字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:梁家慎
研究生英文姓名:Liang, Chia-Shen
中文論文名稱:固定於聚羥基烷酸酯之L-核糖異構酶的生產及特性探討
英文論文名稱:Production and characterization of polyhydroxyalkanoates-immobilized L-ribose isomerase
指導教授姓名:方翠筠
口試委員中文姓名:教授︰方翠筠
副教授︰黃崇雄
教授︰曾文祺
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932020
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:81
中文關鍵詞:L-核糖聚羥基烷酸酯L-核糖異構酶
英文關鍵字:L-ribosepolyhydroxyalkanoateL-ribose isomerase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
摘要 I
Abstract II
目錄 III
圖目錄 VIII
表目錄 IX
壹、 研究背景與目的 1
一、 研究背景 1
二、 研究目的 2
貳、 文獻回顧 3
一、 稀有醣類 3
1. 稀有醣簡介 3
2. 核糖 3
二、 利用酵素轉換法生產L-核糖 4
1. 簡介 4
2. L-核糖異構酶 4
3. 甘露糖-6-磷酸異構酶 4
4. Actinotalea fermentans ATCC 43279來源之L-RI 5
三、 聚羥基烷酸酯 5
1. 簡介 5
2. 蛋白質純化之應用 6
3. 藥物遞送之應用 7
4. 酵素固定化之應用 8
參、 實驗設計與流程 10
一、 將Ralstonia eutropha H16來源之phaA及phaB基因建構於載體 10
二、 Ralstonia eutropha H16來源之phaC基因與Af-ri基因融合 10
三、 PHA-RI表現及純化 11
肆、 材料與方法 12
一、 實驗材料 12
1. 菌株 12
2. 載體 12
3. 電泳標準品 12
4. 酵素 13
5. 培養基 13
6. 市售套組 13
7. 化學藥品 14
8. 實驗設備 16
二、 藥品配置 18
1. 製備Terrific broth (TB) 培養基 18
2. 製備Nutrient broth (NB) 培養液 18
3. 製備SOC培養基 19
4. Luria-Bertani(LB)平板培養基 19
5. Ampicillin (100 mg/mL) 20
6. Chloramphenicol (34 mg/mL) 20
7. DNA 瓊脂膠體製備 20
8. SDS-PAGE 相關藥劑之製備 21
9. 破菌相關試劑 23
三、 方法 24
1. 基因體 DNA(Total genomic DNA)的萃取 24
2. 設計選殖目標基因之引子對 25
3. 抽取質體DNA 25
4. 將phaA及phaB基因建構在pBBR1MSC-1 plasmid上 26
4.1. 擴增phaAB DNA片段 26
4.2. DNA Clean up 27
4.3. 限制酶剪切 28
4.4. PstI剪切後之pBBR1MSC-1 以鹼性磷酸酶(CIAP)剪切 28
4.5. 剪切或水解後之PCR產物及pBBR1MSC-1之DNA Clean up 28
4.6. 接合作用 28
4.7. 轉形作用 29
4.7.1. 勝任細胞製備 29
4.7.2. 電穿孔轉形 30
4.8. Colony PCR 篩選 30
4.9. 定序 31
4.10. 菌種保存 31
5. 將phaC基因建構於pET-21b-Af-ri質體 31
5.1. 擴phaC基因 31
5.2. 擴增質體pET-21b-Af-ri 之DNA片段 32
5.3. 限制酶剪切 33
5.4. 熱休克(Heat Shock)轉形 33
5.5. Colony PCR 篩選 34
5.6. 定序 35
5.7. 定序菌種保存 35
6. 質體pBBR1MCS-1-phaAB和pET-21b-phaC-Af-ri在E. coli之表現 35
6.1. 抽取質體 DNA 35
6.2. 電穿孔轉形至不同表現宿主 35
6.2.1. 在不同表現宿主之蛋白質表現 36
6.3. 不同IPTG 濃度誘導表現蛋白質 36
7. 聚羥基烷酸酯固定化RI(PHA-RI)的製備及特性探討 36
7.1. PHA-RI的製備 36
7.2. PHA-RI活性測試 37
7.3. 最適作用pH值 38
7.4. 最適作用溫度 38
7.5. 熱穩定性 38
7.6. 貯存試驗 38
8. Af-RI之表現與純化 39
8.1. Af-RI之表現 39
8.2. Af-RI之純化 39
9. Af-RI之特性測試 40
9.1. Af-RI活性測試 40
9.2. 最適作用pH值 40
9.3. 最適作用溫度 40
9.4. 熱穩定性 40
10. 利用PHA-RI生產L-核糖 41
10.1. 反應基質L-核酮糖之製備 41
10.1.1. AI生產L-核酮糖 41
10.1.2. AI菌體培養 41
10.1.3. AI之純化 41
10.1.4. AI活性測定 41
10.1.5. 基質L-核酮糖之製備 42
10.2. L-核糖生產 42
10.3. HPLC-ELSD分析 42
11. PHA-RI重複使用於L-核糖生產 43
伍、 結果與討論 44
一、 建構含phaA及phaB基因之重組質體 44
二、 建構含phaC及Af-ri基因之重組質體 44
三、 PHA-RI表現及純化 45
1. 最佳表現宿主 45
2. PHA-RI奈米顆粒形成於E. coli BL21 Star (DE3)菌體中 45
3. phaC-Af-ri序列分析 46
4. 最適IPTG誘導濃度 46
四、 PHA-RI特性探討 46
1. 最適作用pH值 46
2. 最適作用溫度 47
3. 熱穩定性 47
4. 貯藏試驗 47
五、 利用PHA-RI生產L-核糖 48
六、 PHA-RI重複使用於L-核糖生產 48
陸、 結論 49
柒、 參考文獻 50
捌、 圖表 57

吳泰徵,2016,Actinotalea fermentans ATCC 43279來源重組L-核糖異構酶之特性與固定化並以蛋白質工程提昇其熱穩定性,國立臺灣海洋大學食品科學系碩士學位論文,基隆。
黃幸光,2014,熱穩定性阿拉伯糖異構酶之表現、特性探討、稀有糖類生產及蛋白質工程,國立臺灣海洋大學食品科學系碩士學位論文,基隆。
顏艾,2021,Deinococcus indicus DSM 15307來源重組澱粉蔗糖酶之特性探討並以蛋白質工程改變其熱穩定性,國立臺灣海洋大學食品科學系碩士學位論文,基隆。
魏子庭,2021,利用D-阿洛酮糖表異構酶及L-鼠李糖異構酶的固定化菌體生產稀有醣類,國立臺灣海洋大學食品科學系碩士學位論文,基隆。
Ahmed, Z. (2001). Production of natural and rare rentoses using microorganisms and their enzymes. Electronic Journal of Biotechnology, 4 (2), 13-14.
Ahmed, Z., Shimonishi, T., Bhuiyan, S. H., Utamura, M., Takada, G., & Izumori K. (1999). Biochemical preparation of L-ribose and L-arabinose from ribitol: A new approach. Journal of Bioscience and Bioengineering, 88 (4), 444-448.
Banki, M. R., Gerngross, T. U., & Wood, D. W. (2005). Novel and economical purification of recombinant proteins: Intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Science, 14, 1387-1395.
Blatchford, P. A., Scott, C., French, N., & Rehm, B. H. (2012). Immobilization of organophosphohydrolase OpdA from Agrobacterium radiobacter by overproduction at the surface of polyester inclusions inside engineered Escherichia coli. Biotechnology and Bioengineering, 109, 1101-1108.
Brockelbank, J. A, Peters, V., Rehm, B. H (2006). Recombinant Escherichia coli strain produces a ZZ domain displaying biopolyester granules suitable for immunoglobulin G purification. Applied and Environmental Microbiology Journal, 72(11), 7394-7397.
Cárdenas-Fernández, M., Neto, W., López, C., Álvaro, G., Tufvesson, P., & Woodley, J. M (2012). Immobilization of Escherichia coli containing Ω transaminase act ivity in Lentikats®. Biotechnology Progress, 28 (3), 693-698.
Dawes, E. A. (2021). Novel biodegradable Microbial Polymers. Springer Science & Business Media.
Draper, J. L. & Rehm, B. H. (2012). Engineering bacteria to manufacture functionalized polyester beads. Bioengineered, 3, 203-208.
Du-Poët, P. D. T., Arcand, Y., Bernier, R., Barbotin, J., & Thomas, D. (1987). Plasmid stability in immobilized and free recombinant Escherichia Coli Jm105 (Pkk223-200): Importance of oxygen diffusion, growth rate, and plasmid copy number. Applied and Environmental Microbiology, 53 (7), 1548-1555.
Graber, M., Morin, A., Duchiron, F., & Monsan, P. F.(1988). Microbial polysaccharides containing 6-deoxysugars. Enzyme and Microbial Technology, 10, 198-206.
Grage, K., Jahns, A. C., Parlane, N., Palanisamy, R., Rasiah, I. A., Atwood, J. A. & Rehm, B. H. (2009). Bacterial polyhydroxyalkanoate granules: Biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules, 10, 660-669.
Granstrom, T. B., Takata, G., Tokuda, M., & Izumori, K. (2004). Izumoring: A novel and complete strategy for bioproduction of rare sugars. Journal of Bioscience and Bioengineering, 97, 89-94.
Gumina, G., Song, G.Y., & Chu, C. K. (2001). L-nucleosides as chemotherapeutic agents. FEMS Microbiology Letters, 202, 9-15.
Hay, I. D., Du, J., Reyes, P. R., & Rehm, B. H. (2015). In vivo polyester immobilized sortase for tagless protein purification. Microbial Cell Factories, 14, 190.
Helanto, M., Kiviharju, K., Granström, T., Leisola, M., & Nyyssölä, A. (2009). Biotechnological production of L-Ribose and L-Arabinose. Applied Microbiology and Biotechnology, 83 (1), 77-83.
Hooks, D. O., Blatchford, P. A., & Rehm, B. H. (2013). Bioengineering of bacterial polymer inclusions catalyzing the synthesis of N-acetylneuraminic acid. Applied and Environmental Microbiology Journal, 79, 3116-3121.
Hooks, D. O., Venning-Slater, M., Du, J., & Rehm, B. H. (2014). Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation. Molecules, 19, 8629-8643.
Hu, C., Li, L., Zheng, Y., Rui, L., & Hu, C. (2011). Perspectives of biotechnological production of L-Ribose and It’s Purification. Applied Microbiology and Biotechnology, 92 (3), 449-455.
Hung, X. G., Yu, M. Y., Chen, Y. C., & Fang, T. Y. (2015). Characterization of a recombinant L-Ribose isomerase from" Geodermatophilus Obscurus" Dsm 43160 and application of this enzyme to the production of L-Ribose from L-arabinose. Journal of Marine Science and Technology, 23(4), 558-566.
Izumori, K. (2006). Izumoring: A strategy for bioproduction of all hexoses. Journal of Biotechnology, 124, 717-722.
Jahns, A. C. & Rehm, B. H. (2015). Immobilization of active lipase B from Candida antarctica on the surface of polyhydroxyalkanoate inclusions. Biotechnology Letters, 37, 831-835.
Liu, H. W., & Thorson, J. S. (1994). Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annual Review of Microbiology, 48, 223-256.
López, N. I, Pettinari, M J., Nikel P. I, & Méndez, B. S (2015). Polyhydroxyalkanoates: much more than biodegradable plastics. Advances in Applied Microbiology, 93, 73-106.
Lu, Y., Ciraolo, E., Stefenia, R., Chen, G.-Q., Zhang, Y., & Hirsch, E. (2011). Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines. Applied Microbiology and Biotechnology, 89, 1423-1433.
Lu, Y., Levin, G.V., & Donner, T. W. (2008). Tagatose, a new antidiabetic and obesity control drug. Diabetes, Obesity and Metabolism, 10, 109-134.
Madukasi, E., Chunhua, H., & Zhang, G. (2011). Isolation and application of a wild strain photosynthetic bacterium to environmental waste management. International Journal of Environmental Science and Technology, 8, 513-522.
Michalak, M., Kurcok, P., & Hakkarainen, M. (2017). Polyhydroxyalkanoate-based drug delivery systems. Polymer International, 66, 617-622.
Morimoto, K., Terami, Y., Maeda, Y., Yoshihara, A., Takata, G., & Izumori, K. (2013). Cloning and characterization of the L-Ribose isomerase gene from Cellulomonas Parahominis Mb426. Journal of Bioscience and Bioengineering, 115(4), 377-381.
Możejko-Ciesielska, J., & Kiewisz, R. (2016). Bacterial polyhydroxyalkanoates: Still fabulous? Microbiological Research, 192, 271-282.
Okano, K. (2009). Synthesis and pharmaceutical application of L-ribose. Tetrahedron, 65, 1937-1949.
Parlane, N. A., Grage, K., Lee, J. W., Buddle, B. M., Denis, M., & Rehm, B. H. (2011). Production of a particulate hepatitis C vaccine candidate by an engineered Lactococcus lactis strain. Applied and Environmental Microbiology Journal, 77(24), 8516-8522.
Pauly, D. F., & Pepine, C. J. (2000). D-Ribose as a supplement for cardiac energy metabolism. Journal of Cardiovascular Pharmacology and Therapeutics, 5, 249-258.
Peters, V. & Rehm, B. H. (2006). In vivo enzyme immobilization by use of engineered polyhydroxyalkanoate synthase. Applied and Environmental Microbiology Journal, 72, 1777-1783.
Pierik, A, J., Wolbert, R. B., Mutsaers, P. H., Hagen, W. R., & Veeger, C. (1992). Purification and biochemical characterization of a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough). European Journal of Biochemistry, 206, 697-704.
Ran, G., Tan, D., Dai, W., Zhu, X., Zhao, J., Ma, Q., & Lu, X. (2017). Immobilization of alkaline polygalacturonate lyase from Bacillus subtilis on the surface of bacterial polyhydroxyalkanoate nano-granules. Applied Microbiology and Biotechnology, 101(8),3247-3258.
Rasiah, I. A. & Rehm, B. H. A. (2009). One-step production of immobilized alpha-amylase in recombinant Escherichia coli. Applied and Environmental Microbiology Journal, 75, 2012-2016.
Samuel, J., & Tanner, M. E. (2002). Mechanistic aspects of enzymatic carbohydrate epimerization. Natural Product Reports, 19, 261-277.
Shimonishi, T., & Izumori, K. (1996). A new enzyme, L-ribose isomerase from Acinetobacter Sp. strain Dl-28. Journal of Fermentation and Bioengineering, 81(6), 493-497.
Tarrahi, R., Fathi, Z., Seydibeyoğlu, M. Ö., Doustkhahd, E., & Khataee, A. (2019). Polyhydroxyalkanoates (PHA): From production to nanoarchitecture. International Journal of Biological Macromolecules, 146, 596-619.
Trefzer, A., Salas, J.A., & Bechthold, A. (1999). Genes and enzymes involved in deoxysugar biosynthesis in bacteria. Natural Product Reports, 16, 283-299.
Trimbur, D. E., & Mortlock, R. P. (1991). Isolation and characterization of Escherichia coli mutants able to utilize the novel pentose L-ribose. Journal of Bacteriology, 173 (8), 2459-2464.
Tseng, W. C., Wu, T. J., Chang, Y. J., Cheng, H. W., & Fang, T. Y. (2017). Overexpression and characterization of a recombinant L-ribose isomerase from Actinotalea fermentans ATCC 43279. Journal of Biotechnology, 259, 168-174.
Usvalampi, A., Kiviharju, K., Leisola, M., & Nyyssola, A. (2009). Factors affecting the production of L-xylulose by resting cells of recombinant Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 36, 1323-1330.
Wang, Z., Wu, H., Chen, J., Zhang, J., Yao, Y., & Chen, G. Q. (2008). A novel self-cleaving phasin tag for purification of recombinant proteins based on hydrophobic polyhydroxyalkanoate nanoparticles. Lab on a Chip, 8, 1957-1962.
Yao, Y. C., Zhan, X. Y., Zhang, J., Zou, X. H., Wang, Z. H., Xiong, Y. C., Chen, J., & Chen, G. Q. (2008). A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials, 29(36), 4823-4830.
Yeom, S. J., Seo, E. S., Kim, B. N., Kim, Y. S., & Oh, D. K. (2011). Characterization of a Mannose-6-Phosphate Isomerase from Thermus Thermophilusand Increased L-Ribose Production by Its R142n Mutant. Applied and EnvironmentalMicrobiology, 77(3), 762-767.
Yeom, S., Ji, J., Yoon, R., & Oh, D. (2008). L-Ribulose production from L-arabinose by an L-arabinose isomerase mutant from Geobacillus Thermodenitrificans. Biotechnology Letters, 30(10), 1789-1793.
Yeom, S., Kim, N., Park, C., & Oh, D. (2009). L-ribose production from L-arabinose by using purified L-arabinose isomerase and mannose-6-phosphate isomerase from Geobacillus Thermodenitrificans. Applied and Environmental Microbiology, 75(21), 6941-6943.
(此全文20270808後開放外部瀏覽)
電子全文
全文檔開放日期:2027/08/08
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 重組L-核糖異構酶及其固定化菌體之特性探討
2. Actinotalea fermentans ATCC 43279 來源重組 L-核糖異構酶之特性與固定化並以蛋白質工程改變其熱穩定性
3. 以蛋白質工程及固定化菌體改變 Actinotalea fermentans ATCC 43279 來源重組 L-核糖異構酶之熱穩定性
4. 突變型 L-阿拉伯糖異構酶及 L-核糖異構酶 的生產及固定化
5. 利用蛋白質工程將 Actinotalea fermentans ATCC 43279 來源重組 L-核糖異構酶表面導入精胺酸以改變其熱穩定性
6. 嗜高溫海藻糖生成相關酵素之基因選殖以及海藻糖苷糊精生成酶的生產與特性探討
7. 嗜高溫古細菌之重組肝醣支切酶的純化及其特性之探討
8. 利用羧酸化磁珠固定 C 端帶有離胺酸標籤之Thermoanaerobacterium saccharolyticum NTOU1 L-鼠李糖異構酶
9. Agrobacterium sp. ATCC 31750 菌株經基因重組後所產阿洛酮糖表異構酶對於活性及特性之影響
10. 源自Synechocystis sp. PCC6803 藍藻蛋白合成酶在大腸桿菌之表現及特性探討
11. 源自Thermoanaerobacterium saccharolyticum NTOU1 之 L-鼠李糖異構酶的固定化探討
12. Agrobacterium sp. ATCC 31750菌株所產阿洛酮糖表異構酶之基因選殖、表現、純化及特性探討
13. Geodermatophilus obscurus DSM 43160 來源之 L-核糖異構酶之基因選殖、表現、純化及特性探討
14. 由攜帶藍藻蛋白合成酶基因的重組乳酸菌生產藍藻蛋白與利用反應曲面法進行培養基最適化之探討
15. 熱穩定鼠李糖異構酶之表現、純化、特性探討及蛋白質工程
 
* *