字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:陳乙萱
研究生英文姓名:Chen, I-Hsuan
中文論文名稱:利用植物乳桿菌發酵香蕉副產品生產胞外多醣及其生物活性探討
英文論文名稱:Bioactivity assessment of exopolysaccharides produced by Lactobacillus plantarum fermentation with the extract residue of banana peel
指導教授姓名:陳泰源
林詠凱
口試委員中文姓名:教授︰蕭泉源
教授︰林詠凱
副教授︰黃健政
副教授︰林家民
副教授︰黃崇雄
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932031
請選擇論文為:應用型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:80
中文關鍵詞:胞外多醣香蕉副產品植物乳桿菌反應曲面法抗氧化免疫調節
英文關鍵字:exopolysaccharidesbanana by-productsLactobacillus plantarumreaction surface methodantioxidant capacityimmune modulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏收藏:0
香蕉屬於熱帶水果為全世界四大重要經濟作物之一,果皮占整根新鮮香蕉總重的 35-40%。香蕉皮含有豐富營養成分,相當適合作為益生菌生長的基質。本研究利用 MRS 培養基 (Man, Rogosa and Sharpe broth) /2.5% 乾重香蕉副產品,添加不同比例之酵母萃取物 (yeast extract) 和糖蜜 (molasses) 為發酵基質,觀察不同轉速下Lactobacillus plantarum (ATCC 8014) 產生胞外多醣 (exopolysaccharides, EPS)等特性。經實驗結果得知,胞外多醣的產量在第 48 小時最高,以酵母萃取物 4%、糖蜜 4%、轉速 100 rpm (Y4M4S100) 的組別含量最高。由 FTIR 測定能發現組別間的官能基相似,均屬酸性多醣。胞外多醣具有抗氧化 (ABTS+、DPPH與還原力)、吸附膽固醇、抑制酪胺酸酶之能力。透過體外細胞實驗得知,胞外多醣無細胞毒性且能增加小鼠脾臟細胞活性,促進免疫反應。藉由測定IFN-γ的含量發現,胞外多醣能減少經由脂多醣 (lipopolysaccharides, LPS) 引起的發炎反應,具調節免疫之潛力。最後使用反應曲面法 (response surface methodology, RSM) 分兩部分探討,以胞外多醣含量、吸附膽固醇、抑制酪胺酸酶和抗氧化能力之體外生理活性等指標進行最佳化,發現 Y4M1S61.576 為最適條件;第二部分為免疫調節之效果 (MTT、IFN-γ),以 Y1.291M4S61.158 作為最佳條件。透過發酵可衍生生物活性物質並進階有效使用副產品,達到永續發展與循環經濟之目標。
Banana is the top four traded agricultural crop worldwide. However, the banana peel waste is account for 35-40% of the total weight. Although the peel is considered as by-products, it still has high nutrients, providing it an opportunity to be substrates for probitic fermentation. This study aimed at conducting Lactobacillus plantarum (ATCC 8014) fermentation with Man, Rogosa and Sharpe broth (MRS) plus 2.5% banana by-products, different orbital shaking rate, concentration of yeast extracts and molasses. The results showed that the highest exopolysaccharides (EPS) production in the fermentation with 4% of yeast extract, 4% molasses in 100 rpm (Y4M4S100) for 48 hours. The FTIR spectrum revealed that the functional groups among different groups corresponded to the acid polysaccharides. The EPS in this study were known for the several functions as antioxidant capacity (ABTS+, DPPH, reduction), cholesterol absorption in vitro, and tyrosinase inhibition in vitro. The EPS did not trigger cytotoxic effect and increase the mice spleen cell activity to promote immune response. The EPS inhibited the LPS/ConA-induced inflammatory cytokine (IFN-γ) and exhibited the immune modulatory potential. Optimization fermentation parameters were divided by two different orientations.The first orientation contained in vitro bioactivities of EPS content, cholesterol adsorption, tyrosinase inhibition and antioxidant capacity, and it showed that Y4M1S61.576 was the optimal condition. In immune modulation (MTT and IFN-γ), the optimal condition was Y1.315M4S60.922. This study derived high value bioactive compounds from banana by-products and achieved the goal of circular economy.
目錄
壹、前言 1
貳、研究動機 2
參、文獻回顧 3
一、副產品 3
1. 全球動態 3
2. 循環經濟 3
二、香蕉 3
1. 簡介 3
1.1 臺灣香蕉之產量與出口 4
1.2 全球香蕉產量 4
1.3 香蕉產生之副產品 4
2. 香蕉皮之價值 4
2.1 香蕉皮之營養成分 4
2.2 香蕉皮的應用發展 5
三、乳酸菌 5
1. 簡介 5
1.1 益生菌 5
1.2 乳酸菌發酵代謝途徑 6
1.3 乳酸菌發酵之機能特性 6
1.4 乳酸菌於發酵製品之應用 6
1.5 植物乳桿菌介紹 6
2. 胞外多醣 7
2.1 影響胞外多醣生成之因素 7
2.2 胞外多醣之生理功效 8
2.3 胞外多醣在食品上之運用 8
四、反應曲面法 8
肆、研究架構 9
伍、實驗設計 11
陸、材料與方法 12
一、實驗材料 12
1. 香蕉副產品 12
2. 實驗菌株 12
3. 實驗細胞 12
4. 微生物培養基 12
5. 藥品來源 12
二、儀器設備 15
三、實驗方法 16
1. 香蕉副產品之一般成分分析 16
1.1 水分含量 16
1.2 灰分含量 16
1.3 粗蛋白含量 16
1.4 粗脂肪含量 16
1.5 粗纖維含量 17
1.6 碳水化合物 17
2. 菌株之保存與活化 17
2.1 菌株之保存 17
2.2 菌株之活化 17
3. 生長曲線 17
4. 香蕉副產品發酵培養基 18
5. 乳酸菌發酵條件 18
5.1 乳酸菌含量測定 18
5.2 pH 值測定 18
5.3 可滴定酸度 18
5.4 總糖濃度測定 18
5.5 還原糖濃度測定 19
6. 胞外多醣測定 19
6.1 胞外多醣萃取 19
6.2 胞外多醣含量分析 19
7. 抗氧化能力 19
7.1 ABTS+ 自由基清除能力 19
7.2 DPPH 自由基清除能力 20
7.3 還原力測定 20
8. 抑制酪胺酸酶活性 20
9. 體外膽固醇吸附 20
10. 免疫反應實驗 21
10.1 脾臟細胞培養 21
10.2 細胞活性試驗 (MTT) 21
10.3 細胞激素 21
11. 傅立葉轉換紅外光譜 (FTIR) 21
12. 統計分析 22
柒、結果與討論 23
ㄧ、香蕉副產品之一般成分分析 23
二、添加不同比例香蕉副產品發酵之總糖、還原糖、pH、可滴定酸和乳酸菌數變化 23
1. 總糖、還原糖 23
2. pH、可滴定酸 24
3. 乳酸菌數 24
4. 胞外多醣含量 24
三、不同濃度糖蜜、酵母萃取物和轉速對於植物乳桿菌產胞外多醣的含量影響 25
1. 總糖、還原糖 25
2. pH與可滴定酸 25
3. 乳酸菌數 25
4. 胞外多醣含量變化 26
5. FTIR 圖譜 26
四、不同濃度糖蜜、氮源和轉速對於植物乳桿菌產胞外多醣之生理活性探討 27
1. 抗氧化能力 27
2. 抑制酪胺酸酶的能力 28
3. 體外吸附膽固醇能力 28
4. 胞外多醣對小鼠脾臟細胞活性之影響 28
5. 胞外多醣對脾臟細胞 IFN-γ和 IL-4 分泌之影響 29
五、以反應曲面法探討最適發酵條件 30
捌、結論 31
玖、貢獻與限制 32
拾、參考文獻 33
圖表 42
附錄 80


王毓婕 (2012)。纖維素酶水解及益生菌發酵對香蕉保健機能性之影響。國立臺灣海洋大學食品科學系碩士論文,基隆市。
李惠虹 (2016)。纖維素酶水解與乳酸菌發酵對諾麗果生物活性物質釋放及其機能性之影響。國立臺灣海洋大學食品科學系博士論文,基隆市。
呂佳華 (2012)。乳酸菌胞外多醣生產條件及影響FL83B肝細胞葡萄糖帶入量與肝醣合成探討。東海大學食品科學系碩士論文,台中市。
張增祥 (2015)。十一種具生物活性胜肽之抗氧化能力試驗。國立臺灣海洋大學食品科學系碩士論文,基隆市。
行政院農業委員會農糧署 (2021)。110年6月果品生產預測。
行政院農業委員會 (2021)。109年農業貿易統計表。
葉仁豪 (2015)。脫脂大豆粉與大豆渣酵素水解寡醣及脫脂大豆寡醣乳酸菌發酵產物之生理活性探討。國立臺灣海洋大學食品科學系碩士論文,基隆市。
鍾昀軒 (2017)。以小鼠巨噬細胞 RAW 264.7 細胞模式探討花草茶熱水萃物之抗氧化及抗發炎活性。國立臺灣海洋大學食品科學系碩士論文,基隆市。
謝子勤(2018)。青香蕉全果乾燥磨粉之抗氧化功效評估及其加工應用。國立臺灣海洋大學食品科學系碩士論文,基隆市。
Aboul-Enein, A. M., Salama, Z. A., Gaafar, A. A., Aly, H. F., Abou-Elella, F., & Ahmed, H. A. (2016). Identification of phenolic compounds from banana peel (Musa paradaisica L.) as antioxidant and antimicrobial agents. Journal of Chemical and Pharmaceutical Research, 8, 46-55.
Assefa, S. T., Yang, E. Y., Chae, S. Y., Song, M., Lee, J., Cho, M. C., & Jang, S. (2020). Alpha glucosidase inhibitory activities of plants with focus on common vegetables. Plants, 9, 2.
Acebal, C., Castillon, M. P., Estrada,P.,Mata, I., Costa, E., Aguado, J., Romero, D., & Jimenez, F. (1986). Enhanced cellulase production from Trichoderma reesei QM 9414 on physically treated wheat straw. Applied Microbiology and Biotechnology, 24, 218-223.
Ale, E. C., Bourin, M. J. B., Peralta, G. H., Burns, P. G., Ávila, O. B., Contini, L., ... & Binetti, A. G. (2019). Functional properties of exopolysaccharide (EPS) extract from Lactobacillus fermentum Lf2 and its impact when combined with Bifidobacterium animalis INL1 in yoghurt. International Dairy Journal, 96, 114-125.
Borycka, B. K. R. (2010). Binding cadmium and lead using natural poly saccharide fibers from some fruit and vegetable wastes. Zywnosc Nauka Technologia, Jakosc, 69, 104-110.
Bakar, S. K. S. A., Ahmad, N., & Jailani, F. (2018). Chemical and functional properties of local banana peel flour. Journal of Food and Nutrition Research, 6, 492-496.
Burdette, A., Garner, P. L., Mayer, E. P., Hargrove, J. L., Hartle, D. K., & Greenspan, P. (2010). Anti-inflammatory activity of select sorghum (Sorghum bicolor) brans. Journal of Medicinal Food, 13, 879-887.
Buksa, K., Kowalczyk, M., & Boreczek, J. (2021). Extraction, purification and characterisation of exopolysaccharides produced by newly isolated lactic acid bacteria strains and the examination of their influence on resistant starch formation. Food Chemistry, 130221.
Bien, T. L. T., Tsuji, S., Tanaka, K., Takenaka, S., & Yoshida, K. I. (2014). Secretion of heterologous thermostable cellulases in Bacillus subtilis. The Journal of General and Applied Microbiology, 60, 175-182.
Butt, K. Y., Altaf, A., Malana, M. A., Ghori, M. I., & Jamil, A. (2018). Optimal production of proteases from Bacillus subtilis using submerged fermentation. Pakistan Journal of Life and Social Sciences, 16.
Bajpai, V. K., Rather, I. A., & Park, Y. H. (2016). Partially Purified Exo‐Polysaccharide from Lactobacillus Sakei Probio 65 with Antioxidant, α‐Glucosidase and Tyrosinase Inhibitory Potential. Journal of Food Biochemistry, 40, 264-274
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965-977.
Caldeira, C., De Laurentiis, V., Corrado, S., van Holsteijn, F., & Sala, S. (2019). Quantification of food waste per product group along the food supply chain in the European Union: a mass flow analysis. Resources, Conservation and Recycling, 149, 479-488.
Cheng, H. H., & Yin, L. J. (2007). Medium Effects on the Increase of Protease and Cellulase Activities of Bacillus subtilis BCRC14716. Journal of The Fisheries Society of Taiwan, 34, 291-298.
Castro, L. A. D., Lizi, J. M., Chagas, E. G. L. D., Carvalho, R. A. D., & Vanin, F. M. (2020). From orange juice by-product in the food industry to a functional ingredient: application in the circular economy. Foods, 9, 593.
Castro, R. S., Caetano, L., Ferreira, G., Padilha, P. M., Saeki, M. J., Zara, L. F., Martines, M. A. U., & Castro, G. R. (2011). Banana peel applied to the solid phase extraction of copper and lead from river water: preconcentration of metal ions with a fruit waste. Industrial and Engineering Chemistry Research, 50, 3446-3451.
Caplice, E. & G. F. Fitzgerald (1999). Food fermentations: role of microorganisms in food production and preservation. International Journal of Food Microbiology, 50, 131-149.
Cheng, X., Huang, L., & Li, K. T. (2019). Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis. World Journal of Microbiology and Biotechnology, 35, 1-13.
Dilna, S. V., Surya, H., Aswathy, R. G., Varsha, K. K., Sakthikumar, D. N., Pandey, A., & Nampoothiri, K. M. (2015). Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT-Food Science and Technology, 64, 1179-1186.
Cui, J., Ren, W., Zhao, C., Gao, W., Tian, G., Bao, Y., ... & Zheng, J. (2020). The structure–property relationships of acid-and alkali-extracted grapefruit peel pectins. Carbohydrate polymers, 229, 115524.
Dertli, E., Toker, O. S., Durak, M. Z., Yilmaz, M. T., Tatlısu, N. B., Sagdic, O., & Cankurt, H. (2016). Development of a fermented ice-cream as influenced by in situ exopolysaccharide production: rheological, molecular, microstructural and sensory characterization. Carbohydrate Polymers, 136, 427-440.
Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. R. E. D. (1956). Colormetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356.
Das, D., Baruah, R., & Goyal, A. (2014). A food additive with prebiotic properties of an α-d-glucan from Lactobacillus plantarum DM5. International Journal of Biological Macromolecules, 69, 20-26.
Eshak, N. S. (2016). Sensory evaluation and nutritional value of balady flat bread supplemented with banana peels as a natural source of dietary fiber. Annals of Agricultural Sciences, 61, 229-235.
Esposito, F., Arlotti, G., Bonifati, A. M., Napolitano, A., Vitale, D., & Fogliano, V. (2005). Antioxidant activity and dietary fibre in durum wheat bran by-products. Food Research International, 38, 1167-1173.
Fu, C. C., Hung, T. C., Chen, J. Y., Su, C. H., & Wu, W. T. (2010). Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 101, 8750-8754.
Fuller, R. (1989). Probiotics in man and animals. Journal of Applied Bacteriology, 66, 365-378.
Ferreira, M. S., Santos, M. C., Moro, T. M., Basto, G. J., Andrade, R. M., & Gonçalves, É. C. (2015). Formulation and characterization of functional foods based on fruit and vegetable residue flour. Journal of Food Science and Technology, 52, 822-830.
Goveas, L. C., Ashwath, K. S., Nazerath, B. R., Dsouza, O., Umesh, A., & Muddappa, V. S. (2021). Development of coconut water-based exopolysaccharide rich functional beverage by fermentation with probiotic Lactobacillus plantarum SVP2. Biocatalysis and Agricultural Biotechnology, 34, 102030.
Gupta, S., Abu-Ghannam, N., & Scannell, A. G. (2011). Growth and kinetics of Lactobacillus plantarum in the fermentation of edible Irish brown seaweeds. Food and Bioproducts Processing, 89, 346-355.
Hunaefi, D., Gruda, N., Riedel, H., Akumo, D. N., Saw, N. M. M. T., & Smetanska, I. (2013). Improvement of antioxidant activities in red cabbage sprouts by lactic acid bacterial fermentation. Food Biotechnology, 27, 279-302.
Ismail, B., & Nampoothiri, K. M. (2010). Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Archives of microbiology, 192, 1049-1057.
Jiang, B., Wang, L., Zhu, M., Wu, S., Wang, X., Li, D., ... & Tian, B. (2021). Separation, structural characteristics and biological activity of lactic acid bacteria exopolysaccharides separated by aqueous two-phase system. LWT, 147, 111617.
Kanazawa, K., & Sakakibara, H. (2000). High content of dopamine, a strong antioxidant, in cavendish banana. Journal of Agricultural and Food Chemistry, 48, 844-848.
Kaizu, H., M. Sasaki, H. Nakajima, & Y. Suzuki (1993). Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in Vitamin E. Dairy Science, 76, 2493-2499.
Kimoto-Nira, H., Suzuki, C., Sasaki, K., Kobayashi, M., & Mizumachi, K. (2010). Survival of a Lactococcus lactis strain varies with its carbohydrate preference under in vitro conditions simulated gastrointestinal tract. International Journal of Food Microbiology, 143, 226-229.
Khoozani, A. A., Birch, J., & Bekhit, A. E. D. A. (2019). Production, application and health effects of banana pulp and peel flour in the food industry. Journal of Food Science and Technology, 56, 548-559.
Kumar, K. S., Bhowmik, D., Duraivel, S., & Umadevi, M. (2012). Traditional and medicinal uses of banana. Journal of Pharmacognosy and Phytochemistry, 1, 51-63.
Kim, Y. S., Jung, H. C., & Pan, J. G. (2000). Bacterial cell surface display of an enzyme library for selective screening of improved cellulase variants. Applied and Environmental Microbiology, 66, 788-793.
Kazeem, M. I., Adamson, J. O., & Ogunwande, I. A. (2013). Modes of inhibition of α-amylase and α-glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed Research International, 2013.
Kwon, M., Lee, J., Park, S., Kwon, O. H., Seo, J., & Roh, S. (2020). Exopolysaccharide isolated from Lactobacillus plantarum L-14 has anti-inflammatory effects via the Toll-like receptor 4 pathway in LPS-induced RAW 264.7 cells. International Journal of Molecular Sciences, 21, 9283.
Lilly, D. M., & Stillwell, R. H. (1965). Probiotics: growth-promoting factors produced by microorganisms. Science, 147, 747-748.
Lynch, K. M., Coffey, A., & Arendt, E. K. (2018). Exopolysaccharide producing lactic acid bacteria: their techno-functional role and potential application in gluten-free bread products. Food Research International, 110, 52-61.
Lorusso, A., Coda, R., Montemurro, M., & Rizzello, C. G. (2018). Use of selected lactic acid bacteria and quinoa flour for manufacturing novel yogurt-like beverages. Foods, 7, 51.
Lobo, R. E., Gómez, M. I., de Valdez, G. F., & Torino, M. I. (2019). Physicochemical and antioxidant properties of a gastroprotective exopolysaccharide produced by Streptococcus thermophilus CRL1190. Food Hydrocolloids, 96, 625-633.
Li, C., Li, W., Chen, X., Feng, M., Rui, X., Jiang, M., & Dong, M. (2014). Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT-Food Science and Technology, 57(2), 477-485.
Liu, T., Zhou, K., Yin, S., Liu, S., Zhu, Y., Yang, Y., & Wang, C. (2019). Purification and characterization of an exopolysaccharide produced by Lactobacillus plantarum HY isolated from home-made Sichuan Pickle. International Journal of Biological Macromolecules, 134, 516-526.
Morais, D. R., Rotta, E. M., Sargi, S. C., Schmidt, E. M., Bonafe, E. G., Eberlin, M. N., Sawaya, A. C. H. F & Visentainer, J. V. (2015). Antioxidant activity, phenolics and UPLC–ESI (–)–MS of extracts from different tropical fruits parts and processed peels. Food Research International, 77, 392-399.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426-428.
Miao, J., H. Guo, Y. Ou, G. Liu, X. Fang, Z. Liao, C. Ke, Y Chen, L. Zhao, and Y. Cao (2014). Purification and characterization of bacteriocin F1, a novel bacteriocin produced by Lactobacillus paracasei subsp. Tolerans FX-6 from Tibetan kefir, a traditional fermented milk from Tibet, China. Food Control, 42, 48-53.
Merghni, A., Dallel, I., Noumi, E., Kadmi, Y., Hentati, H., Tobji, S., Amor, A. B. & Mastouri, M. (2017). Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains. Microbial Pathogenesis, 104, 84-89.
MacAllister, R. V. (1979). Nutritive sweeteners made from starch. Advances in Carbohydrate Chemistry and Biochemistry, 36, 15-56.
Mustafa, S. M., Chua, L. S., El‐Enshasy, H. A., Abd Majid, F. A., Hanapi, S. Z., & Abdul Malik, R. (2019). Effect of temperature and pH on the probiotication of Punica granatum juice using Lactobacillus species. Journal of Food Biochemistry, 43, e12805.
Manzoni, G. M., Castelnuovo, G., & Molinari, E. (2008). Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. The New England Journal of Medicine, 359, 2170–2172.
Makino, S., Sato, A., Goto, A., Nakamura, M., Ogawa, M., Chiba, Y., ... & Asami, Y. (2016). Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of dairy science, 99, 915-923.
Ma, M., & Mu, T. (2016). Anti-diabetic effects of soluble and insoluble dietary fibre from deoiled cumin in low-dose streptozotocin and high glucose-fat diet-induced type 2 diabetic rats. Journal of Functional Foods, 25, 186-196.
Mohd Nadzir, M., Nurhayati, R. W., Idris, F. N., & Nguyen, M. H. (2021). Biomedical applications of bacterial exopolysaccharides: a review. Polymers, 13, 530.
Makino, S., Sato, A., Goto, A., Nakamura, M., Ogawa, M., Chiba, Y., ... & Asami, Y. (2016). Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of dairy science, 99, 2, 915-923.
Ma, L., Zhao, Y., Yu, J., Ji, H., & Liu, A. (2018). Characterization of Se-enriched Pleurotus ostreatus polysaccharides and their antioxidant effects in vitro. International journal of biological macromolecules, 111, 421-429.
Närvänen, E., Mattila, M., & Mesiranta, N. (2021). Institutional work in food waste reduction: start-ups' role in moving towards a circular economy. Industrial Marketing Management, 93, 605-616.
Nagarajaiah, S. B., & Prakash, J. (2011). Chemical composition and antioxidant potential of peels from three varieties of banana. Asian Journal of Food and Agro-Industry, 4, 31-46.
Nagy, M., & Grancai, D. (1996). Colorimetric determination of flavanones in propolis. Pharmazie, 51, 100-101.
Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Pereira, P. H. F., Moates, G. K., Wellner, N., Mazzetto, S.E., Waldron, K.W., & Azeredo, H. M. (2016). Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chemistry, 198, 113-118.
Oyaizu, M. (1986). Studies on products of browning reaction. The Japanese Journal of Nutrition and Dietetics, 44, 307-315.
Ogawa, T., Y. Asai, H. Sakamoto, & K. Yasuda (2006). Oral immunoadjuvant activity of Lactobacillus casei subsp casei in dextran-fed layer chickens. British Journal of Nutrition, 95, 430-434.
Oliveira, P. M., E. Zannini, & E. K. Arendt (2014). Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiology, 37, 78-95.
Othman, N. Z., Din, A. R. J. M., Azam, Z. M., Rosli, M. A., & Sarmidi, M. R. (2018). Statistical optimization of medium compositions for high cell mass and exopolysaccharide production by Lactobacillus plantarum ATCC 8014. Applied Food Biotechnology, 5, 87-96.
Ozabor, P. T., Ojokoh, A. O., Wahab, A. A., & Aramide, O. O. (2020). Effect of Fermentation on the Proximate and Antinutrient Composition of Banana Peels. The International Journal of Biotechnology, 9, 105-117
Pyar, H., & Peh, K. K. (2018). Chemical Compositions of Banana Peels (Musa sapientum) Fruits cultivated in Malaysia using proximate analysis. Research Journal of Chemistry and Environment, 22, 108-111.
Park, J. N., Ali-Nehari, A., Woo, H. C., & Chun, B. S. (2012). Thermal stabilities of polyphenols and fatty acids in Laminaria japonica hydrolysates produced using subcritical water. Korean Journal of Chemical Engineering, 29, 1604-1609.
Priyodip, P., Prakash, P. Y., & Balaji, S. (2017). Phytases of probiotic bacteria: characteristics and beneficial aspects. Indian Journal of Microbiology, 57, 148-154.
Peng, H. T., Yang, C. Y., & Fang, T. J. (2018). Enhanced β-glucosidase activity of Lactobacillus plantarum by a strategic ultrasound treatment for biotransformation of isoflavones in Okara. Food Science and Technology Research, 24, 777-784.
Prieto-Sandoval, V., Jaca, C., & Ormazabal, M. (2018). Towards a consensus on the circular economy. Journal of Cleaner Production, 179, 605-615.
Prabhakara, S., Kandeepanb, C., & Charulathac, R. (2019). Isolation, optimization and characterization of cellulose enzyme production by Bacillus subtilis. International Journal of Research and Analytical Reviews, 6, 103-112.
Rehman, S., Nadeem, M., Ahmad, F., & Mushtaq, Z. (2018). Biotechnological production of xylitol from banana peel and its impact on physicochemical properties of rusks.
Ribeiro, S. M. R., Barbosa, L. C. A., Queiroz, J. H., Knödler, M., & Schieber, A. (2008). Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chemistry, 110, 620-626.
Rhee, S. J., Lee, J. E., & Lee, C. H. (2011). Importance of lactic acid bacteria in Asian fermented foods. Microbial Cell Factories.
Robak J, Gryglewski RJ. (1988). Flavonoids are scavengers of superoxide anions. Biochemical Pharmacology, 17, 837-841.
Rajoka, M. S. R., Mehwish, H. M., Kitazawa, H., Barba, F. J., Berthelot, L., Umair, M., ... & Zhao, L. (2022). Techno-functional properties and immunomodulatory potential of exopolysaccharide from Lactiplantibacillus plantarum MM89 isolated from human breast milk. Food Chemistry, 377, 131954.
Soh, H. S., Kim, C. S., & Lee, S. P. (2003). A new in vitro assay of cholesterol adsorption by food and microbial polysaccharides. Journal of Medicinal Food, 6, 225-230.
Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition, 81, 215S-217S.
Singh, S., Parveen, N., & Gupta, H. (2018). Adsorptive decontamination of rhodamine-B from water using banana peel powder: a biosorbent. Environmental Technology and Innovation, 12, 189-195.
Sihvonen, S., & Ritola, T. (2015). Conceptualizing ReX for aggregating end-of-life strategies in product development. Procedia Cirp, 29, 639-644.
Sasikumar, K., Vaikkath, D. K., Devendra, L., & Nampoothiri, K. M. (2017). An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods. Bioresource technology, 241, 1152-1156.
Si, T., Liu, C. J., Qin, X. M., Li, X. R., Luo, Y. Y., & Yang, E. (2017). Optimization of Biosynthesis Conditions for the Production of Exopolysaccharides by Lactobacillus plantarum YM-2. Food Sci, 38, 24-30.
Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., & Tripathi, C. (2017). Strategies for fermentation medium optimization: an in-depth review. Frontiers in Microbiology, 7, 2087.
Seesuriyachan, P., Kuntiya, A., Hanmoungjai, P., & Techapun, C. (2011). Exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: the effect of peptone, yeast extract and beef extract. Songklanakarin Journal of Science & Technology, 33(4).
Trowell, H. (1978). The development of the concept of dietary fiber in human nutrition. The American Journal of Clinical Nutrition, 31, S3-S11.
Tse, P. W. T., Leung, S. S. F., Chan, T., Sien, A., & Chan, A. K. H. (2000). Dietary fiber intake and constipation in children with severe developmental disabilities. Journal of Pediatrics and Child Health, 36, 236–239.
Tidona, F., Francolino, S., Zhang, H., Contarini, G., Cui, S. W., Giraffa, G., & Carminati, D. (2016). Design of a starter culture to produce a reduced-fat soft cheese with added bio-value. Journal of Food & Nutrition Research, 55.
Vu, H. T., Scarlett, C. J., & Vuong, Q. V. (2018). Phenolic compounds within banana peel and their potential uses: a review. Journal of Functional Foods, 40, 238-248.
Villanueva-Suárez, M.-J., Pérez-Cózar, M.-L., Mateos-Aparicio, I., & Redondo-Cuenca, A. (2016). Potential fat-lowering and prebiotic effects of enzymatically treated okara in high-cholesterol fed Wistar rats. International Journal of Food Science and Nutrition, 67, 828–833.
Varma, T. K., Lin, C. Y., Toliver-Kinsky, T. E., & Sherwood, E. R. (2002). Endotoxin-induced gamma interferon production: contributing cell types and key regulatory factors. Clinical and Vaccine Immunology, 9, 3, 530-543.
Wang, D., Li, A., Han, H., Liu, T., & Yang, Q. (2018). A potent chitinase from Bacillus subtilis for the efficient bioconversion of chitin-containing wastes. International Journal of Biological Macromolecules, 116, 863-868.
Yeo, S. K., & Ewe, J. A. (2015). Effect of fermentation on the phytochemical contents and antioxidant properties of plant foods. Advances in Fermented Foods and Beverages.
Yılmaz, T., & Şimşek, Ö. (2020). Potential health benefits of ropy exopolysaccharides produced by Lactobacillus plantarum. Molecules, 25, 3293.
Zaini, H. B. M., Sintang, M. D. B., & Pindi, W. (2020). The roles of banana peel powders to alter technological functionality, sensory and nutritional quality of chicken sausage. Food Science and Nutrition, 8, 5497-5507.
Zeng, X. F., W. S. Xia, J. S. Wang, Q. X. Jiang, Y. S. Xu, Qiu, and H. Y. Wang (2014). Technological properties of Lactobacillus plantarum strains isolated from Chinese traditional low salt fermented whole fish. Food Control, 40, 351-358.
Zhang, L., Zhao, B., Liu, C. J., & Yang, E. (2020). Optimization of biosynthesis conditions for the production of exopolysaccharides by Lactobacillus plantarum SP8 and the exopolysaccharides antioxidant activity test. Indian Journal of Microbiology, 60, 334-345.
(此全文限內部瀏覽)
電子全文
全文檔開放日期:不公開
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *