字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:吳婉歆
研究生英文姓名:Wu, Wan-Hsin
中文論文名稱:糙薏仁改善血糖濃度之機制探討
英文論文名稱:Effect of Dehulled Adlay on Blood Glucose in Diabetic Rats Induced by Streptozotocin
指導教授姓名:江孟燦
劉興華
口試委員中文姓名:教授︰江文章
教授︰林璧鳳
教授︰張素瓊
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932021
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:66
中文關鍵詞:糙薏仁麩皮糖尿病糖代謝
英文關鍵字:dehulled adlayadlay brandiabetescarbohydrate metabolism
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
根據衛福部統計,糖尿病位居國人十大死因中第五名,需要長時間飲食規劃及藥物控制,因此對於糖尿病患而言,如何透過良好的食物療法使血糖獲得控制,進而避免併發症產生,是治療糖尿病的重要課題。糙薏仁為高纖維穀類,含有許多具有生理活性之化合物,能夠降血糖及血脂,但真正具生理活性的有效部位尚未明確,因此本次實驗主要探討糙薏仁降血糖之有效部位及機制。
以6週齡雄性Wistar 大白鼠進行實驗,共分為六組 : (1) 正常控制組 (Normal control, NC)、(2) 糖尿病組 (Diabetes + high fat diet, DM)、(3) 精白薏仁組 (Diabetes + polished adlay + high fat diet, PA)、(4) 麩皮組 (Diabetes + adlay bran + high fat diet, AB) (5) 糙薏仁組 (Diabetes + dehulled adlay + high fat diet, DA) 以及 (6) 藥物控制組 (Diabetes + rosiglitazone + high fat diet, DT),實驗共進行8週,飼養期間均採自由飲食。實驗結果顯示,糙薏仁與麩皮可顯著改善因糖尿病引起的高血糖,其機制可能是透過增加肝臟AMPK磷酸化並抑制p38 MAPK磷酸化與PEPCK蛋白表現量以及降低Glucose-6-phosphatase酵素活性,增加Hexokinase活性,使肝醣濃度增加,而在肌肉中能夠增加Akt磷酸化,使GLUT4蛋白表現增加,達到降血糖效果,且葡萄糖耐受性及曲線下面積均明顯改善,同時也能減少糞便中β-glucuronidase活性,減少有毒物質再次被釋放出來。綜合上述結果顯示,糙薏仁可以改善糖尿病動物因高血糖引起的糖代謝異常,且其降血糖效果可能與麩皮有關。
According to the statistics of the Ministry of Health and Welfare, diabetes was the fifth leading cause of death in Taiwan. Therefore, for diabetic patients, it is necessary to avoid complications by nutrient therapy to control blood glucose. Dehulled adlay is a high-fiber cereal, which contains many bioactive compounds. Dehulled adlay can lower blood glucose and triglycerides, but the effective part of dehulled adlay is still not clear yet. Therefore, in this study, we investigate the effect of dehulled adlay on blood glucose in diabetic rats induced by streptozotocin. Forty-two male Wistar rats were divided into 6 groups: (1) Normal control, NC (2) Diabetes + high fat diet, DM (3) Diabetes + high fat diet + polished adlay, PA (4) Diabetes + high fat diet + adlay bran, AB (5) Diabetes + high fat diet + dehulled adlay, DA (6) Diabetes + high fat diet + rosiglitazone, DT. All rats were fed the experimental and drinking water ad libitum for 8 weeks. The results showed that dehulled adlay significantly improve hyperglycemia which was caused by diabetes. The mechanism might be significantly increased the phosphorylation of AMPK and the activity of hexokinase in liver and inhibited the phosphorylation of p38 MAPK, expression of PEPCK and the activity of glucose-6-phosphatase. In muscle, Glut4 was significantly increased to lower blood glucose concentration. Moreover, dehulled adlay inhibited the activity of β-glucuronidase in small intestine to reduce toxic substances release again. Based on the above results, dehulled adlay can improve carbohydrate metabolism dysfunction which caused by hyperglycemia in diabetic animals and the effect of hypoglycemia of dehulled adlay might be related to adlay bran.
目錄
第壹章 前言 1
第貳章 文獻回顧 2
第一節 薏仁 2
第二節 膳食纖維 4
第三節 糖尿病 5
第四節 鏈佐菌素 (Streptozotocin, STZ) 誘導糖尿病 7
第五節 糖代謝 (Carbohydrate metabolism) 8
第六節 糖代謝相關傳遞因子 9
第七節 腸壁黏膜酵素 10
第參章 實驗設計 12
第一節 實驗動機及目的 12
第二節 實驗流程 12
第三節 分析項目 13
第肆章 實驗材料 14
第一節 實驗動物 14
第二節 實驗飼料 14
第三節 實驗藥品 14
第四節 實驗儀器 14
第伍章 實驗方法 16
第一節 動物飼養 16
第二節 糖尿病誘導 16
第三節 動物分組 16
第四節 樣品收集 16
第五節 飼料配方 17
第六節 動物樣品分析 18
第陸章 結果 26
第一節 誘導後空腹血糖結果 26
第二節 實驗期間大白鼠進行口服葡萄糖耐受性試驗 26
第三節 實驗期間大白鼠體重、攝食量、飲水量及排尿量 26
第四節 實驗結束犧牲時大白鼠組織臟器重量 26
第五節 犧牲後大白鼠血漿中各項生化指標 27
第六節 犧牲後大白鼠肝臟中各項生化指標 27
第七節 犧牲後大白鼠糞便細菌酵素活性結果 28
第八節 犧牲後大白鼠肝臟及骨骼肌蛋白表現量 28
第柒章 討論 30
第一節 薏仁對糖尿病大白鼠體重、攝食量、飲水量、排尿量及組織 臟器重量之影響 30
第二節 薏仁對糖尿病大白鼠糖類代謝之影響 30
第三節 薏仁對糖尿病大白鼠脂質代謝之影響 32
第四節 薏仁對糖尿病大白鼠肝功能指標及發炎因子之影響 32
第五節 薏仁對糖尿病大白鼠腸道細菌酵素之影響 32
第捌章 結論 34
參考文獻…… 36

王思涓。2002。薏苡籽實中特殊生理機能性成分的定量分析與比較。國立台灣大學食品科技研究所碩士論文。台北,台灣。
何菁菁。2000。糙薏仁對STZ所誘發之糖尿病大白鼠脂質及醣類代謝的影響。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。
吳宛穎。2006。糙薏仁對第2型糖尿病人血糖及血脂肪影響。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。
吳宛臻。2015。比較薏仁與燕麥對Streptozotocin與Nicotinamide 誘導之第二型糖尿病大白鼠代謝影響之研究。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。
郭靜娟。2001。薏苡籽實之抗氧化成分及其抑制自由基傷害之研究。國立台灣大學食品科技研究所博士論文。台北,台灣。
黃士禮,江文章。1999。薏苡籽各個部位之組成分及其丙酮萃取液之抗突變作用。食品科學 26:121-130。
黃士禮。1996。薏苡籽實儲藏實驗條件、抗突變效應及抗腫瘤效果之研究。國立台灣大學食品科技研究所博士論文。台北,台灣。
黃博偉。2003。不同糙薏仁成分對糖尿病大白鼠醣代謝及脂質代謝之影響。國立台灣大學食品科技研究所博士論文。台北,台灣。
蘇珮琪。1996。薏仁對高血脂症和糖尿症病患血漿脂質和血糖的影響。私立輔仁大學食品營養研究所碩士論文。台北,台灣。
Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., & Evans, R. M. (2013). PPARγ signaling and metabolism: the good, the bad and the future. Nature Medicine, 19(5), 557-566.
Angulo, P. (2002). Nonalcoholic fatty liver disease. New England Journal of Medicine, 346(16), 1221-1231.
Baier, L. J., Bogardus, C., & Sacchettini, J. C. (1996). A Polymorphism in the Human Intestinal Fatty Acid Binding Protein Alters Fatty Acid Transport across Caco-2 Cells. Journal of Biological Chemistry, 271(18), 10892-10896.
Berger, J. J., & Barnard, R. J. (1999). Effect of diet on fat cell size and hormone-sensitive lipase activity. Journal of Applied Physiology, 87(1), 227–232.
Birnbaum, M.J. (1992). The insulin-sensitive glucose transporter. International Review of Cytology, 137, 239-297.
Cao, W., Collins, Q. F., Becker, T. C., Robidoux, J., Lupo, E. G., Xiong, Y., & Collins, S. (2005). p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. Journal of Biological Chemistry, 280(52), 42731-42737.
Carlson, S. E., & Goldfarb, S. (1977). A sensitive enzymatic method for the determination of free and esterified tissue cholesterol. Clinica Chimica Acta, 79(3), 575-582.
Chandalia, M., Garg, A., Lutjohann, D., Von Bergmann, K., Grundy, S. M., & Brinkley, L. J. (2000). Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. New England Journal of Medicine, 342(19), 1392-1398.
Chang, S. (1983). Effects of Dietary Fiber on Fecal Mucinase and ß-Glucuronidase Activity in Rats. Journal of Nutrition, 113, 138-144.
Chen, L. C., Fan, Z. Y., Wang, H. Y., Wen, D. C., & Zhang, S. Y. (2019). Effect of polysaccharides from adlay seed on anti-diabetic and gut microbiota. Food & Function, 10(7), 4372-4380.
Chen, L. C., Jiang, B. K., Zheng, W. H., Zhang, S. Y., Li, J. J., & Fan, Z. Y. (2019). Preparation, characterization and anti-diabetic activity of polysaccharides from adlay seed. International Journal of Biological Macromolecules, 139, 605-613.
Cheng, A. Y., & Fantus, I. G. (2005). Oral antihyperglycemic therapy for type 2 diabetes mellitus. The Canadian Medical Association Journal, 172(2), 213-226.
Chiang, H., Lu, H. F., Chen, J. C., Chen, Y. H., Sun, H. T., Huang, H. C., & Huang, C. (2020). Adlay seed (Coix lacryma-jobi L.) extracts exhibit a prophylactic effect on diet-induced metabolic dysfunction and nonalcoholic fatty liver disease in mice. Evidence-Based Complementary and Alternative Medicine, 2020.
Chiang, W., Cheng, C. Y., Chiang, M. T., & Chung, K. T. (2000). Effects of dehulled adlay on the culture count of some microbiota and their metabolism in the gastrointestinal tract of rats. Journal of Agricultural and Food Chemistry, 48(3), 829-832.
Cho, E., Manson, J. E., Stampfer, M. J., Solomon, C. G., Colditz, G. A., Speizer, F. E., & Hu, F. B. (2002). A prospective study of obesity and risk of coronary heart disease among diabetic women. Diabetes Care, 25(7), 1142-1148.
Cuenda, A., & Rousseau, S. (2007). p38 MAP-kinases pathway regulation, function and role in human diseases. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(8), 1358-1375.
Cummings, J. H. (1981). Short chain fatty acids in the human colon. Gut, 22(9), 763.
Dahlqvist, A. (1968). Assay of intestinal disaccharides. Animal Biochemical, 22, 99-107.
Dashnyam, P., Mudududdla, R., Hsieh, T. J., Lin, T. C., Lin, H. Y., Chen, P. Y., & Lin, C. H. (2018). β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut. Scientific Reports, 8(1), 1-12.
Ferre, P., & Foufelle, F. (2007). SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Hormone Research in Paediatrics, 68(2), 72-82.
Fischer, Andrew H., Kenneth A. Jacobson, Jack Rose, and Rolf Zeller. (2008). Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols, 5, pdb-prot4986.
Folch, J., Lees, M., & Stanley, G. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497-509.
Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., & Ohno, H. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 469(7331), 543-547.
Golay, A., Swislocki, A. L. M., Chen, Y. I., & Reaven, G. M. (1987). Relationships between plasma-free fatty acid concentration, endogenous glucose production, and fasting hyperglycemia in normal and non-insulin-dependent diabetic individuals. Metabolism, 36(7), 692-696.
Hallfrisch, J., & Behall, K. M. (2000). Mechanisms of the effects of grains on insulin and glucose responses. Journal of the American College of Nutrition, 19(sup3), 320S-325S.
Harada, N. and Inagaki N. (2012). Role of sodium-glucose transporters in glucose uptake of the intestine and kidney. Journal of Diabetes Investigation, 3(4), 352-353.
Hardie, D. G. (2004). The AMP-activated protein kinase patyway-new players upstream and downstream. Journal of Cell Science, 117(23), 5479-5487.
Huang, S., & Czech, M. P. (2007). The GLUT4 glucose transporter. Cell Metabolism, 5(4), 237-252.
Hunt, J. E., Hartmann, B., Schoonjans, K., Holst, J. J., & Kissow, H. (2021). Dietary Fiber Is Essential to Maintain Intestinal Size, L-Cell Secretion, and Intestinal Integrity in Mice. Frontiers in Endocrinology, 79.
Jenkins, D. J., Wolever, T. M., Leeds, A. R., Gassull, M. A., Haisman, P., Dilawari, J., & Alberti, K. G. (1978). Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. The British Medical Journal, 1(6124), 1392-1394.
Jenssen, T., Hartmann, A., & Birkeland, K. I. (2017). Long-term diabetes complications after pancreas transplantation. Current Opinion in Organ Transplantation, 22(4), 382-388.
Jung, T. H., Park, J. H., Jeon, W. M., & Han, K. S. (2015). Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutrition Research and Practice, 9(4), 343-349.
Kang, S. W., Adler, S. G., LaPage, J., & Natarajan, R. (2001). p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney International, 60(2), 543-552.
Kim, J., Yang, G., Kim, Y., Kim, J., Ha, J. (2016). AMPK activators: mechanisms of action and physiological activities. Experimental and Molecular Medicine, 48, e224.
Kim, S. O., Yun, S. J., Jung, B., Lee, E. H., Hahm, D. H., Shim, I., & Lee, H. J. (2004). Hypolipidemic effects of crude extract of adlay seed (Coix lachrymajobi var. mayuen) in obesity rat fed high fat diet: Relations of TNF-α and leptin mRNA expressions and serum lipid levels. Life Sciences, 75(11), 1391-1404.
Kohn, A. D., Takeuchi, F., & Roth, R. A. (1996). Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. Journal of Biological Chemistry, 271(36), 21920-21926.
Kusunoki, M., Hara, T., Tsutsumi, K., Nakamura, T., Miyata, T., Sakakibara, F., Sakamoto, S., Ogawa, H., Nakaya, Y., & Storlien, L. H. (2000). The lipoprotein lipase activator, NO-1886, suppresses fat accumulation and insulin resistance in rats fed a high-fat diet. Diabetologia, 43(7), 875–880.
Kröncke, K. D., Fehsel, K., Sommer, A., Rodriguez, M. L., & Kolb-Bachofen, V. (1995). Nitric oxide generation during cellular metabolization of the diabetogenic N-Mefhyl-N-Nitroso-Urea streptozotozin contributes to islet cell DNA damage. Biological Chemistry, 376(3), 179-185.
Laurie, Q (2002). Mechanism in the development of type 2 mellitus. Journal of Cardiovasc Nurses, 16:1-16
LeDoux, S. P., Woodley, S. E., Patton, N. J., & Wilson, G. L. (1986). Mechanisms of nitrosourea-induced β-cell damage: alterations in DNA. Diabetes, 35(8), 866-872.
Li, X., Wang, P., Zhu, J., Yi, J., Ji, Z., Kang, Q., & Lu, J. (2020). Comparative study on the bioactive components and in vitro biological activities of three green seedlings. Food Chemistry, 321, 126716.
Lichtenstein, A. H., & Schwab, U. S. (2000). Relationship of dietary fat to glucose metabolism. Atherosclerosis, 150(2), 227-243.
Lin, M. H. A., Wu, M. C., Lu, S., & Lin, J. (2010). Glycemic index, glycemic load and insulinemic index of Chinese starchy foods. World Journal of Gastroenterology: WJG, 16(39), 4973.
Lin, M. H. A., Wu, M. C., Lu, S., & Lin, J. (2010). Glycemic index, glycemic load and insulinemic index of Chinese starchy foods. World Journal of Gastroenterology: WJG, 16(39), 4973.
Lin, Y., & Tsai, C. E. (2008). A study of adlay on lowering serum and liver lipids in hamsters. Journal of Food Lipids, 15(2), 176-189.
Liu, S. H., Chang, Y. H., & Chiang, M. T. (2010). Chitosan reduces gluconeogenesis and increases glucose uptake in skeletal muscle in streptozotocin-induced diabetic rats. Journal of Agricultural and Food Chemistry, 58(9), 5795-5800.
Liu, S. H., Ku, C. Y., & Chiang, M. T. (2022). Polysaccharide-Rich Red Algae (Gelidium amansii) Hot-Water Extracts Alleviate Abnormal Hepatic Lipid Metabolism without Suppression of Glucose Intolerance in a Streptozotocin/Nicotinamide-Induced Diabetic Rat Model. Molecules, 27(4), 1447.
Lo, C. W., & Walker, W. A. (1989). Changes in the gastrointestinal tract during enteral or parenteral feeding. Nutrition Reviews, 47(7), 193-198.
Macfarlane, G. T., & Macfarlane, S. (2012). Bacteria, colonic fermentation, and gastrointestinal health. Journal of AOAC International, 95(1), 50-60.
Mas, A., Montané, J., Anguela, X. M., Muñoz, S., Douar, A. M., Riu, E., & Bosch, F. (2006). Reversal of type 1 diabetes by engineering a glucose sensor in skeletal muscle. Diabetes, 55(6), 1546-1553.
Mersmann, H. J. (1998). Lipoprotein and hormone-sensitive lipases in porcine adipose tissue. Journal of Animal Science, 76(5), 1396-1404.
Meyer, K. A., Kushi, L. H., Jacobs Jr, D. R., Slavin, J., Sellers, T. A., & Folsom, A. R. (2000). Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. The American Journal of Clinical Nutrition, 71(4), 921-930.
Miserez, A. R., Muller, P. Y., Barella, L., Barella, S., Staehelin, H. B., Leitersdorf, E., & Friedlander, Y. (2002). Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolaemia. Atherosclerosis, 164(1), 15-26.
Mohan, S. B., & Kekwick, R. G. (1980). Acetyl-coenzyme A carboxylase from avocado (Persea americana) plastids and spinach (Spinacia oleracea) chloroplasts. The Biochemical Journal, 187(3), 667–676.
Monnier, L., Pham, T. C., Aguirre, L., Orsetti, A., & Mirouze, J. (1978). Influence of indigestible fibers on glucose tolerance. Diabetes Care, 1(2), 83-88.
Mortensen, P. B., & Clausen, M. R. (1996). Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scandinavian Journal of Gastroenterology, 31(sup216), 132-148.
Murat, J. C., & Serfaty, A. (1974). Simple enzymatic determination of polysaccharide (glycogen) content of animal tissues. Clinical Chemistry, 20(12), 1576-1577.
Nepokroeff, C. M., Lakshmanan, M. R., & Porter, J. W. (1975). Fatty-acid synthase from rat liver. Methods in Enzymology, 35, 37–44.
Numata, M., Yamamoto, A., Moribayashi, A., & Yamada, H. (1994). Antitumor components isolated from the Chinese herbal medicine Coix lachryma-jobi. Planta Medica, 60(04), 356-359.
Ou, S., Kwok, K. C., Li, Y., & Fu, L. (2001). In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. Journal of Agricultural and Food Chemistry, 49(2), 1026-1029.
Quinn, L. (2002). Mechanisms in the development of type 2 diabetes mellitus. Journal of Cardiovascular Nursing, 16(2), 1-16.
Raman, M., Chen, W., & Cobb, M. H. (2007). Differential regulation and properties of MAPKs. Oncogene, 26(22), 3100-3112.
Ramos, R. R., Alarcón-Aguilar, F., Lara-Lemus, A., & Flores-Saenz, J. L. (1992). Hypoglycemic effect of plants used in Mexico as antidiabetics. Archives of Medical Research, 23(1), 59-64.
Reddy, B. S., Mangat, S., Weisburger, J. H., & Wynder, E. L. (1977). Effect of high-risk diets for colon carcinogenesis on intestinal mucosal and bacterial β-glucuronidase activity in F344 rats. Cancer Research, 37(10), 3533-3536.
Riccardi, G., & Rivellese, A. A. (1991). Effects of dietary fiber and carbohydrate on glucose and lipoprotein metabolism in diabetic patients. Diabetes Care, 14(12), 1115-1125.
Sa'ad, H., Peppelenbosch, M. P., Roelofsen, H., Vonk, R. J., & Venema, K. (2010). Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1801(11), 1175-1183.
Sala, D., & Zorzano, A. (2015). Differential control of muscle mass in type 1 and type 2 diabetes mellitus. Cellular and Molecular Life Sciences, 72(20), 3803–3817.
Salmerón, J., Ascherio, A., Rimm, E. B., Colditz, G. A., Spiegelman, D., Jenkins, D. J., & Willett, W. C. (1997). Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care, 20(4), 545-550.
Salmerón, J., Manson, J. E., Stampfer, M. J., Colditz, G. A., Wing, A. L., & Willett, W. C. (1997). Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. The Journal of the American Medical Association, 277(6), 472-477.
Saltiel, A.R., Kahn, C. R. (2001). Insulin signaling and the regulation of glucose and lipid metabolism. Nature, 414, 799-806.
Schwartz, S. E., & Levine, G. D. (1980). Effects of dietary fiber on intestinal glucose absorption and glucose tolerance in rats. Gastroenterology, 79(5), 833-836.
Schweiger, M., Schreiber, R., Haemmerle, G., Lass, A., Fledelius, C., Jacobsen, P., & Zimmermann, R. (2006). Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. Journal of Biological Chemistry, 281(52), 40236-40241.
Shiau, S. Y., & Chang, G. W. (1983). Effects of dietary fiber on fecal mucinase and beta-glucuronidase activity in rats. The Journal of Nutrition, 113(1), 138–144.
Smathers, R. L., & Petersen, D. R. (2011). The human fatty acid-binding protein family: evolutionary divergences and functions. Human Genomics, 5(3), 1-22.
Smithson, K. W., Millar, D. B., Jacobs, L. R., & Gray, G. M. (1981). Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat?. Science, 214(4526), 1241-1244.
Stark, A., Nyska, A., & Madar, Z. (1996). Metabolic and morphometric changes in small and large intestine in rats fed high-fiber diets. Toxicologic Pathology, 24(2), 166-171.
Szkudelski, T. (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research, 50(6), 537-546.
Takahashi, M., Konno, C., & Hikino, H. (1986). Isolation and Hypoglycemic Activity of Coixans A, B and C, Glycans of Coix lachryma-jobi var. ma-yuen Seeds1. Planta Medica, 52(01), 64-65.
Trowell, H., Southgate, D. A., Wolever, T. M., Leeds, A. R., Gassull, M. A., & Jenkins, D. J. (1976). Letter: Dietary fibre redefined. Lancet (London, England), 1(7966), 967.
Ukita, T., & Tanimura, A. (1961). Studies on the Anti-tumor Component in the Seeds of Coix Lachryma-Jobi L. VAR. Ma-yuen (ROMAN.) STAPF. I.: Isolation and Anti-tumor Activity of Coixenolide. Chemical and Pharmaceutical Bulletin, 9(1), 43-46.
van Dijk, T. H., van der Sluijs, F. H., Wiegman, C. H., Baller, J. F., Gustafson, L. A., Burger, H. J., & Reijngoud, D. J. (2001). Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats: a pharmacological study with the chlorogenic acid derivative S4048. Journal of Biological Chemistry, 276(28), 25727-25735.
Weaver, L. T., Austin, S., & Cole, T. J. (1991). Small intestinal length: a factor essential for gut adaptation. Gut, 32(11), 1321-1323.
Xiao, N., Wang, Z., Huang, Y., Daneshgari, F., & Liu, G. (2013). Roles of polyuria and hyperglycemia in bladder dysfunction in diabetes. The Journal of Urology, 189(3), 1130-1136.
Yao, Y., Wang, H., Xu, F., Zhang, Y., Li, Z., Ju, X., & Wang, L. (2020). Insoluble-bound polyphenols of adlay seed ameliorate H2O2-induced oxidative stress in HepG2 cells via Nrf2 signalling. Food Chemistry, 325, 126865.
Yeh, Chiang, & Chiang. (2006). Effects of dehulled adlay on plasma glucose and lipid concentrations in streptozotocin-induced diabetic rats fed a diet enriched in cholesterol. International Journal for Vitamin and Nutrition Research, 76(5), 299-305.
Ylönen, K., Saloranta, C., Kronberg-Kippilä, C., Groop, L., Aro, A., Virtanen, S. M., & Botnia Research Group. (2003). Associations of dietary fiber with glucose metabolism in nondiabetic relatives of subjects with type 2 diabetes: the Botnia Dietary Study. Diabetes Care, 26(7), 1979-1985.
Yu, Y. M., Chang, W. C., Liu, C. S., & Tsai, C. M. (2004). Effect of young barley leaf extract and adlay on plasma lipids and LDL oxidation in hyperlipidemic smokers. Biological and Pharmaceutical Bulletin, 27(6), 802-805.
Zarubin, T., & Jiahuai, H. A. N. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Research, 15(1), 11-18.
Zhang, M., Lv, X. Y., Li, J., Xu, Z. G., & Chen, L. (2008). The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental Diabetes Research, 2008.
Zhao, M., Zhu, D., Sun-Waterhouse, D., Su, G., Lin, L., Wang, X., & Dong, Y. (2014). In vitro and in vivo studies on adlay-derived seed extracts: phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects. Journal of Agricultural and Food Chemistry, 62(31), 7771-7778.
(此全文20250728後開放外部瀏覽)
電子全文
全文檔開放日期:2025/07/28
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 紅豆與黑豆水浸泡液對第二型糖尿病大鼠糖代謝與脂質代謝之影響
2. 幾丁寡醣對 streptozotocin 與高脂飲食誘導之糖尿病大白鼠糖代謝之影響
3. 安曼司石花菜 (Gelidium amansii) 熱水萃物對糖尿病大白鼠葡萄糖代謝之影響
4. 蜆粉或蜆精對四氯化碳誘發之肝障害大白鼠肝臟脂質過氧化的影響
5. 幾丁聚醣對大白鼠脂質代謝及腸道生理的影響
6. 長期攝食幾丁聚醣及維生素 C 對 Streptozotocin-Nicotinamide 誘發之第 2 型糖尿病大白鼠在餵食高膽固醇飲食下其醣類及脂質代謝之影響
7. 低分子量幾丁聚醣對於腸道細胞Glucagon-like Peptide 1 合成及分泌之影響及可能機制研究
8. 幾丁聚醣對自發性高血壓大白鼠血壓及脂質代謝之影響
9. 次微米幾丁聚醣對高脂飲食大白鼠醣類及脂質代謝 之影響
10. 馬黛茶葉粉對於 Streptozotocin 誘導之 第 1 型糖尿病大白鼠體內醣類及脂質代謝之影響
11. 不同膽固醇添加量對倉鼠脂質代謝之影響
12. 高、低分子量幾丁聚醣對STZ所誘發之糖尿病大白鼠醣代謝與脂質代謝之影響
13. 含N-乙醯幾丁寡醣之發酵豆奶對攝食高膽固醇高油脂飼料的大白鼠免疫活性及其他生理的變化
14. 不同蛋白質來源添加genistein對原發性高血壓大白鼠(SHR)血壓及荷爾蒙濃度的影響
15. 含油酸之不同油脂對第2型糖尿病大白鼠醣代謝及脂質代謝之影響
 
* *