|
王思涓。2002。薏苡籽實中特殊生理機能性成分的定量分析與比較。國立台灣大學食品科技研究所碩士論文。台北,台灣。 何菁菁。2000。糙薏仁對STZ所誘發之糖尿病大白鼠脂質及醣類代謝的影響。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。 吳宛穎。2006。糙薏仁對第2型糖尿病人血糖及血脂肪影響。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。 吳宛臻。2015。比較薏仁與燕麥對Streptozotocin與Nicotinamide 誘導之第二型糖尿病大白鼠代謝影響之研究。國立台灣海洋大學食品科學研究所碩士論文。基隆,台灣。 郭靜娟。2001。薏苡籽實之抗氧化成分及其抑制自由基傷害之研究。國立台灣大學食品科技研究所博士論文。台北,台灣。 黃士禮,江文章。1999。薏苡籽各個部位之組成分及其丙酮萃取液之抗突變作用。食品科學 26:121-130。 黃士禮。1996。薏苡籽實儲藏實驗條件、抗突變效應及抗腫瘤效果之研究。國立台灣大學食品科技研究所博士論文。台北,台灣。 黃博偉。2003。不同糙薏仁成分對糖尿病大白鼠醣代謝及脂質代謝之影響。國立台灣大學食品科技研究所博士論文。台北,台灣。 蘇珮琪。1996。薏仁對高血脂症和糖尿症病患血漿脂質和血糖的影響。私立輔仁大學食品營養研究所碩士論文。台北,台灣。 Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., & Evans, R. M. (2013). PPARγ signaling and metabolism: the good, the bad and the future. Nature Medicine, 19(5), 557-566. Angulo, P. (2002). Nonalcoholic fatty liver disease. New England Journal of Medicine, 346(16), 1221-1231. Baier, L. J., Bogardus, C., & Sacchettini, J. C. (1996). A Polymorphism in the Human Intestinal Fatty Acid Binding Protein Alters Fatty Acid Transport across Caco-2 Cells. Journal of Biological Chemistry, 271(18), 10892-10896. Berger, J. J., & Barnard, R. J. (1999). Effect of diet on fat cell size and hormone-sensitive lipase activity. Journal of Applied Physiology, 87(1), 227–232. Birnbaum, M.J. (1992). The insulin-sensitive glucose transporter. International Review of Cytology, 137, 239-297. Cao, W., Collins, Q. F., Becker, T. C., Robidoux, J., Lupo, E. G., Xiong, Y., & Collins, S. (2005). p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. Journal of Biological Chemistry, 280(52), 42731-42737. Carlson, S. E., & Goldfarb, S. (1977). A sensitive enzymatic method for the determination of free and esterified tissue cholesterol. Clinica Chimica Acta, 79(3), 575-582. Chandalia, M., Garg, A., Lutjohann, D., Von Bergmann, K., Grundy, S. M., & Brinkley, L. J. (2000). Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. New England Journal of Medicine, 342(19), 1392-1398. Chang, S. (1983). Effects of Dietary Fiber on Fecal Mucinase and ß-Glucuronidase Activity in Rats. Journal of Nutrition, 113, 138-144. Chen, L. C., Fan, Z. Y., Wang, H. Y., Wen, D. C., & Zhang, S. Y. (2019). Effect of polysaccharides from adlay seed on anti-diabetic and gut microbiota. Food & Function, 10(7), 4372-4380. Chen, L. C., Jiang, B. K., Zheng, W. H., Zhang, S. Y., Li, J. J., & Fan, Z. Y. (2019). Preparation, characterization and anti-diabetic activity of polysaccharides from adlay seed. International Journal of Biological Macromolecules, 139, 605-613. Cheng, A. Y., & Fantus, I. G. (2005). Oral antihyperglycemic therapy for type 2 diabetes mellitus. The Canadian Medical Association Journal, 172(2), 213-226. Chiang, H., Lu, H. F., Chen, J. C., Chen, Y. H., Sun, H. T., Huang, H. C., & Huang, C. (2020). Adlay seed (Coix lacryma-jobi L.) extracts exhibit a prophylactic effect on diet-induced metabolic dysfunction and nonalcoholic fatty liver disease in mice. Evidence-Based Complementary and Alternative Medicine, 2020. Chiang, W., Cheng, C. Y., Chiang, M. T., & Chung, K. T. (2000). Effects of dehulled adlay on the culture count of some microbiota and their metabolism in the gastrointestinal tract of rats. Journal of Agricultural and Food Chemistry, 48(3), 829-832. Cho, E., Manson, J. E., Stampfer, M. J., Solomon, C. G., Colditz, G. A., Speizer, F. E., & Hu, F. B. (2002). A prospective study of obesity and risk of coronary heart disease among diabetic women. Diabetes Care, 25(7), 1142-1148. Cuenda, A., & Rousseau, S. (2007). p38 MAP-kinases pathway regulation, function and role in human diseases. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(8), 1358-1375. Cummings, J. H. (1981). Short chain fatty acids in the human colon. Gut, 22(9), 763. Dahlqvist, A. (1968). Assay of intestinal disaccharides. Animal Biochemical, 22, 99-107. Dashnyam, P., Mudududdla, R., Hsieh, T. J., Lin, T. C., Lin, H. Y., Chen, P. Y., & Lin, C. H. (2018). β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut. Scientific Reports, 8(1), 1-12. Ferre, P., & Foufelle, F. (2007). SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Hormone Research in Paediatrics, 68(2), 72-82. Fischer, Andrew H., Kenneth A. Jacobson, Jack Rose, and Rolf Zeller. (2008). Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protocols, 5, pdb-prot4986. Folch, J., Lees, M., & Stanley, G. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497-509. Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., & Ohno, H. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 469(7331), 543-547. Golay, A., Swislocki, A. L. M., Chen, Y. I., & Reaven, G. M. (1987). Relationships between plasma-free fatty acid concentration, endogenous glucose production, and fasting hyperglycemia in normal and non-insulin-dependent diabetic individuals. Metabolism, 36(7), 692-696. Hallfrisch, J., & Behall, K. M. (2000). Mechanisms of the effects of grains on insulin and glucose responses. Journal of the American College of Nutrition, 19(sup3), 320S-325S. Harada, N. and Inagaki N. (2012). Role of sodium-glucose transporters in glucose uptake of the intestine and kidney. Journal of Diabetes Investigation, 3(4), 352-353. Hardie, D. G. (2004). The AMP-activated protein kinase patyway-new players upstream and downstream. Journal of Cell Science, 117(23), 5479-5487. Huang, S., & Czech, M. P. (2007). The GLUT4 glucose transporter. Cell Metabolism, 5(4), 237-252. Hunt, J. E., Hartmann, B., Schoonjans, K., Holst, J. J., & Kissow, H. (2021). Dietary Fiber Is Essential to Maintain Intestinal Size, L-Cell Secretion, and Intestinal Integrity in Mice. Frontiers in Endocrinology, 79. Jenkins, D. J., Wolever, T. M., Leeds, A. R., Gassull, M. A., Haisman, P., Dilawari, J., & Alberti, K. G. (1978). Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. The British Medical Journal, 1(6124), 1392-1394. Jenssen, T., Hartmann, A., & Birkeland, K. I. (2017). Long-term diabetes complications after pancreas transplantation. Current Opinion in Organ Transplantation, 22(4), 382-388. Jung, T. H., Park, J. H., Jeon, W. M., & Han, K. S. (2015). Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway. Nutrition Research and Practice, 9(4), 343-349. Kang, S. W., Adler, S. G., LaPage, J., & Natarajan, R. (2001). p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney International, 60(2), 543-552. Kim, J., Yang, G., Kim, Y., Kim, J., Ha, J. (2016). AMPK activators: mechanisms of action and physiological activities. Experimental and Molecular Medicine, 48, e224. Kim, S. O., Yun, S. J., Jung, B., Lee, E. H., Hahm, D. H., Shim, I., & Lee, H. J. (2004). Hypolipidemic effects of crude extract of adlay seed (Coix lachrymajobi var. mayuen) in obesity rat fed high fat diet: Relations of TNF-α and leptin mRNA expressions and serum lipid levels. Life Sciences, 75(11), 1391-1404. Kohn, A. D., Takeuchi, F., & Roth, R. A. (1996). Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. Journal of Biological Chemistry, 271(36), 21920-21926. Kusunoki, M., Hara, T., Tsutsumi, K., Nakamura, T., Miyata, T., Sakakibara, F., Sakamoto, S., Ogawa, H., Nakaya, Y., & Storlien, L. H. (2000). The lipoprotein lipase activator, NO-1886, suppresses fat accumulation and insulin resistance in rats fed a high-fat diet. Diabetologia, 43(7), 875–880. Kröncke, K. D., Fehsel, K., Sommer, A., Rodriguez, M. L., & Kolb-Bachofen, V. (1995). Nitric oxide generation during cellular metabolization of the diabetogenic N-Mefhyl-N-Nitroso-Urea streptozotozin contributes to islet cell DNA damage. Biological Chemistry, 376(3), 179-185. Laurie, Q (2002). Mechanism in the development of type 2 mellitus. Journal of Cardiovasc Nurses, 16:1-16 LeDoux, S. P., Woodley, S. E., Patton, N. J., & Wilson, G. L. (1986). Mechanisms of nitrosourea-induced β-cell damage: alterations in DNA. Diabetes, 35(8), 866-872. Li, X., Wang, P., Zhu, J., Yi, J., Ji, Z., Kang, Q., & Lu, J. (2020). Comparative study on the bioactive components and in vitro biological activities of three green seedlings. Food Chemistry, 321, 126716. Lichtenstein, A. H., & Schwab, U. S. (2000). Relationship of dietary fat to glucose metabolism. Atherosclerosis, 150(2), 227-243. Lin, M. H. A., Wu, M. C., Lu, S., & Lin, J. (2010). Glycemic index, glycemic load and insulinemic index of Chinese starchy foods. World Journal of Gastroenterology: WJG, 16(39), 4973. Lin, M. H. A., Wu, M. C., Lu, S., & Lin, J. (2010). Glycemic index, glycemic load and insulinemic index of Chinese starchy foods. World Journal of Gastroenterology: WJG, 16(39), 4973. Lin, Y., & Tsai, C. E. (2008). A study of adlay on lowering serum and liver lipids in hamsters. Journal of Food Lipids, 15(2), 176-189. Liu, S. H., Chang, Y. H., & Chiang, M. T. (2010). Chitosan reduces gluconeogenesis and increases glucose uptake in skeletal muscle in streptozotocin-induced diabetic rats. Journal of Agricultural and Food Chemistry, 58(9), 5795-5800. Liu, S. H., Ku, C. Y., & Chiang, M. T. (2022). Polysaccharide-Rich Red Algae (Gelidium amansii) Hot-Water Extracts Alleviate Abnormal Hepatic Lipid Metabolism without Suppression of Glucose Intolerance in a Streptozotocin/Nicotinamide-Induced Diabetic Rat Model. Molecules, 27(4), 1447. Lo, C. W., & Walker, W. A. (1989). Changes in the gastrointestinal tract during enteral or parenteral feeding. Nutrition Reviews, 47(7), 193-198. Macfarlane, G. T., & Macfarlane, S. (2012). Bacteria, colonic fermentation, and gastrointestinal health. Journal of AOAC International, 95(1), 50-60. Mas, A., Montané, J., Anguela, X. M., Muñoz, S., Douar, A. M., Riu, E., & Bosch, F. (2006). Reversal of type 1 diabetes by engineering a glucose sensor in skeletal muscle. Diabetes, 55(6), 1546-1553. Mersmann, H. J. (1998). Lipoprotein and hormone-sensitive lipases in porcine adipose tissue. Journal of Animal Science, 76(5), 1396-1404. Meyer, K. A., Kushi, L. H., Jacobs Jr, D. R., Slavin, J., Sellers, T. A., & Folsom, A. R. (2000). Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. The American Journal of Clinical Nutrition, 71(4), 921-930. Miserez, A. R., Muller, P. Y., Barella, L., Barella, S., Staehelin, H. B., Leitersdorf, E., & Friedlander, Y. (2002). Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolaemia. Atherosclerosis, 164(1), 15-26. Mohan, S. B., & Kekwick, R. G. (1980). Acetyl-coenzyme A carboxylase from avocado (Persea americana) plastids and spinach (Spinacia oleracea) chloroplasts. The Biochemical Journal, 187(3), 667–676. Monnier, L., Pham, T. C., Aguirre, L., Orsetti, A., & Mirouze, J. (1978). Influence of indigestible fibers on glucose tolerance. Diabetes Care, 1(2), 83-88. Mortensen, P. B., & Clausen, M. R. (1996). Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scandinavian Journal of Gastroenterology, 31(sup216), 132-148. Murat, J. C., & Serfaty, A. (1974). Simple enzymatic determination of polysaccharide (glycogen) content of animal tissues. Clinical Chemistry, 20(12), 1576-1577. Nepokroeff, C. M., Lakshmanan, M. R., & Porter, J. W. (1975). Fatty-acid synthase from rat liver. Methods in Enzymology, 35, 37–44. Numata, M., Yamamoto, A., Moribayashi, A., & Yamada, H. (1994). Antitumor components isolated from the Chinese herbal medicine Coix lachryma-jobi. Planta Medica, 60(04), 356-359. Ou, S., Kwok, K. C., Li, Y., & Fu, L. (2001). In vitro study of possible role of dietary fiber in lowering postprandial serum glucose. Journal of Agricultural and Food Chemistry, 49(2), 1026-1029. Quinn, L. (2002). Mechanisms in the development of type 2 diabetes mellitus. Journal of Cardiovascular Nursing, 16(2), 1-16. Raman, M., Chen, W., & Cobb, M. H. (2007). Differential regulation and properties of MAPKs. Oncogene, 26(22), 3100-3112. Ramos, R. R., Alarcón-Aguilar, F., Lara-Lemus, A., & Flores-Saenz, J. L. (1992). Hypoglycemic effect of plants used in Mexico as antidiabetics. Archives of Medical Research, 23(1), 59-64. Reddy, B. S., Mangat, S., Weisburger, J. H., & Wynder, E. L. (1977). Effect of high-risk diets for colon carcinogenesis on intestinal mucosal and bacterial β-glucuronidase activity in F344 rats. Cancer Research, 37(10), 3533-3536. Riccardi, G., & Rivellese, A. A. (1991). Effects of dietary fiber and carbohydrate on glucose and lipoprotein metabolism in diabetic patients. Diabetes Care, 14(12), 1115-1125. Sa'ad, H., Peppelenbosch, M. P., Roelofsen, H., Vonk, R. J., & Venema, K. (2010). Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1801(11), 1175-1183. Sala, D., & Zorzano, A. (2015). Differential control of muscle mass in type 1 and type 2 diabetes mellitus. Cellular and Molecular Life Sciences, 72(20), 3803–3817. Salmerón, J., Ascherio, A., Rimm, E. B., Colditz, G. A., Spiegelman, D., Jenkins, D. J., & Willett, W. C. (1997). Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care, 20(4), 545-550. Salmerón, J., Manson, J. E., Stampfer, M. J., Colditz, G. A., Wing, A. L., & Willett, W. C. (1997). Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. The Journal of the American Medical Association, 277(6), 472-477. Saltiel, A.R., Kahn, C. R. (2001). Insulin signaling and the regulation of glucose and lipid metabolism. Nature, 414, 799-806. Schwartz, S. E., & Levine, G. D. (1980). Effects of dietary fiber on intestinal glucose absorption and glucose tolerance in rats. Gastroenterology, 79(5), 833-836. Schweiger, M., Schreiber, R., Haemmerle, G., Lass, A., Fledelius, C., Jacobsen, P., & Zimmermann, R. (2006). Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. Journal of Biological Chemistry, 281(52), 40236-40241. Shiau, S. Y., & Chang, G. W. (1983). Effects of dietary fiber on fecal mucinase and beta-glucuronidase activity in rats. The Journal of Nutrition, 113(1), 138–144. Smathers, R. L., & Petersen, D. R. (2011). The human fatty acid-binding protein family: evolutionary divergences and functions. Human Genomics, 5(3), 1-22. Smithson, K. W., Millar, D. B., Jacobs, L. R., & Gray, G. M. (1981). Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat?. Science, 214(4526), 1241-1244. Stark, A., Nyska, A., & Madar, Z. (1996). Metabolic and morphometric changes in small and large intestine in rats fed high-fiber diets. Toxicologic Pathology, 24(2), 166-171. Szkudelski, T. (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research, 50(6), 537-546. Takahashi, M., Konno, C., & Hikino, H. (1986). Isolation and Hypoglycemic Activity of Coixans A, B and C, Glycans of Coix lachryma-jobi var. ma-yuen Seeds1. Planta Medica, 52(01), 64-65. Trowell, H., Southgate, D. A., Wolever, T. M., Leeds, A. R., Gassull, M. A., & Jenkins, D. J. (1976). Letter: Dietary fibre redefined. Lancet (London, England), 1(7966), 967. Ukita, T., & Tanimura, A. (1961). Studies on the Anti-tumor Component in the Seeds of Coix Lachryma-Jobi L. VAR. Ma-yuen (ROMAN.) STAPF. I.: Isolation and Anti-tumor Activity of Coixenolide. Chemical and Pharmaceutical Bulletin, 9(1), 43-46. van Dijk, T. H., van der Sluijs, F. H., Wiegman, C. H., Baller, J. F., Gustafson, L. A., Burger, H. J., & Reijngoud, D. J. (2001). Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats: a pharmacological study with the chlorogenic acid derivative S4048. Journal of Biological Chemistry, 276(28), 25727-25735. Weaver, L. T., Austin, S., & Cole, T. J. (1991). Small intestinal length: a factor essential for gut adaptation. Gut, 32(11), 1321-1323. Xiao, N., Wang, Z., Huang, Y., Daneshgari, F., & Liu, G. (2013). Roles of polyuria and hyperglycemia in bladder dysfunction in diabetes. The Journal of Urology, 189(3), 1130-1136. Yao, Y., Wang, H., Xu, F., Zhang, Y., Li, Z., Ju, X., & Wang, L. (2020). Insoluble-bound polyphenols of adlay seed ameliorate H2O2-induced oxidative stress in HepG2 cells via Nrf2 signalling. Food Chemistry, 325, 126865. Yeh, Chiang, & Chiang. (2006). Effects of dehulled adlay on plasma glucose and lipid concentrations in streptozotocin-induced diabetic rats fed a diet enriched in cholesterol. International Journal for Vitamin and Nutrition Research, 76(5), 299-305. Ylönen, K., Saloranta, C., Kronberg-Kippilä, C., Groop, L., Aro, A., Virtanen, S. M., & Botnia Research Group. (2003). Associations of dietary fiber with glucose metabolism in nondiabetic relatives of subjects with type 2 diabetes: the Botnia Dietary Study. Diabetes Care, 26(7), 1979-1985. Yu, Y. M., Chang, W. C., Liu, C. S., & Tsai, C. M. (2004). Effect of young barley leaf extract and adlay on plasma lipids and LDL oxidation in hyperlipidemic smokers. Biological and Pharmaceutical Bulletin, 27(6), 802-805. Zarubin, T., & Jiahuai, H. A. N. (2005). Activation and signaling of the p38 MAP kinase pathway. Cell Research, 15(1), 11-18. Zhang, M., Lv, X. Y., Li, J., Xu, Z. G., & Chen, L. (2008). The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Experimental Diabetes Research, 2008. Zhao, M., Zhu, D., Sun-Waterhouse, D., Su, G., Lin, L., Wang, X., & Dong, Y. (2014). In vitro and in vivo studies on adlay-derived seed extracts: phenolic profiles, antioxidant activities, serum uric acid suppression, and xanthine oxidase inhibitory effects. Journal of Agricultural and Food Chemistry, 62(31), 7771-7778.
|