋大學碩士論文,基隆。 黃俊翰。(2005)。龍鬚菜的養殖與應用。水試專訊,11,44-46。 蘇惠美。(2010)。台灣的海藻養殖。水試專訊,32,18-22。 Al-Rubaye, A. F., Hameed, I. H., & Kadhim, M. J. (2017). A review: uses of gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive natural compounds of some plants. International Journal of Toxicological and Pharmacological Research, 9(1), 81-85. Amarasinghe, H., Weerakkody, N. S., & Waisundara, V. Y. (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “tea fungus” during extended periods of fermentation. Food Science & Nutrition, 6(3), 659-665. Amorati, R., & Valgimigli, L. (2015). Advantages and limitations of common testing methods for antioxidants. Free Radical Research, 49(5), 633-649. Apak, R., Güçlü, K., Özyürek, M., & Karademir, S. E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S. E., Bektaşoğlu, B., Berker, K. I., & Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496-1547. Apak, R., Capanoglu, E., & Shahidi, F. (2017). Measurement of antioxidant activity and capacity: Recent Trends and Applications. Api, A. M., Belsito, D., Bhatia, S., Bruze, M., Calow, P., Dagli, M. L., Dekant, W., Fryer, A. D., Kromidas, L., La Cava, S., Lalko, J. F., Lapczynski, A., Liebler, D. C., Miyachi, Y., Politano, V. T., Ritacco, G., Salvito, D., Shen, J., Schultz, T. W., Sipes, I. G., Wall, B. & Wilcox, D. K. (2015). RIFM fragrance ingredient safety 47 assessment,(Z)-2-penten-1-ol, CAS Registry Number 1576-95-0. Food and Chemical Toxicology, 84, 66-75. Arıkan, M., Mitchell, A. L., Finn, R. D., & Gürel, F. (2020). Microbial composition of kombucha determined using amplicon sequencing and shotgun metagenomics. Journal of Food Science, 85(2), 455-464. Association of Official Agricultural Chemists. (1997). Offical Methods of Analysis. 16th edition. Association of Official Analytical Chemists. Washington, DC, U.S.A. Ayed, L., Abid, S. B., & Hamdi, M. (2017). Development of a beverage from red grape juice fermented with the kombucha consortium. Annals of Microbiology, 67(1), 111-121. Azwanida, N. (2015). A review on the extraction methods use in medicinal plants, principle, strength and limitation. Medicinal and Aromatic Plants, 4(196), 2167-0412. Bajpai, P. (2018). Biermann's Handbook of Pulp and Paper: Volume 1: Raw Material and Pulp Making: Elsevier. Barbosa, C. D. (2020). Molecular characterization of the microbiota and physicalchemical evaluation of the fermentative process of kombucha. Basmal, J., Munifah, I., Rimmer, M., & Paul, N. (2020). Identification and characterization of solid waste from Gracilaria sp. extraction. IOP Conference Series: Earth and Environmental Science (Vol. 404, p. 012057): IOP Publishing. Belitz, H.-D., Grosch, W., & Schieberle, P. (2009). Food Chemistry. Springer. Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. Bianchi, G., Falcinelli, B., Tosti, G., Bocci, L., & Benincasa, P. (2019). Taste quality traits and volatile profiles of sprouts and wheatgrass from hulled and non‐hulled Triticum species. Journal of Food Biochemistry, 43(7), e12869. Bogdan, M., Justine, S., Filofteia, D. C., Petruta, C., Gabriela, L., Roxana, U., & Florentina, M. (2018). Lactic acid bacteria strains isolated from kombucha with potential probiotic effect. Romanian Biotechnological Letters, 23(3), 13592. Brand-Williams, W., Cuvelier, M.-E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie-Food science and Technology, 28(1), 25-30. Cameleyre, M., Lytra, G., Tempere, S., & Barbe, J.-C. (2017). 2-Methylbutyl acetate in wines: Enantiomeric distribution and sensory impact on red wine fruity aroma. Food Chemistry, 237(15), 364-371. Cao, G., Alessio, H. M., & Cutler, R. G. (1993). Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biology and Medicine, 14(3), 303-311. Ceriello, A., Bortolotti, N., Falleti, E., Taboga, C., Tonutti, L., Crescentini, A., Motz, E., Lizzio, S., Russo, A., & Bartoli, E. (1997). Total radical-trapping antioxidant parameter in NIDDM patients. Diabetes Care, 20(2), 194-197. Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63-72. Chang, A. L., Tuckerman, J. R., Gonzalez, G., Mayer, R., Weinhouse, H., Volman, G., Amikam, D., Benziman, M., & Gilles-Gonzalez, M. A. (2001). Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemistry, 40(12), 3420-3426. Chan, P. T., Matanjun, P., Yasir, S. M., & Tan, T. S. (2015). Antioxidant activities and polyphenolics of various solvent extracts of red seaweed, Gracilaria changii. Journal of Applied Phycology, 27(6), 2377-2386. Chen, C., & Liu, B. (2000). Changes in major components of tea fungus metabolites during prolonged fermentation. Journal of Applied Microbiology, 89(5), 834-839. Chu, S.-C., & Chen, C. (2006). Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chemistry, 98(3), 502-507. Cole, K. M., & Sheath, R. G. (1990). Biology of The Red Algae: Cambridge University Press. Costa, L. S., Fidelis, G. P., Cordeiro, S. L., Oliveira, R. M., Sabry, D. d. A., Câmara, R. B. G., Nobre, L. T. D. B., Costa, M. S. S. P., Almeida-Lima, J., & Farias, E. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64(1), 21-28. Cotelle, N. (2001). Role of flavonoids in oxidative stress. Current Topics in Medicinal Chemistry, 1(6), 569-590. Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352. Dang, T. D. T., Mertens, L., Vermeulen, A., Geeraerd, A., Van Impe, J., Debevere, J., & Devlieghere, F. (2010). Modelling the growth/no growth boundary of Zygosaccharomyces bailii in acidic conditions: A contribution to the alternative method to preserve foods without using chemical preservatives. International Journal of Food Microbiology, 137(1), 1-12. Dávalos, A., Gómez-Cordovés, C., & Bartolomé, B. (2004). Extending applicability of the oxygen radical absorbance capacity (ORAC− fluorescein) assay. Journal of Agricultural and Food Chemistry, 52(1), 48-54. Decker, E. A., & Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry, 38(3), 674-677. De-La-Fuente-Blanco, A., Sáenz-Navajas, M.-P., & Ferreira, V. (2016). On the effects of higher alcohols on red wine aroma. Food Chemistry, 210(1), 107-114. DeLange, R. J., & Glazer, A. N. (1989). Phycoerythrin fluorescence-based assay for peroxy radicals: A screen for biologically relevant protective agents. Analytical Biochemistry, 177(2), 300-306. Delattre, C., Fenoradosoa, T. A., & Michaud, P. (2011). Galactans: An overview of their most important sourcing and applications as natural polysaccharides. Brazilian Archives of Biology and Technology, 54, 1075-1092. Dufresne, C., & Farnworth, E. (2000). Tea, kombucha, and health: A review. Food Research International, 33(6), 409-421. Dutta, H., & Paul, S. K. (2019). Kombucha drink: Production, quality, and safety aspects. In Production and Management of Beverages (pp. 259-288): Elsevier. Emmerich, W., & Radler, F. (1983). The anaerobic metabolism of glucose and fructose ; by Saccharomyces bailii. Microbiology, 129(11), 3311-3318. Farvin, K. S., & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138(2-3), 1670-1681. Farvin, K. S., & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138(2-3), 1670-1681. Food and Agriculture Organization of the United Nations. (2014). Fisheries and Aquaculture Information and Statistics Service. www.fao.org. Food and Agriculture Organization of the United Nations. (2021). Fisheries and Aquaculture Information and Statistics Service. www.fao.org. Fu, X. T., & Kim, S. M. (2010). Agarase: Review of major sources, categories, purification method, enzyme characteristics and applications. Marine Drugs, 8(1), 200-218. Goh, C. S., & Lee, K. T. (2010). A visionary and conceptual macroalgae-based thirdgeneration bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable and Sustainable Energy Reviews, 14(2), 842-848. Goh, W., Rosma, A., Kaur, B., Fazilah, A., Karim, A., & Bhat, R. (2012). Fermentation of black tea broth (kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose. International Food Research Journal, 19(1). Golmakani, M.-T., & Rezaei, K. (2008a). Comparison of microwave-assisted 50 hydrodistillation withthe traditional hydrodistillation method in the extractionof essential oils from Thymus vulgaris L. Food Chemistry, 109(4), 925-930. Golmakani, M. T., & Rezaei, K. (2008b). Microwave‐assisted hydrodistillation of essential oil from Zataria multiflora Boiss. European Journal of Lipid Science and Technology, 110(5), 448-454. Greenwalt, C., Ledford, R., & Steinkraus, K. (1998). Determination and characterization of the antimicrobial activity of the fermented tea kombucha. LWT-Food science and Technology, 31(3), 291-296. Gressler, V., Colepicolo, P., & Pinto, E. (2009). Useful strategies for algal volatile analysis. Current Analytical Chemistry, 5(3), 271-292. Gupta, S., & Abu-Ghannam, N. (2011). Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innovative Food Science & Emerging Technologies, 12(4), 600-609. Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chemical and Pharmaceutical Bulletin, 36(6), 2090-2097. Haytowitz, D. B., & Bhagwat, S. (2010). USDA database for the oxygen radical absorbance capacity (ORAC) of selected foods, Release 2. US Department of Agriculture, 3(1), 10-48. Hidayati, J. R., Yudiati, E., Pringgenies, D., Oktaviyanti, D. T., & Kusuma, A. P. (2020). Comparative study on antioxidant activities, total phenolic compound and pigment contents of tropical Spirulina platensis, Gracilaria arcuata and Ulva lactuca extracted in different solvents polarity. E3S Web of Conferences (Vol. 147, p. 03012): EDP Sciences. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856. Ibañez, E., & Cifuentes, A. (2013). Benefits of using algae as natural sources of functional ingredients. Journal of the Science of Food and Agriculture, 93(4), 703-709. James, S. A., & Stratford, M. (2003). Spoilage yeasts with special emphasis on the genus Zygosaccharomyces. Yeasts in Food: Beneficial and Detrimental Aspects, 171-191. James, S. A., & Stratford, M. (2011). Zygosaccharomyces Barker (1901). In The Yeasts (pp. 937-947): Elsevier. Jard, G., Marfaing, H., Carrère, H., Delgenès, J.-P., Steyer, J.-P., & Dumas, C. (2013). French Brittany macroalgae screening: Composition and methane potential for potential alternative sources of energy and products. Bioresource Technology, 51 144, 492-498. Jarrell, J., Cal, T., & Bennett, J. (2000). The kombucha consortia of yeasts and bacteria. Mycologist, 14(4), 166-170. Jayabalan, R., Chen, P.-N., Hsieh, Y.-S., Prabhakaran, K., Pitchai, P., Marimuthu, S., Thangaraj, P., Swaminathan, K., & Yun, S. E. (2011). Effect of solvent fractions of kombucha tea on viability and invasiveness of cancer cells—characterization of dimethyl 2-(2-hydroxy-2-methoxypropylidine) malonate and vitexin. Jayabalan, R., Malbasa, R. V., Loncar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13(4), 538-550. Jayabalan, R., Malini, K., Sathishkumar, M., Swaminathan, K., & Yun, S. E. (2010). Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Science and Biotechnology, 19(3), 843-847. Jayabalan, R., Subathradevi, P., Marimuthu, S., Sathishkumar, M., & Swaminathan, K. (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry, 109(1), 227-234. Jayasekara, S., & Ratnayake, R. (2019). Microbial cellulases: An overview and applications. Cellulose, 22. Jiao, G., Yu, G., Zhang, J., & Ewart, H. S. (2011). Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs, 9(2), 196-223. Kalathenos, P., Sutherland, J., & Roberts, T. (1995). Resistance of some wine spoilage yeasts to combinations of ethanol and acids present in wine. Journal of Applied Bacteriology, 78(3), 245-250. Kamal‐Eldin, A., & Appelqvist, L. Å. (1996). The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 31(7), 671-701. Kapp, J. M., & Sumner, W. (2019). Kombucha: A systematic review of the empirical evidence of human health benefit. Annals of Epidemiology, 30, 66-70. Kataoka, H., Lord, H. L., & Pawliszyn, J. (2000). Applications of solid-phase microextraction in food analysis. Journal of Chromatography A, 880(1-2), 35- 62. Kaufmann, B., & Christen, P. (2002). Recent extraction techniques for natural products: Microwave‐assisted extraction and pressurised solvent extraction. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 13(2), 105-113. Kim, D. H. (1970). Economically important seaweeds, in Chile-I Gracilaria. From the Journal, 13(2), 140-162. Kiribuchi, T., & Yamanishi, T. (1963). Studies on the flavor of green tea part IV. 52 dimethyl sulfide and its precursor. Agricultural and Biological Chemistry, 27(1), 56-59. Kiritsakis, A. (1998). Flavor components of olive oil—A review. Journal of the American Oil Chemists' Society, 75(6), 673-681. Kılınç, B., Cirik, S., Turan, G., Tekogul, H., & Koru, E. (2013). Seaweeds for food and industrial applications. In Food Industry: IntechOpen. Komagata, K., Iino, T., & Yamada, Y. (2014). The family acetobacteraceae. The Prokaryotes, 3-78. Komes, D., Ulrich, D., & Lovric, T. (2006). Characterization of odor-active compounds in Croatian Rhine Riesling wine, subregion Zagorje. European Food Research and Technology, 222(1), 1-7. Laohakunjit, N., Selamassakul, O., & Kerdchoechuen, O. (2014). Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.). Food Chemistry, 158(1), 162-170. Laureys, D., Britton, S. J., & De Clippeleer, J. (2020). Kombucha tea fermentation: A review. Journal of the American Society of Brewing Chemists, 78(3), 165-174. Lee, W.-K., Lim, Y.-Y., Leow, A. T.-C., Namasivayam, P., Abdullah, J. O., & Ho, C.-L. (2017). Biosynthesis of agar in red seaweeds: A review. Carbohydrate Polymers, 164, 23-30. Leal, M. J., Suárez, V. L., Jayabalan, R., Oros, H. J., & Escalante-Aburto, A. (2018). A review on health benefits of kombucha nutritional compounds and metabolites. CyTA-Journal of Food, 16(1), 390-399. Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., & Bonaduce, D. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757. Lim, Y. Y., Lee, W. K., Leow, A. T. C., Namasivayam, P., Abdullah, J. O., & Ho, C. L. (2018). Sulfated galactans from red seaweeds and their potential applications. Pertanika Journal of Scholarly Research Reviews, 4(2). Lin, H.-T. V., Huang, M.-Y., Kao, T.-Y., Lu, W.-J., Lin, H.-J., & Pan, C.-L. (2020). Production of lactic acid from seaweed hydrolysates via lactic acid bacteria fermentation. Fermentation, 6(1), 37. Liu, C.-H., Hsu, W.-H., Lee, F.-L., & Liao, C.-C. (1996). The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology, 13(6), 407-415. Liu, Z., & Sun, X. (2020). A critical review of the abilities, determinants, and possible molecular mechanisms of seaweed polysaccharides antioxidants. International Journal of Molecular Sciences, 21(20), 7774. Longo, M. A., & Sanromán, M. A. (2006). Production of food aroma compounds: 53 microbial and enzymatic methodologies. Food Technology and Biotechnology, 44(3), 335-353. Ludovico, P., Sansonetty, F., Silva, M. T., & Côrte-Real, M. (2003). Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. FEMS Yeast Research, 3(1), 91-96. Ludovico, P., Sousa, M. J., Silva, M. T., Leão, C. l., & Côrte-Real, M. (2001). Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology, 147(9), 2409-2415. Mabeau, S., & Fleurence, J. (1993). Seaweed in food products: Biochemical and nutritional aspects. Trends in Food Science & Technology, 4(4), 103-107. Marongiu, B., Piras, A., Porcedda, S., Tuveri, E., Sanjust, E., Meli, M., Sollai, F., Zucca, P., & Rescigno, A. (2007). Supercritical CO2 extract of Cinnamomum zeylanicum: Chemical characterization and antityrosinase activity. Journal of Agricultural and Food Chemistry, 55(24), 10022-10027. Mason, G. (1905). The occurrence of benzoic acid naturally in cranberries. Journal of the American Chemical Society, 27(5), 613-614. Matanjun, P., Mohamed, S., Mustapha, N. M., Muhammad, K., & Ming, C. H. (2008). Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. Journal of Applied Phycology, 20(4), 367-373. Matsushita, K., & Matsutani, M. (2016). Distribution, evolution, and physiology of oxidative fermentation. In Acetic Acid Bacteria (pp. 159-178): Springer. Mayer, A. M., & Hamann, M. T. (2002). Marine Pharmacology in 1999: Compounds with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous systems, and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 132(3), 315-339. Mazumder, S., Ghosal, P. K., Pujol, C. A., Carlucci, M. a. J., Damonte, E. B., & Ray, B. (2002). Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). International Journal of Biological Macromolecules, 31(1-3), 87-95. McNair, H. M., Miller, J. M., & Snow, N. H. (2019). Basic Gas Chromatography: John Wiley & Sons. Milledge, J. J., Smith, B., Dyer, P. W., & Harvey, P. (2014). Macroalgae-derived biofuel: A review of methods of energy extraction from seaweed biomass. Energies, 7(11), 7194-7222. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. 54 Moio, L., & Etievant, P. (1995). Ethyl anthranilate, ethyl cinnamate, 2, 3- dihydrocinnamate, and methyl anthranilate: Four important odorants identified in Pinot noir wines of Burgundy. American Journal of Enology and Viticulture, 46(3), 392-398. Morgan, K. C., Wright, J. L., & Simpson, F. (1980). Review of chemical constituents of the red algae Palmaria palmata (Dulse). Economic Botany, 34(1), 27-50. Morneau, A., Zuehlke, J., & Edwards, C. (2011). Comparison of media formulations used to selectively cultivate Dekkera/Brettanomyces. Letters in Applied Microbiology, 53(4), 460-465. Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7), 3380. Murano, E., Toffanin, R., Zanetti, F., Knutsen, S., Paoletti, S., & Rizzo, R. (1992). Chemical and macromolecular characterisation of agar polymers from Gracilaria dura (C. Agardh) J. Agardh (Gracilariaceae, Rhodophyta). Carbohydrate polymers, 18(3), 171-178. Mu, S., Yang, W., & Huang, G. (2021). Antioxidant activities and mechanisms of polysaccharides. Chemical Biology & Drug Design, 97(3), 628-632. Myung, S.-W., Min, H. K., Kim, S., Kim, M., Cho, J.-B., & Kim, T. J. (1998). Determination of amphetamine, methamphetamine and dimethamphetamine in human urine by solid-phase microextraction (SPME)-gas chromatography/mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications, 716(1-2), 359-365. Neffe-Skocińska, K., Sionek, B., Ścibisz, I., & Kołożyn-Krajewska, D. (2017). Acid contents and the effect of fermentation condition of kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA-Journal of Food, 15(4), 601-607. New, H., & Heppel, L. (1965). The release of enzyme from Escherichia coli by osmotic shock and during the formation of spheroplast. Journal of Biological Chemistry, 240, 3685-3691. Ngo, D.-H., Wijesekara, I., Vo, T. S., Van Ta, Q., & Kim, S. K. (2011). Marine foodderived functional ingredients as potential antioxidants in the food industry: An overview. Food Research International, 44(2), 523-529. Nieto, G., Estrada, M., Jordán, M. J., Garrido, M. D., & Bañón, S. (2011). Effects in ewe diet of rosemary by-product on lipid oxidation and the eating quality of cooked lamb under retail display conditions. Food Chemistry, 124(4), 1423- 1429. Nillson, J. L. G., Doyle Daves, G., and Folkers, K. (1968a). The oxidative dimerization 55 of α-, β-, γ-, and δ-tocopherols. Acta Chemica Scandinavica, 22, 207-218. Nilsson, J. L. G., Daves Jr, G., & Folkers, K. (1968b). New tocopherol dimers. Acta Chemica Scandinavica, 22, 200-206. Nishizawa, M., Kohno, M., Nishimura, M., Kitagawa, A., & Niwano, Y. (2005). Nonreductive scavenging of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) by peroxyradical: A useful method for quantitative analysis of peroxyradical. Chemical and Pharmaceutical Bulletin, 53(6), 714-716. Nomura, T., Kikuchi, M., Kubodera, A., & Kawakami, Y. (1997). Proton‐donative antioxidant activity of fucoxanthin with 1, 1‐diphenyl‐2‐picrylhydrazyl (DPPH). IUBMB Life, 42(2), 361-370. Norziah, M. H., & Ching, C. Y. (2000). Nutritional composition of edible seaweed Gracilaria changgi. Food Chemistry, 68(1), 69-76. Nurikasari, M., Puspitasari, Y., & Siwi, R. P. Y. (2017). Characterization and analysis kombucha tea antioxidant activity based on long fermentation as a beverage functional. Journal of Global Research. Public Health, 2(2), 90-96. Ometto, F., Quiroga, G., Pšenička, P., Whitton, R., Jefferson, B., & Villa, R. (2014). Impacts of microalgae pre-treatments for improved anaerobic digestion: Thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65(15), 350-361. Ou, B., Hampsch-Woodill, M., & Prior, R. L. (2001). Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Journal of Agricultural and Food Chemistry, 49(10), 4619- 4626. Ou, B., Huang, D., Hampsch-Woodill, M., Flanagan, J. A., & Deemer, E. K. (2002). Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. Journal of Agricultural and Food Chemistry, 50(11), 3122-3128. Ozdemir, G., Horzum, Z., Sukatar, A., & Karabay-Yavasoglu, N. U. (2006). Antimicrobial activities of volatile components and various extracts of Dictyopteris membranaceae. and Cystoseira barbata. from the coast of Izmir, Turkey. Pharmaceutical Biology, 44(3), 183-188. Parker, J. K. (2015). Introduction to aroma compounds in foods. In Flavour Development, Analysis and Perception in Food and Beverages (pp. 3-30): Elsevier. Pereira, L. (2011). A review of the nutrient composition of selected edible seaweeds. Seaweed: Ecology, Nutrient Composition and Medicinal Uses; Pomin, VH, Ed, 15-47. 56 Perron, N. R., & Brumaghim, J. L. (2009). A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochemistry and Biophysics, 53(2), 75-100. Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science: IJBS, 4(2), 89. Pokorny, J. (1987). Major factors affecting the autoxidation of lipids. Autoxidation of Unsaturated Lipids, 141-206. Pothakos, V., Illeghems, K., Laureys, D., Spitaels, F., Vandamme, P., & De Vuyst, L. (2016). Acetic acid bacteria in fermented food and beverage ecosystems. In Acetic Acid Bacteria (pp. 73-99): Springer. Pratama, F., Devanthi, P. V. P., & Kho, K. (2021). Development of selective media for Komagataeibacter intermedius and Dekkera bruxellensis from a mixed culture. Nusantara Science and Technology Proceedings, 32-38. Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. Rajauria, G. (2018). Optimization and validation of reverse phase HPLC method for qualitative and quantitative assessment of polyphenols in seaweed. Journal of Pharmaceutical and Biomedical Analysis, 148(30), 230-237. Rankine, B., & Pilone, D. (1974). Yeast spoilage of bottled table wine and its prevention. Australian Wine Brewing and Spirit Review, 92(11), 36-38. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231- 1237. Rice-evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B. (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research, 22(4), 375-383. Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933-956. Rizvi, S. S., Benado, A., Zollweg, J., & Daniels, J. (1986). Supercritical fluid extraction: Fundamental principles and modeling methods. Food Technology (USA). Ross, J. R., Nam, K. H., D'Auria, J. C., & Pichersky, E. (1999). S-adenosyl-Lmethionine: Salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Archives of Biochemistry and Biophysics, 367(1), 9-16. 57 Rouseff, R. L., & Cadwallader, K. R. (2001). Headspace Analysis of Foods and Flavors: Theory and Practice;[Proceedings of the American Chemical Society, Held August 23-27, 1998, in Boston, Massachusetts]: Springer Science & Business Media. Rui-Peng, Y., Li-Ping, W., Chen-Kai, Z., Sheng-Fang, W., & Qi-Jun, S. (2020). Determination of volatile metabolites in Microcystis aeruginosa using headspace-solid phase microextraction arrow combined with gas chromatography-mass spectrometry. Chinese Journal of Analytical Chemistry, 48(6), 750-756. Ruperez, P. (2001). Antioxidant activity of sulphated polysaccharides from the Spanish marine seaweed Nori. Proceedings of the COST 916 European Conference on Bioactive Compounds in Plant Foods. Health Effects and Perspectives for the Food Industry, Tenerife, Canary Islands, Spain, April (p. 114). Sánchez-Moreno, C. (2002). Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Science and Technology International, 8(3), 121-137. Shaoling, Y., Gang, Y., Bo, Q., Xianqing, Y., Jianchao, D., Yongqiang, Z., & Hui, R. (2016). Analysis of volatile compounds of dried Gracilaria lemaneiformis by HS-SPME method. 南方水产科学, 12(6), 115-122. Sharma, Y. C., Singh, B., & Korstad, J. (2011). A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green Chemistry, 13(11), 2993- 3006. Shukla, R., Kumar, M., Chakraborty, S., Gupta, R., Kumar, S., Sahoo, D., & Kuhad, R. C. (2016). Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa. Bioresource Technology, 220, 584-589. Siddhanta, A. K., Chhatbar, M. U., Mehta, G. K., Sanandiya, N. D., Kumar, S., Oza, M. D., Prasad, K., & Meena, R. (2011). The cellulose contents of Indian seaweeds. Journal of Applied Phycology, 23(5), 919-923. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in enzymology (pp. 152-178): Elsevier. Slinkard, K., & Singleton, V. L. (1977). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and 58 Viticulture, 28(1), 49-55. Sneddon, J., Masuram, S., & Richert, J. (2007). Gas chromatography‐mass spectrometry‐basic principles, instrumentation and selected applications for detection of organic compounds. Analytical Letters, 40(6), 1003-1012. Sousa-Dias, S., Gonçalves, T., Leyva, J. S., Peinado, J. M., & Loureiro-Dias, M. C. (1996). Kinetics and regulation of fructose and glucose transport systems are responsible for fructophily in Zygosaccharomyces bailii. Microbiology, 142(7), 1733-1738. Sousa, M. J., Rodrigues, F., Coôrte-Real, M., & Leão, C. (1998). Mechanisms underlying the transport and intracellular metabolism of acetic acid in the presence of glucose in the yeast Zygosaccharomyces bailii. Microbiology, 144(3), 665-670. Souza, B. W., Cerqueira, M. A., Martins, J. T., Quintas, M. A., Ferreira, A. C., Teixeira, J. A., & Vicente, A. A. (2011). Antioxidant potential of two red seaweeds from the Brazilian coasts. Journal of Agricultural and Food Chemistry, 59(10), 5589- 5594. Souza, B. W., Cerqueira, M. A., Bourbon, A. I., Pinheiro, A. C., Martins, J. T., Teixeira, J. A., Coimbra, M. A., & Vicente, A. A. (2012). Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids, 27(2), 287-292. Stahl, W., & Sies, H. (2003). Antioxidant activity of carotenoids. Molecular Aspects of Medicine, 24(6), 345-351. Steensels, J., Daenen, L., Malcorps, P., Derdelinckx, G., Verachtert, H., & Verstrepen, K. J. (2015). Brettanomyces yeasts—From spoilage organisms to valuable contributors to industrial fermentations. International Journal of Food Microbiology, 206, 24-38. Stévant, P., Ólafsdóttir, A., Déléris, P., Dumay, J., Fleurence, J., Ingadóttir, B., Jónsdóttir, B., Ragueneau, E., Rebours, C., Rustad, T. (2020). Semi-dry storage as a maturation process for improving the sensory characteristics of the edible red seaweed dulse (Palmaria palmata). Algal Research, 51, 106-343. Steels, H., James, S. A., Roberts, I. N., Stratford, M. (2000). Sorbic acid resistance: The inoculum effect. Yeast, 16(13), 1173-1183. Sudhakar, M. P., Jegatheesan, A., Poonam, C., Perumal, K., & Arunkumar, K. (2017). Biosaccharification and ethanol production from spent seaweed biomass using marine bacteria and yeast. Renewable Energy, 105, 133-139. Sudhakar, M. P., Kumar, B. R., Mathimani, T., & Arunkumar, K. (2019). A review on bioenergy and bioactive compounds from microalgae and macroalgaesustainable energy perspective. Journal of Cleaner Production, 228(10), 1320- 59 1333. Tabarsa, M., Rezaei, M., Ramezanpour, Z., & Waaland, J. R. (2012). Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. Journal of the Science of Food and Agriculture, 92(12), 2500-2506. Takahashi, H., Sumitani, H., Inada, Y., & Mori, D. (2002). Identification of volatile compounds of kombu (Laminaria spp.) and their odor description. Journal of the Japanese Society for Food Science and Technology, 49(4), 228-237. Tee, E.-S., & Lim, C.-L. (1991). Carotenoid composition and content of Malaysian vegetables and fruits by the AOAC and HPLC methods. Food Chemistry, 41(3), 309-339. Thomas, D. S., & Davenport, R. R. (1985). Zygosaccharomyces bailii—A profile of characteristics and spoilage activities. Food Microbiology, 2(2), 157-169. Tziveleka, L.-A., Tammam, M. A., Tzakou, O., Roussis, V., & Ioannou, E. (2021). Metabolites with antioxidant activity from marine macroalgae. Antioxidants, 10(9), 1431. Vilar, E. G., O'Sullivan, M. G., Kerry, J. P., & Kilcawley, K. N. (2020). Volatile compounds of six species of edible seaweed: A review. Algal Research, 45, 101740. Villarreal‐Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P., & Taillandier, P. (2018). Understanding kombucha tea fermentation: A review. Journal of Food Science, 83(3), 580-588. Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: Fruits. Journal of Agricultural and Food Chemistry, 49(11), 5315-5321. Voloshin, R. A., Rodionova, M. V., Zharmukhamedov, S. K., Veziroglu, T. N., & Allakhverdiev, S. I. (2016). Biofuel production from plant and algal biomass. International Journal of Hydrogen Energy,, 41(39), 17257-17273. Wang, J., Hu, S., Nie, S., Yu, Q., & Xie, M. (2016). Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016. Wang, T., Jonsdottir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116(1), 240-248. Watawana, M. I., Jayawardena, N., & Waisundara, V. Y. (2015). Enhancement of the functional properties of coffee through fermentation by “tea fungus”(k ombucha). Journal of Food Processing and Preservation, 39(6), 2596-2603. Watawana, M. I., Jayawardena, N., Gunawardhana, C. B., & Waisundara, V. Y. 60 (2016). Enhancement of the antioxidant and starch hydrolase inhibitory activities of king coconut water (Cocos nucifera var. aurantiaca) by fermentation with kombucha ‘tea fungus’. International Journal of Food Science and Technology, 51(2), 490-498. Welsh, F. W., Murray, W. D., Williams, R. E., & Katz, I. (1989). Microbiological and enzymatic production of flavor and fragrance chemicals. Critical Reviews in Biotechnology, 9(2), 105-169. Wernig, F., Buegger, F., Pritsch, K., & Splivallo, R. (2018). Composition and authentication of commercial and home-made white truffle-flavored oils. Food Control, 87, 9-16. Whitton, R., Le Mével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91(15), 371-378. Williams, G. M., Iatropoulos, M., & Whysner, J. (1999). Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food and Chemical Toxicology, 37(9-10), 1027-1038. Wu, C. Y. (2012). Solid Phase Micro Extraction. Beijing: Chemical Industry Press. Xu, T., Sutour, S., Casabianca, H., Tomi, F., Paoli, M., Garrido, M., Pasqualini, V., Aiello, A., Castola, V., & Bighelli, A. (2015). Rapid Screening of Chemical Compositions of Gracilaria dura and Hypnea mucisformis (Rhodophyta) from Corsican Lagoon. International Journal of Phytocosmetics and Natural Ingredients, 2(1), 8-8. Yang, S.-S., & Wang, C.-Y. (1983). Effect of environmental factors on Gracilaria cultivated in Taiwan. Bulletin of Marine Science, 33(3), 759-766. Yavari, N., Assadi, M. M., Moghadam, M. B., & Larijani, K. (2011). Optimizing glucuronic acid production using tea fungus on grape juice by response surface methodology. Australian Journal of Basic and Applied Sciences, 5(11), 1788- 1794. Yoshino, M., & Murakami, K. (1998). Interaction of iron with polyphenolic compounds: Application to antioxidant characterization. Analytical Biochemistry, 257(1), 40-44. Yue, T. X., Chi, M., Song, C. Z., Liu, M. Y., Meng, J. F., Zhang, Z. W., & Li, M. H. (2015). Aroma characterization of Cabernet Sauvignon wine from the Plateau of Yunnan (China) with different altitudes using SPME-GC/MS. International Journal of Food Properties, 18(7), 1584-1596. Yu, S., Blennow, A., Bojko, M., Madsen, F., Olsen, C. E., & Engelsen, S. B. (2002). Physico‐chemical characterization of floridean starch of red algae. Starch‐ Stärke, 54(2), 66-74. 61 Yu, Y. J., Lu, Z. M., Yu, N. H., Xu, W., Li, G. Q., Shi, J. S., & Xu, Z. H. (2012). HS‐ SPME/GC‐MS and chemometrics for volatile composition of Chinese traditional aromatic vinegar in the Zhenjiang region. Journal of the Institute of Brewing, 118(1), 133-141. Zhang, C., Li, X., & Kim, S. K. (2012). Application of marine biomaterials for nutraceuticals and functional foods. Food Science and Biotechnology, 21(3), 625-631. Zhang, Y.-H., Song, X.-N., Lin, Y., Xiao, Q., Du, X.-P., Chen, Y.-H., & Xiao, A.-F. (2019). Antioxidant capacity and prebiotic effects of Gracilaria neoagaro oligosaccharides prepared by agarase hydrolysis. International Journal of Biological Macromolecules, 137, 177-186. Zhang, Z., Yang, M. J., & Pawliszyn, J. (1994). Solid-phase microextraction. A solventfree alternative for sample preparation. Analytical Chemistry, 66(17), 844-853. Zulueta, A., Esteve, M. J., & Frígola, A. (2009). ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chemistry, 114(1), 310-316.
|