字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:謝文齊
研究生英文姓名:Sieh, Wun-Chi
中文論文名稱:透過鼻腔給藥及管餵方式探討植物乳桿菌 (Lactobacillus plantarum) 改善氣喘小鼠模型中過敏作用與機制
英文論文名稱:Using Intranasal Administration and Oral Gavage to Study Improving Allergy Effects and Mechanisms of Lactobacillus plantarum in Asthma Mouse Model
指導教授姓名:吳彰哲
口試委員中文姓名:教授︰廖光文
教授︰吳彰哲
助理教授︰陳建利
副教授︰詹伊琳
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932026
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:62
中文關鍵詞:氣喘益生菌植物乳桿菌卵白蛋白氣道高反應性
英文關鍵字:AsthmaProbioticsLactobacillus plantarumOvalbuminAirway hyperresponsivene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
氣喘 (Asthma) 是一種肺部慢性發炎及支氣管過度反應的疾病,為最常見的慢性非傳染性疾病之一。接觸過敏原後會引起發炎細胞浸潤、支氣管收縮和肺部發炎,導致患者出現喘息、胸悶或咳嗽等症狀。目前在氣喘的治療上依其作用可分為控制藥物及緩解藥物,但這些藥物多具有副作用且必須長期使用才能有效地控制氣喘症狀。益生菌 (Probiotics) 能夠定殖於人類胃腸道中,屬於非病性原微生物,通過各種機制發揮其有益作用,包括降低腸道 pH 值、減少病原性微生物的定殖和入侵以及改變宿主免疫反應。本研究使用植物乳桿菌 (Lactobacillus plantarum),以活體益生菌、熱裂解益生菌及益生菌上清液作為樣品,探討三種益生菌樣品改善氣喘小鼠模型中的過敏作用。細胞實驗方面,以脫顆粒劑化合物 48/80 誘導小鼠肥大細胞株 P815 模擬過敏情形,但益生菌樣品對於抑制脫顆粒作用並沒有顯著效果,顯示植物乳桿菌無法直接作用於細胞改善過敏反應﹔動物實驗方面,利用卵清蛋白 (Ovalbumin, OVA) 誘導 BALB/c 小鼠產生氣喘,並以鼻腔給予及管餵方式探討三種益生菌樣品改善症狀的效果。小鼠經 OVA 刺激後,增加了 Th2 細胞的分化,導致 Th1/Th2 免疫反應失衡,進而吸引促發炎細胞聚集於肺部組織,導致肺部發炎及腫脹﹔Treg 細胞的減少同樣破壞了 Treg/Th17 之間的細胞平衡,促使黏液在肺組織中增生,使氣喘患者出現氣道重塑等病理特徵。給予三種益生菌樣品後,無論是鼻腔給予組或是管餵組,三種益生菌樣品均可降低血清及支氣管沖提液中 IgE 及 IL-4 的表現量,減少促發炎物質的釋放來緩解發炎反應,並且提高脾臟組織中 Treg 細胞的表達來抑制促發炎激素 IL-17 的分泌,調節Treg/Th17 細胞激素的平衡,緩解肺組織中的黏液分泌及纖維化,同時提高 IFN-γ 的分泌抑制 Th2 細胞激素,藉此改善過度的發炎反應及氣道高反應性。在管餵組別中,上清液組比起另外兩個組別更能有效減緩發炎反應﹔鼻腔組別中,熱滅活益生菌組比起另外兩個組別更能有效減緩發炎反應。植物乳桿菌具有改善過敏症狀的潛力,期望可以輔助在氣喘上的治療,為後續的研究提供新的方向。
Asthma is a chronic inflammation of the lungs and bronchial overreaction, and is one of the most common chronic non-communicable diseases. Allergen exposure can cause inflammatory cell infiltration, bronchoconstriction, and lung inflammation, leading to symptoms such as wheezing, chest tightness, or coughing. At present, the treatment of asthma can be divided into control drugs and relief drugs according to their functions, but most of these drugs have side effects and must be used for a long time to effectively control the symptoms of asthma. Probiotics are non-pathogenic microorganisms that colonize the human gastrointestinal tract and exert their beneficial effects through a variety of mechanisms, including lowering intestinal pH, reducing colonization and invasion by pathogenic microorganisms, and altering the host immune response. In this study, Lactobacillus plantarum was used, and live probiotics, heat killed probiotics, and probiotic supernatants were used as samples to investigate the allergy-improving effects of three probiotic samples in a mouse model of asthma. In cell experiments, the mouse mast cell line P815 was induced with degranulation compound 48/80 to simulate allergic conditions, but the probiotic samples had no significant effect on inhibiting degranulation, indicating that Lactobacillus plantarum could not directly act on cells to improve allergic reactions; In terms of animal experiments, Ovalbumin (OVA) was used to induce asthma in BALB/c mice. OVA stimulation in mice increases the differentiation of Th2 cells, resulting in an imbalance of Th1/Th2 immune responses, which in turn attracts pro-inflammatory cells to accumulate in lung tissue, resulting in lung inflammation and swelling; the reduction of Treg cells also destroys Treg/Th17 The balance of cells between them promotes the proliferation of mucus in the lung tissue and causes pathological features such as airway remodeling in patients with asthma. After administration of three probiotic samples, all three probiotic samples can reduce the expression of IgE and IL-4 in serum and bronchial lavage fluid, reduce the release of pro-inflammatory substances to relieve inflammation, and increase the expression of Treg cells in spleen tissue. To inhibit the secretion of pro-inflammatory hormone IL-17, regulate the balance of Treg/Th17 cytokines, relieve mucus secretion and fibrosis in lung tissue, and increase the secretion of IFN-γ to inhibit Th2 cytokines, thereby improving excessive inflammatory response and airway hyperresponsiveness. Lactobacillus plantarum has the potential to improve allergic symptoms and is expected to assist in the treatment of asthma, providing new directions for follow-up research.
目錄
摘要 I
Abstract I
圖目錄 IV
前言 1
第一章、 文獻回顧 2
一、 氣喘 (Asthma) 2
1. 氣喘之介紹 2
2. 氣喘之流行病學 2
3. 氣喘之類型 3
3-1. 外因性氣喘 (Extrinsic asthma) 3
3-2. 內因性氣喘 (Intrinsic asthma) 3
4. 氣喘之臨床病徵 3
4-1. 氣道高反應性 (Airway hyperresponsiveness, AHR) 4
4-2. 氣道重塑 (Airway remodeling) 4
5. 過敏反應 (Hypersensitivity reactions) 4
5-1. 第一型過敏反應 (Type I hypersensitivity reactions) 5
6. 已知氣喘機制 5
6-1. Th1 與 Th2 細胞 5
6-2. Th17 與Treg 細胞 5
7. 氣喘相關研究之小鼠動物模式 6
7-1. 卵清蛋白 (Ovalbumin, OVA) 6
8. 目前對氣喘上的治療及因應對策 6
二、 肥大細胞 7
1. 脫顆粒作用 (Degranulation) 7
2. 化合物 48/80 (Compound 48/80) 7
三、 益生菌 (PROBIOTICS) 8
1. 乳酸菌 (Lactic acid bacteria) 8
2. 植物乳桿菌 (Lactobacillus plantarum) 9
第二章、 實驗設計流程 10
一、 樣品製備 10
二、 細胞實驗 10
三、 動物實驗 11
1. 日程與分組 11
1-1. 管餵組 11
1-2. 鼻內注射組 12
2. 臟器與分析 12
第三章、 實驗材料與方法 13
一、 實驗材料 13
1. 樣品原料 13
2. 細胞株 13
3. 細胞培養之培養基 13
4. 細胞存活率試劑 13
5. P815 脫顆粒誘導試劑 13
6. 實驗動物 13
7. 動物實驗誘導 14
8. RNA 萃取套組 14
9. 反轉錄反應試劑 14
10. 即時定量聚合酶鏈鎖反應試劑 (Real-time PCR) 14
11. 酵素連結免疫吸附法 15
12. 組織切片 15
二、 儀器設備 15
三、 實驗方法 16
1. 實驗樣品製備 16
2. 細胞實驗 (In vitro) 16
2-1. 細胞培養 (Cell culture) 16
2-2. 細胞液之保存 16
2-3. 細胞液之活化 16
2-4. 細胞毒性測試 (Cytotoxicity test) 17
2-5. 肥大細胞脫顆粒試驗 17
2-6. 酵素連結免疫吸附分析法 (Enzyme-linked immunoadsorbent assay, ELISA) 17
3. 動物實驗 (In vivo) 18
3-1. 過敏性氣喘小鼠動物模式 18
3-2. 血液分析 18
3-3. 支氣管沖提液 (Bronchoalveolar lavage fluid, BALF) 分析 18
3-4. 分析組織中細胞激素之 mRNA 表現量 19
3-4-1. 抽取組織 total RNA 19
3-4-2. 反轉錄反應 (Reverse transcription, RT) 19
3-4-3. 即時聚合酶連鎖反應 (Real-time polymerase chain reaction) 19
3-5. 組織病理學切片與染色 20
3-5-1. 石蠟切片 20
3-5-2. 蘇木素-伊紅染色 (Hematoxylin and eosin stain, H&E stain) 20
3-5-3. 過碘酸席夫法 (Periodic Acid-Schiff, PAS) 20
4. 分析組織中免疫細胞表現量 20
5. 統計分析 21
第四章、 結果 22
一、 植物乳桿菌對於 P815 肥大細胞之影響 22
1. 植物乳桿菌對 P815 細胞之細胞毒性 22
2. 植物乳桿菌對 Compound 48/80 誘導 P815 細胞之脫顆粒效果 22
2-1. 細胞型態與脫顆粒情形 22
二、 植物乳桿菌對過敏性氣喘小鼠之動物模式探討 22
1. 建立過敏性氣喘小鼠之動物模式 22
2. 每日體重紀錄 23
3. 組織器官分析 23
3-1. 肺臟組織重量分析 23
3-2. 脾臟組織重量分析 23
4. 發炎細胞計數 24
5. 血清及支氣管肺泡沖提液中白介素-4 及免疫球蛋白 E 分析 24
5-1. 血清 24
5-2. 支氣管肺泡沖提液 25
6. 肺組織細胞激素表達 26
6-1. 管餵組 26
6-2. 鼻腔給予組 27
7. 脾臟組織 Treg 細胞表達 27
8. 肺部組織切片 28
8-1. 蘇木素-伊紅染色 (Hematoxylin and eosin stain, H&E stain) 28
8-2. 過碘酸席夫法 (Periodic Acid-Schiff, PAS) 28
第五章、 討論 29
一、 植物乳桿菌對於 P815 肥大細胞之影響 29
二、 植物乳桿菌於動物模式下改善氣喘相關症狀 30
第六章、 結論 33
第七章、 參考文獻 34
第八章、 圖 43


圖目錄
Figure 1. Cytotoxicity of L. plantarum on P815 mast cells. P815 mast cells were treated with (A) heat killed probiotics and (B) supernatant. 43
Figure 2. The observation of P815 mast cells induced with compound 48/80 and treatment with each concentration of heat killed (HK) probiotics. 44
Figure 3. The observation of P815 mast cells induced with compound 48/80 and treatment with each concentration of probiotics supernatant (SN). 45
Figure 4. Effect of L. plantarum on organ index of lung tissues in ovalbumin (OVA) induced BALB/c mice by (A) oral gavage and (B) intranasal. 46
Figure 5. Effect of L. plantarum on organ index of spleen tissues in ovalbumin (OVA) induced BALB/c mice by (A) oral gavage and (B) intranasal. 47
Figure 6. Differences in (A) white blood cells, (B) lymphocyte, (C) hemoglobin, (D) intermediate cell, and (E) neutrophil in blood of Balb/c mice by oral gavage. 48
Figure 7. Differences in (A) white blood cells, (B) lymphocyte, (C) hemoglobin, (D) intermediate cell, and (E) neutrophil in blood of Balb/c mice by intranasal. 49
Figure 8. Effect of L. plantarum on IL-4 of ovalbumin (OVA) induced BALB/c mice in serum by (A) oral gavage and (B) intranasal. 50
Figure 9. Effect of L. plantarum on IgE of ovalbumin (OVA) induced BALB/c mice in serum by (A) oral gavage and (B) intranasal. 51
Figure 10. Effect of L. plantarum on IL-4 of ovalbumin (OVA) induced BALB/c mice in BALF by (A) oral gavage and (B) intranasal. 52
Figure 11. Effect of L. plantarum on IgE of ovalbumin (OVA) induced BALB/c mice in BALF by (A) oral gavage and (B) intranasal. 53
Figure 12. Effect of L. plantarum on (A) IL-4, (B) IL-5, (C) IL-13, (D) IFN-γ, and (E) IL-17 expression in lung of ovalbumin (OVA) induced BALB/c mice by oral gavage. 54
Figure 13. Effect of L. plantarum on (A) IL-4, (B) IL-5, (C) IL-13, (D) IFN-γ, and (E) IL-17 expression in lung of ovalbumin (OVA) induced BALB/c mice by intranasal. 55
Figure 14. Flow cytometry analysis of Treg cells in the spleen of OVA-induced mice by oral gavage. 56
Figure 15. Flow cytometry analysis of Treg cells in the spleen of OVA-induced mice by intranasal. 57
Figure 16. Effect of L. plantarum with treatment of oral gavage on inflammatory cell infiltrate in lung of ovalbumin (OVA) induced BALB/c mice by H & E stain. 58
Figure 17. Effect of L. plantarum with treatment of intranasal on inflammatory cell infiltrate in lung of ovalbumin (OVA) induced BALB/c mice by H & E stain. 59
Figure 18. Effect of L. plantarum with treatment of oral gavage on mucus distribution in lung of ovalbumin (OVA) induced BALB/c mice by PAS stain. 60
Figure 19. Effect of L. plantarum with treatment of intranasal on mucus distribution in lung of ovalbumin (OVA) induced BALB/c mice by PAS stain. 61
Figure 20. Main mechanisms of action of L. plantarum. 62


王含羽。2012。牛樟芝-中草藥發酵產物對第二型登革病毒感染之保護效果評估。國立台灣海洋大學食品科學系碩士學位論文。基隆。台灣。
中國醫訊第 190 期,2019。認識氣喘。中國醫藥大學附屬醫院。台中。台灣。
邱雅凰。2012。探討藻類多醣抗病毒與其免疫調節之作用機制。國立台灣海洋大學食品科學系博士學位論文。基隆。台灣。
毛蓓領 (2012)。氣喘的臨床回顧. 生物醫學 2012年第5卷第3期, 147-153.
林恩如。2019。利用大腸癌小鼠探討半葉馬尾藻水萃物改善發炎微環境以達到保護功效。國立台灣海洋大學食品科學系碩士學位論文。基隆。台灣。
郭志熙、熊得志、黃建達、郭漢彬 (2009)。氣道重塑於氣喘之機轉及治療. 內科學誌 2009 年, 20, 129-138.
陳子廉。2008。台灣常用藥用植物對老鼠肥大細胞株P815氣喘媒介物釋放之研究。國立成功大學生物多樣性研究所碩士論文。台南。台灣。
董祐伶。2010。小球藻萃取物對於第二型登革病毒感染之保護效果評估。國立台灣海洋大學食品科學系碩士學位論文。基隆。台灣。
衛生福利部。2018。氣喘診療指引。取自https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=633&pid=1194
衛生福利部。2018。台灣成人氣喘臨床照護指引。取自
https://www.tspccm.org.tw/media/5648
Adams, C. A. (2010). The probiotic paradox: live and dead cells are biological response modifiers. Nutrition research reviews, 23(1), 37-46.
Adcock, I. M., & Mumby, S. (2016). Glucocorticoids. In Pharmacology and Therapeutics of Asthma and COPD (pp. 171-196).
Akira, S., Takeda, K., & Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nature immunology, 2(8), 675-680.
Aldajani, W. A., Salazar, F., Sewell, H. F., Knox, A., & Ghaemmaghami, A. M. (2016). Expression and regulation of immune-modulatory enzyme indoleamine 2, 3-dioxygenase (IDO) by human airway epithelial cells and its effect on T cell activation. Oncotarget, 7(36), 57-60.
Barnes, P. J. (2008). Immunology of asthma and chronic obstructive pulmonary disease. Nature Reviews Immunology, 8(3), 183-192.
Bateman, E. D., Hurd, S. S., Barnes, P. J., Bousquet, J., Drazen, J. M., FitzGerald, M., & Pizzichini, E. (2008). Global strategy for asthma management and prevention: GINA executive summary. European Respiratory Journal, 31(1), 143-178.
Berri, M., Slugocki, C., Olivier, M., Helloin, E., Jacques, I., Salmon, H., & Collen, P. N. (2016). Marine-sulfated polysaccharides extract of Ulva armoricana green algae exhibits an antimicrobial activity and stimulates cytokine expression by intestinal epithelial cells. Journal of applied phycology, 28(5), 2999-3008.
Bersuder, P., Hole, M., & Smith, G. (1998). Antioxidants from a heated histidine-glucose model system. I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. Journal of the American Oil Chemists' Society, 75(2), 181-187.
Boonpiyathad, T., Sözener, Z. C., Satitsuksanoa, P., & Akdis, C. A. (2019, December). Immunologic mechanisms in asthma. In Seminars in immunology (Vol. 46, p. 101333). Academic Press.
Braman, S. S. (2006). The global burden of asthma. Chest, 130(1), 4S-12S.
Brożek, J. L., Bousquet, J., Agache, I., Agarwal, A., Bachert, C., Bosnic-Anticevich, S., & de Sousa, J. C. (2017). Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision. Journal of Allergy and Clinical Immunology, 140(4), 950-958.
Chahdi, A., Fraundorfer, P. F., & Beaven, M. A. (2000). Compound 48/80 activates mast cell phospholipase D via heterotrimeric GTP-binding proteins. Journal of Pharmacology and Experimental Therapeutics, 292(1), 122-130.
Chapman, D. G., & Irvin, C. G. (2015). Mechanisms of airway hyper‐responsiveness in asthma: the past, present and yet to come. Clinical & Experimental Allergy, 45(4), 706-719.
Chen, Y., Zhang, Y., Xu, M., Luan, J., Piao, S., Chi, S., & Wang, H. (2017). Catalpol alleviates ovalbumin-induced asthma in mice: reduced eosinophil infiltration in the lung. International immunopharmacology, 43, 140-146.
Clark, K., Simson, L., Newcombe, N., Koskinen, A. M., Mattes, J., Lee, N. A., & Foster, P. S. (2004). Eosinophil degranulation in the allergic lung of mice primarily occurs in the airway lumen. Journal of leukocyte biology, 75(6), 1001-1009.
Cockcroft, D. W., & Davis, B. E. (2006). Mechanisms of airway hyperresponsiveness. Journal of allergy and clinical immunology, 118(3), 551-559.
Cohn, L., Elias, J. A., & Chupp, G. L. (2004). Asthma: mechanisms of disease persistence and progression. Annu. Rev. Immunol., 22, 789-815.
Cserhati, E. (2004). The history of bronchial asthma from the ancient times till the Middle Ages. Acta Physiologica Hungarica, 91(3-4), 243-261.
Das, J., Chen, C. H., Yang, L., Cohn, L., Ray, P., & Ray, A. (2001). A critical role for NF-κB in GATA3 expression and TH 2 differentiation in allergic airway inflammation. Nature immunology, 2(1), 45-50.
Da Silva, J. A. P. (1999). Sex hormones and glucocorticoids: interactions with the immune system. Annals of the New York Academy of Sciences, 876(1), 102-118.
De Vries, M. C., Vaughan, E. E., Kleerebezem, M., & de Vos, W. M. (2006). Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract. International Dairy Journal, 16(9), 1018-1028.
Diamant, Z., Boot, J. D., & Virchow, J. C. (2007). Summing up 100 years of asthma. Respiratory medicine, 101(3), 378-388.
Dinis, T. C., Madeira, V. M. & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radicel scavengers. Archives of Biochemistry and Biophysics, 315, 161-169.
Dodgson, K. (1961). Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochemical Journal, 78, 312-319.
Downie, S. R., Salome, C. M., Verbanck, S., Thompson, B., Berend, N., & King, G. G. (2007). Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax, 62(8), 684-689.
Farahani, R., Sherkat, R., Hakemi, M. G., Eskandari, N., & Yazdani, R. (2014). Cytokines (interleukin-9, IL-17, IL-22, IL-25 and IL-33) and asthma. Advanced biomedical research, 3.
Fehrenbach, H., Wagner, C., & Wegmann, M. (2017). Airway remodeling in asthma: what really matters. Cell and tissue research, 367(3), 551-569.
Fielding, B. A., & Frayn, K. N. (1998). Lipoprotein lipase and the disposition of dietary fatty acids. British Journal of Nutrition, 80(6), 495-502.
Fonseca, J. R., Lucio, M., Harir, M., & Schmitt-Kopplin, P. (2022). Mining for Active Molecules in Probiotic Supernatant by Combining Non-Targeted Metabolomics and Immunoregulation Testing. Metabolites, 12(1), 35.
Forsythe, P. (2011). Probiotics and lung diseases. Chest, 139(4), 901-908.
Fujiwara, D. (2004). Lactobacillus paracasei strain KW3110 as a potent anti-allergic lactic acid bacterium. Biosci Bioindust, 62, 805-808.
Goverse, G., Molenaar, R., Macia, L., Tan, J., Erkelens, M. N., Konijn, T., ... & Mebius, R. E. (2017). Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. The Journal of Immunology, 198(5), 2172-2181.
Gu, Y., Yang, J., Ouyang, X., Liu, W., Li, H., Yang, J., & Xiong, H. (2008). Interleukin 10 suppresses Th17 cytokines secreted by macrophages and T cells. European journal of immunology, 38(7), 1807-1813.
Halayko, A. J., & Amrani, Y. (2003). Mechanisms of inflammation-mediated airway smooth muscle plasticity and airways remodeling in asthma. Respiratory physiology & neurobiology, 137(2-3), 209-222.
Halim, T. Y., MacLaren, A., Romanish, M. T., Gold, M. J., McNagny, K. M., & Takei, F. (2012). Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity, 37(3), 463-474.
Hammad, H., & Lambrecht, B. N. (2008). Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nature Reviews Immunology, 8(3), 193-204.
Han, S. Y., Bae, J. Y., Park, S. H., Kim, Y. H., Park, J. H. Y., & Kang, Y. H. (2013). Resveratrol inhibits IgE-mediated basophilic mast cell degranulation and passive cutaneous anaphylaxis in mice. The Journal of nutrition, 143(5), 632-639.
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., & Sanders, M. E. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews Gastroenterology & hepatology.
Hirose, Y., Murosaki, S., Fujiki, T., Yamamoto, Y., Yoshikai, Y., & Yamashita, M. (2010). Lipoteichoic acids on Lactobacillus plantarum cell surfaces correlate with induction of interleukin‐12p40 production. Microbiology and immunology, 54(3), 143-151.
Hwang, S. W., Sun, X., Han, J. H., Kim, T. Y., Koppula, S., Kang, T. B., & Lee, K. H. (2018). Fermentation-mediated enhancement of ginseng’s anti-allergic activity against IgE-mediated passive cutaneous anaphylaxis in vivo and in vitro.
Jang, S. O., Kim, H. J., Kim, Y. J., Kang, M. J., Kwon, J. W., Seo, J. H., ... & Hong, S. J. (2012). Asthma prevention by Lactobacillus rhamnosus in a mouse model is associated with CD4+ CD25+ Foxp3+ T cells. Allergy, asthma & immunology research, 4(3), 150-156.
Johannsen, H., & Prescott, S. L. (2009). Practical prebiotics, probiotics and synbiotics for allergists: how useful are they?. Clinical & Experimental Allergy, 39(12), 1801-1814.
Kaeffer, B., Bénard, C., Lahaye, M., Blottière, H. M., & Cherbut, C. (1999). Biological properties of ulvan, a new source of green seaweed sulfated polysaccharides, on cultured normal and cancerous colonic epithelial cells. Planta medica, 65(06), 527-531.
Kasper, D., Fauci, A., Hauser, S., Longo, D., Jameson, J., & Loscalzo, J. (2015). Harrison's principles of internal medicine, 19e (Vol. 1, No. 2). Mcgraw-hill.
Khan, R. U., & Naz, S. (2013). The applications of probiotics in poultry production. World's Poultry Science Journal, 69(3), 621-632.
Kim, C. K., Callaway, Z., Koh, Y. Y., Kim, S. H., & Fujisawa, T. (2012). Airway IFN-γ production during RSV bronchiolitis is associated with eosinophilic inflammation. Lung, 190(2), 183-188.
Kim, H. J., Kim, Y. J., Lee, S. H., Yu, J., Jeong, S. K., & Hong, S. J. (2014). Effects of Lactobacillus rhamnosus on allergic march model by suppressing Th2, Th17, and TSLP responses via CD4+ CD25+ Foxp3+ Tregs. Clinical immunology, 153(1), 178-186.
Kim, S. K., Guevarra, R. B., Kim, Y. T., Kwon, J., Kim, H., Cho, J. H., & Lee, J. H. (2019). Role of probiotics in human gut microbiome-associated diseases.
Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences, 100(4), 1990-1995.
Koch, S., Sopel, N., & Finotto, S. (2017, January). Th9 and other IL-9-producing cells in allergic asthma. In Seminars in immunopathology (Vol. 39, No. 1, pp. 55-68). Springer Berlin Heidelberg.
Kubo, M. (2017). Innate and adaptive type 2 immunity in lung allergic inflammation. Immunological reviews, 278(1), 162-172.
Kuruvilla, M. E., Lee, F. E. H., & Lee, G. B. (2019). Understanding asthma phenotypes, endotypes, and mechanisms of disease. Clinical reviews in allergy & immunology, 56(2), 219-233.
Lan, H., Gui, Z., Zeng, Z., Li, D., Qian, B., Qin, L. Y., & Song, J. L. (2022). Oral administration of Lactobacillus plantarum CQPC11 attenuated the airway inflammation in an ovalbumin (OVA)‐induced Balb/c mouse model of asthma. Journal of Food Biochemistry, e14036.
Lee, J. H., Kim, J. W., Kim, H. S., Park, H. J., Park, D. K., Kim, A. R., & Choi, W. S. (2011). The Src family kinase Fgr is critical for activation of mast cells and IgE-mediated anaphylaxis in mice. The Journal of Immunology, 187(4), 1807-1815.
Li, H. Y., Meng, J. X., Liu, Z., Liu, X. W., Huang, Y. G., & Zhao, J. (2018). Propofol attenuates airway inflammation in a mast cell-dependent mouse model of allergic asthma by inhibiting the toll-like receptor 4/reactive oxygen species/nuclear factor κB signaling pathway. Inflammation, 41(3), 914-923.
Liang, P., Peng, S., Zhang, M., Ma, Y., Zhen, X., & Li, H. (2017). Huai Qi Huang corrects the balance of Th1/Th2 and Treg/Th17 in an ovalbumin-induced asthma mouse model. Bioscience reports, 37(6).
Liévin-Le Moal, V., & Servin, A. L. (2014). Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clinical microbiology reviews, 27(2), 167-199.
Lim, S. J., Kim, M., Randy, A., & Nho, C. W. (2015). Inhibitory effect of the branches of Hovenia dulcis Thunb. and its constituent pinosylvin on the activities of IgE-mediated mast cells and passive cutaneous anaphylaxis in mice. Food & function, 6(4), 1361-1370.
Liu, Y. W., Liao, T. W., Chen, Y. H., Chiang, Y. C., & Tsai, Y. C. (2014). Oral administration of heat-inactivated Lactobacillus plantarum K37 modulated airway hyperresponsiveness in ovalbumin-sensitized BALB/c mice. PloS one, 9(6), e100105.
Looijer–Van Langen, M. A., & Dieleman, L. A. (2009). Prebiotics in chronic intestinal inflammation. Inflammatory bowel diseases, 15(3), 454-462.
Melgert, B. N., Postma, D. S., Kuipers, I., Geerlings, M., Luinge, M. A., Van der Strate, B. W. A., & Hylkema, M. N. (2005). Female mice are more susceptible to the development of allergic airway inflammation than male mice. Clinical & Experimental Allergy, 35(11), 1496-1503.
Mennini, M., Dahdah, L., Artesani, M. C., Fiocchi, A., & Martelli, A. (2017). Probiotics in asthma and allergy prevention. Frontiers in pediatrics, 5, 165.
Mohamed, S., Hashim, S. N., & Rahman, H. A. (2012). Seaweeds: a sustainable functional food for complementary and alternative therapy. Trends in Food Science & Technology, 23(2), 83-96.
Murosaki, S., Yamamoto, Y., Ito, K., Inokuchi, T., Kusaka, H., Ikeda, H., & Yoshikai, Y. (1998). Heat-killed Lactobacillus plantarum L-137 suppresses naturally fed antigen–specific IgE production by stimulation of IL-12 production in mice. Journal of allergy and clinical immunology, 102(1), 57-64.
Nelson, H. S., Davies, D. E., Wicks, J., Powell, R. M., Puddicombe, S. M., & Holgate, S. T. (2003). Airway remodeling in asthma: new insights. Journal of allergy and clinical immunology, 111(2), 215-225.
Newcomb, D. C., & Peebles Jr, R. S. (2013). Th17-mediated inflammation in asthma. Current opinion in immunology, 25(6), 755-760.
Niimi, A., Matsumoto, H., Takemura, M., Ueda, T., Chin, K., & Mishima, M. (2003). Relationship of airway wall thickness to airway sensitivity and airway reactivity in asthma. American journal of respiratory and critical care medicine, 168(8), 983-988.
Noack, M., & Miossec, P. (2014). Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmunity reviews, 13(6), 668-677.
Novey, H. S., Marchioli, L. E., Sokol, W. N., & Wells, I. D. (1979). Papain-induced asthma—physiological and immunological features. Journal of Allergy and Clinical Immunology, 63(2), 98-103.
Ohta, Y., Yashiro, K., Ohashi, K., Horikoshi, Y., Kusumoto, C., & Matsura, T. (2017). Compound 48/80, a mast cell degranulator, causes oxidative damage by enhancing vitamin C synthesis via reduced glutathione depletion and lipid peroxidation through neutrophil infiltration in rat livers. Journal of Clinical Biochemistry and Nutrition, 60(3), 187-198.
Padem, N., & Saltoun, C. (2019, November). Classification of asthma. In Allergy & Asthma Proceedings (Vol. 40, No. 6).
Papi, A., Brightling, C., Pedersen, S. E., & Reddel, H. K. (2018). Seminar Asthma. Lancet, 391, 783-800.
Piqué, N., Berlanga, M., & Miñana-Galbis, D. (2019). Health benefits of heat-killed (Tyndallized) probiotics: an overview. International journal of molecular sciences, 20(10), 2534.
Poynter, M. E., Irvin, C. G., & Janssen-Heininger, Y. M. (2002). Rapid activation of nuclear factor-κB in airway epithelium in a murine model of allergic airway inflammation. The American journal of pathology, 160(4), 1325-1334.
Ramakrishnan, R. K., Al Heialy, S., & Hamid, Q. (2019). Role of IL-17 in asthma pathogenesis and its implications for the clinic. Expert review of respiratory medicine, 13(11), 1057-1068.
Renz, H., Enssle, K., Lauffer, L., Kurrle, R., & Gelfand, E. W. (1995). Inhibition of allergen-induced IgE and IgG1 production by soluble IL-4 receptor. International archives of allergy and immunology, 106(1), 46-54.
Resiliac, J., & Grayson, M. H. (2019). Epidemiology of infections and development of asthma. Immunology and allergy clinics of North America, 39(3), 297.
Robbie-Ryan, M., & Brown, M. (2002). The role of mast cells in allergy and autoimmunity. Current opinion in immunology, 14(6), 728-733.
Rogan, W. J., Gladen, B. C., Hung, K. L., Koong, S. L., Shih, L. Y., Taylor, J. S., & Hsu, C. C. (1988). Congenital poisoning by polychlorinated biphenyls and their contaminants in Taiwan. Science, 241(4863), 334-336.
Russell, R. J., & Brightling, C. (2017). Pathogenesis of asthma: implications for precision medicine. Clinical Science, 131(14), 1723-1735.
Sahid, M. N. A., & Kiyoi, T. (2020). Mast cell activation markers for in vitro study. Journal of Immunoassay and Immunochemistry, 41(4), 778-816.
Salamon, P., Shefler, I., Hershko, A. Y., & Mekori, Y. A. (2016). The involvement of protein kinase D in T cell-induced mast cell activation. International Archives of Allergy and Immunology, 171(3-4), 203-208.
Sartor, R. B. (2005). Probiotic therapy of intestinal inflammation and infections. Current opinion in gastroenterology, 21(1), 44-50.
Shi, Y. H., Shi, G. C., Wan, H. Y., Jiang, L. H., Ai, X. Y., Zhu, H. X., & Zhang, B. Y. (2011). Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with allergic asthma. Chinese medical journal, 124(13), 1951-1956.
Shida K, Makino K, Morishita A, Takamizawa K, Hachimura S, et al. (1998) Lactobacillus casei inhibits antigen-induced IgE secretion through regulation of cytokine production in murine splenocyte cultures. Int Arch Allergy Immunol 115: 278–287.
Shida K, Takahashi R, Iwadate E, Takamizawa K, Yasui H, et al. (2002) Lactobacillus casei strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allergy model. Clin Exp Allergy 32: 563–570.
Solway, J., & Fredberg, J. J. (1997). Perhaps airway smooth muscle dysfunction contributes to asthmatic bronchial hyperresponsiveness after all. American journal of respiratory cell and molecular biology, 17(2), 144-146.
Spergel, J. M., Mizoguchi, E., Brewer, J. P., Martin, T. R., Bhan, A. K., & Geha, R. S. (1998). Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. The Journal of clinical investigation, 101(8), 1614-1622.
Stein, P. E., Leslie, A. G., Finch, J. T., & Carrell, R. W. (1991). Crystal structure of uncleaved ovalbumin at 1· 95 Å resolution. Journal of molecular biology, 221(3), 941-959.
Sunada Y, Nakamura S, Kamei C (2007). Effects of Lactobacillus acidophilus strain L-55 on experimental allergic rhinitis in BALB/c mice. Biol Pharm Bull 30: 2163–2166.
Tamada, T., & Ichinose, M. (2016). Leukotriene receptor antagonists and antiallergy drugs. In Pharmacology and Therapeutics of Asthma and COPD (pp. 153-169). Springer, Cham.
Umetsu, D. T., & DeKruyff, R. H. (2006). The regulation of allergy and asthma. Immunological reviews, 212(1), 238-255.
Urbanova, A., Kertys, M., Simekova, M., Mikolka, P., Kosutova, P., Mokra, D., & Mokry, J. (2016). Bronchodilator and anti-inflammatory action of theophylline in a model of ovalbumin-induced allergic inflammation. In Pulmonary Infection and Inflammation (pp. 53-62).
Venn, A., Lewis, S., Cooper, M., Hill, J., & Britton, J. (1998). Questionnaire study of effect of sex and age on the prevalence of wheeze and asthma in adolescence. Bmj, 316(7149), 1945-1946.
Watson, L., Boezen, H. M., & Postma, D. S. (2003). Differences between males and females in the natural history of asthma and COPD. European Respiratory Monograph, 8, 50-73.
Webley, W. C., & Hahn, D. L. (2017). Infection-mediated asthma: etiology, mechanisms and treatment options, with focus on Chlamydia pneumoniae and macrolides. Respiratory research, 18(1), 1-12.
Williams, N. T. (2010). Probiotics. American Journal of Health-System Pharmacy, 67(6), 449-458.
Xia, J., Song, X., Bi, Z., Chu, W., & Wan, Y. (2005). UV-induced NF-κB activation and expression of IL-6 is attenuated by (-)-epigallocatechin-3-gallate in cultured human keratinocytes in vitro. International journal of molecular medicine, 16(5), 943-950.
Xu, H., Bin, N. R., & Sugita, S. (2018). Diverse exocytic pathways for mast cell mediators. Biochemical Society Transactions, 46(2), 235-247.
Yamazaki, T., Ohshio, K., Sugamata, M., & Morita, Y. (2020). Lactic acid bacterium, Lactobacillus paracasei KW3110, suppresses inflammatory stress-induced caspase-1 activation by promoting interleukin-10 production in mouse and human immune cells. Plos one, 15(8), e0237754.
(此全文20270808後開放外部瀏覽)
電子全文
全文檔開放日期:2027/08/08
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *