字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:胡雅晴
研究生英文姓名:Hu, Ya-Ching
中文論文名稱:漆酶催化成膠的酪胺-羧甲基幾丁聚醣/酪胺-透明質酸水凝膠之製備與特性
英文論文名稱:Preparation and characteristics of laccase-mediated tyramine-carboxymethyl chitosan/tyramine-hyaluronic acid hydrogels
指導教授姓名:蔡敏郎
糜福龍
口試委員中文姓名:教授︰董崇民
教授︰蔡敏郎
教授︰糜福龍
助理教授︰郭志宇
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932018
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:56
中文關鍵詞:可注射水凝膠漆酶羧甲基幾丁聚醣透明質酸黃連素
英文關鍵字:injectable hydrogellaccasecarboxymethyl chitosanhyaluronic acidberberine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
摘要 II
Abstract III
目次 IV
圖目次 VII
表目次 IX
附錄目次 X
縮寫表 XI
1. 前言 1
2. 文獻回顧 3
2.1. 骨關節炎 3
2.2. 水凝膠 3
2.2.1. 互穿聚合物網絡水凝膠 4
2.2.2. 可注射水凝膠 4
2.2.3. 智能水凝膠 4
2.3. 水凝膠交聯方式 4
2.3.1. 物理性交聯 4
2.3.2. 化學性交聯 5
2.4. 水凝膠應用 5
2.4.1. 傷口敷料 5
2.4.2. 組織工程 6
2.4.3. 藥物緩釋系統 6
2.5. 羧甲基幾丁聚醣 6
2.6. 透明質酸 7
2.7. 酪胺修飾 7
2.8. 交聯劑 8
2.8.1. 戊二醛 8
2.8.2. 梔子素 8
2.8.3. 過氧化鈣 8
2.9. 交聯酵素 8
2.9.1. 漆酶 8
2.9.2. 酪胺酸酶 9
2.9.3. 辣根過氧化酶 9
2.9.4. 轉麩醯胺酸酶 9
2.10. 多酚類 10
2.10.1. 單寧酸 10
2.10.2. 沒食子酸 10
2.11. 黃連素 10
3. 材料與儀器 12
3.1. 實驗藥品 12
3.2. 儀器設備 13
4. 實驗架構 14
5. 實驗方法 15
5.1. 酪胺修飾羧甲基幾丁聚醣及透明質酸 15
5.2. FTIR 15
5.3. 1H NMR 15
5.4. 水凝膠之製備 15
5.5. 凝膠時間觀察 15
5.6. 紫外-可見光光譜分析 16
5.7. SEM 16
5.8. 壓縮試驗 16
5.9. 流變性質分析 16
5.10. 膨潤度分析 16
5.11. 降解試驗 17
5.12. 包覆黃連素 17
5.12.1. 體外藥物釋放試驗 17
5.12.2. 酵素降解之藥物釋放 17
5.13. DPPH自由基清除能力 18
5.14. 統計分析 18
6. 結果 19
6.1. 酪胺修飾聚合物材料分析 19
6.1.1. FTIR分析結果 19
6.1.2. 1H NMR分析結果 19
6.2. 水凝膠分析 20
6.2.1. 水凝膠凝膠時間 20
6.2.2. 水凝膠外觀觀察 20
6.2.3. 紫外-可見光分析 20
6.2.4. FTIR分析結果 20
6.2.5. 水凝膠之SEM 21
6.3. 水凝膠物理機械性質分析 21
6.3.1. 壓縮試驗結果 21
6.3.2. 流變分析結果 22
6.3.3. 膨潤試驗結果 22
6.3.4. 降解試驗結果 23
6.4. 包覆黃連素 23
6.4.1. FTIR分析結果 23
6.4.2. 水凝膠包覆BBR之SEM 24
6.4.3. 體外藥物累積釋放試驗 24
6.5. 抗氧化特性分析 25
6.5.1. DPPH自由基清除能力 25
7. 結論 26
參考文獻 27
圖 34
表 52
附錄 54

Abatangelo, G., Vindigni, V., Avruscio, G., Pandis, L., & Brun, P. (2020). Hyaluronic acid: redefining its role. Cells, 9(7), 1743.
Ademakinwa, A. N., & Agboola, F. K. (2016). Biochemical characterization and kinetic studies on a purified yellow laccase from newly isolated Aureobasidium pullulans NAC8 obtained from soil containing decayed plant matter. Journal of Genetic Engineering and Biotechnology, 14(1), 143-151.
Akhavan-Kharazian, N., & Izadi-Vasafi, H. (2019). Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. International Journal of Biological Macromolecules, 133, 881-891.
Arregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., Herrera de Los Santos, M., Levin, L., Rojo‑Domínguez, A., Romero‑Martínez, D., Saparrat, M. C. N., Trujillo‑Roldán, M. A., & Valdez-Cruz, N. A. (2019). Laccases: Structure, function, and potential application in water bioremediation. Microbial Cell Factories, 18(1), 1-33.
Badhani, B., Sharma, N., & Kakkar, R. (2015). Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Advances, 5(35), 27540-27557.
Baek, N. W., Fan, X. R., Yuan, J. G., Xu, J., & Wang, Q. (2021). Polymerization and dyeing properties of gallic acid on silk fabric catalyzed by horseradish peroxidase. Fibers and Polymers, 22(8), 2145-2155.
Bai, X., Bao, Z., Bi, S., Li, Y., Yu, X., Hu, S., Tian, M., Zhang, X., Cheng, X., & Chen, X. (2018). Chitosan‐based thermo/pH double sensitive hydrogel for controlled drug delivery. Macromolecular Bioscience, 18(3), 1700305.
Bakshi, J., Mehra, M., Grewal, S., Dhingra, D., & Kumari, S. (2022). Berberine loaded tragacanth-acacia gum nanocomplexes: synthesis, characterization and evaluation of in vitro anti-inflammatory and antioxidant activity. Journal of Cluster Science, 1-14.
Battu, S. K., Repka, M. A., Maddineni, S., Chittiboyina, A. G., Avery, M. A., & Majumdar, S. (2010). Physicochemical characterization of berberine chloride: A perspective in the development of a solution dosage form for oral delivery. AAPS Pharmscitech, 11(3), 1466-1475.
Bersanetti, P. A., Escobar, V. H., Nogueira, R. F., dos Santos Ortega, F., Schor, P., & de Araújo Morandim-Giannetti, A. (2019). Enzymatically obtaining hydrogels of PVA crosslinked with ferulic acid in the presence of laccase for biomedical applications. European Polymer Journal, 112, 610-618.
Bi, B., Liu, H., Kang, W., Zhuo, R., & Jiang, X. (2019). An injectable enzymatically crosslinked tyramine-modified carboxymethyl chitin hydrogel for biomedical applications. Colloids and Surfaces B: Biointerfaces, 175, 614-624.
Chen, S., Chen, Z., Wang, Y., Hao, W., Yuan, Q., Zhou, H., Gao, C., Wang, Y., Wu, X., & Wang, S. (2021). Targeted delivery of Chinese herb pair-based berberine/tannin acid self-assemblies for the treatment of ulcerative colitis. Journal of Advanced Research. (2021), 10.1016/j.jare.2021.11.017
Cho, I. S., Cho, M. O., Li, Z., Nurunnabi, M., Park, S. Y., Kang, S. W., & Huh, K. M. (2016). Synthesis and characterization of a new photo-crosslinkable glycol chitosan thermogel for biomedical applications. Carbohydrate Polymers, 144, 59-67.
Darr, A., & Calabro, A. (2009). Synthesis and characterization of tyramine-based hyaluronan hydrogels. Journal of Materials Science: Materials in Medicine, 20(1), 33-44.
Erdem, P., Bursali, E. A., & Yurdakoc, M. (2013). Preparation and characterization of tannic acid resin: study of boron adsorption. Environmental Progress & Sustainable Energy, 32(4), 1036-1044.
Fatima, S. W., Barua, S., Sardar, M., & Khare, S. K. (2020). Immobilization of transglutaminase on multi-walled carbon nanotubes and its application as bioinspired hydrogel scaffolds. International Journal of Biological Macromolecules, 163, 1747-1758.
Ganesh, N., Hanna, C., Nair, S. V., & Nair, L. S. (2013). Enzymatically cross-linked alginic–hyaluronic acid composite hydrogels as cell delivery vehicles. International Journal of Biological Macromolecules, 55, 289-294.
Han, X., Shen, T., & Lou, H. (2007). Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, 8(9), 950-988.
He, Y., Li, Z., Alexander, P. G., Ocasio-Nieves, B. D., Yocum, L., Lin, H., & Tuan, R. S. (2020). Pathogenesis of osteoarthritis: risk factors, regulatory pathways in chondrocytes, and experimental models. Biology, 9(8), 194.
Hou, Y., Zou, L., Li, Q., Chen, M., Ruan, H., Sun, Z., Xu, X., Yang, J., & Ma, G. (2022). Supramolecular assemblies based on natural small molecules: Union would be effective. Materials Today Bio, 100327.
Hu, L., Zhang, P., Wang, X., Cheng, X., Qin, J., & Tang, R. (2017). pH-sensitive carboxymethyl chitosan hydrogels via acid-labile ortho ester linkage for potential biomedical applications. Carbohydrate Polymers, 178, 166-179.
Hu, W., Wang, Z., Xiao, Y., Zhang, S., & Wang, J. (2019). Advances in crosslinking strategies of biomedical hydrogels. Biomaterials Science, 7(3), 843-855.
Huber, D., Grzelak, A., Baumann, M., Borth, N., Schleining, G., Nyanhongo, G. S., & Guebitz, G. M. (2018). Anti-inflammatory and anti-oxidant properties of laccase-synthesized phenolic-O-carboxymethyl chitosan hydrogels. New Biotechnology, 40, 236-244.
Huber, D., Tegl, G., Baumann, M., Sommer, E., Gorji, E. G., Borth, N., Schleining, G., Nyanhongo, G. S., & Guebitz, G. M. (2017). Chitosan hydrogel formation using laccase activated phenolics as cross-linkers. Carbohydrate Polymers, 157, 814-822.
Hunter, D. J., March, L., & Chew, M. (2020). Osteoarthritis in 2020 and beyond: a Lancet commission. The Lancet, 396(10264), 1711-1712.
Janusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., & Paszczyński, A. (2020). Laccase properties, physiological functions, and evolution. International Journal of Molecular Sciences, 21(3), 966.
Jin, R., Lou, B., & Lin, C. (2013). Tyrosinase‐mediated in situ forming hydrogels from biodegradable chondroitin sulfate–tyramine conjugates. Polymer International, 62(3), 353-361.
Jin, Y., Koh, R. H., Kim, S. H., Kim, K. M., Park, G. K., & Hwang, N. S. (2020). Injectable anti-inflammatory hyaluronic acid hydrogel for osteoarthritic cartilage repair. Materials Science and Engineering: C, 115, 111096.
Kaczmarek, B. (2020). Tannic acid with antiviral and antibacterial activity as a promising component of biomaterials—A minireview. Materials, 13(14), 3224.
Kahkeshani, N., Farzaei, F., Fotouhi, M., Alavi, S. S., Bahramsoltani, R., Naseri, R., Momtaz, S., Abbasabadi, Z., Rahimi, R., Farzaei, M. H., & Bishayee, A. (2019). Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iranian Journal of Basic Medical Sciences, 22(3), 225.
Kim, K. S., Park, S. J., Yang, J. A., Jeon, J. H., Bhang, S. H., Kim, B. S., & Hahn, S. K. (2011). Injectable hyaluronic acid–tyramine hydrogels for the treatment of rheumatoid arthritis. Acta Biomaterialia, 7(2), 666-674.
Kim, S. H., An, Y. H., Kim, H. D., Kim, K., Lee, S. H., Yim, H. G., Kim, B. G., & Hwang, N. S. (2018). Enzyme-mediated tissue adhesive hydrogels for meniscus repair. International Journal of Biological Macromolecules, 110, 479-487.
Koh, R. H., Jin, Y., Kim, J., & Hwang, N. S. (2020). Inflammation-modulating hydrogels for osteoarthritis cartilage tissue engineering. Cells, 9(2), 419.
Lam, P. L., Lee, K. K. H., Kok, S. H. L., Cheng, G. Y. M., Tao, X. M., Hau, D. K. P., Yuen, M. C. W., Lam, K. H., Gambari, R., Chui, C. H., & Wong, R. S. M. (2012). Development of formaldehyde-free agar/gelatin microcapsules containing berberine HCl and gallic acid and their topical and oral applications. Soft Matter, 8(18), 5027-5037.
Le Thi, P., Lee, Y., Tran, D. L., Thi, T. T. H., Park, K. M., & Park, K. D. (2020). Calcium peroxide-mediated in situ formation of multifunctional hydrogels with enhanced mesenchymal stem cell behaviors and antibacterial properties. Journal of Materials Chemistry B, 8(48), 11033-11043.
Lee, H. Y., Hwang, C. H., Kim, H. E., & Jeong, S. H. (2018). Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydrate Polymers, 186, 290-298.
Leng, Y. M., Zhao, X., Fu, T., Wang, X. L., & Wang, Y. Z. (2022). Bio-based flame-retardant and smoke-suppressing wood plastic composites enabled by phytic acid tyramine salt. ACS Sustainable Chemistry & Engineering, 10(15), 5055-5066.
Lin, C. C., & Lin, C. W. (2009). Preparation of N, O-carboxymethyl chitosan nanoparticles as an insulin carrier. Drug Delivery, 16(8), 458-464.
Liu, M., Zeng, X., Ma, C., Yi, H., Ali, Z., Mou, X., Li, S., Deng, Y., & He, N. (2017). Injectable hydrogels for cartilage and bone tissue engineering. Bone Research, 5(1), 1-20.
Loebel, C., D’Este, M., Alini, M., Zenobi-Wong, M., & Eglin, D. (2015). Precise tailoring of tyramine-based hyaluronan hydrogel properties using DMTMM conjugation. Carbohydrate Polymers, 115, 325-333.
Lu, K. Y., Lin, Y. C., Lu, H. T., Ho, Y. C., Weng, S. C., Tsai, M. L., & Mi, F. L. (2019a). A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydrate Polymers, 206, 664-673.
Lu, Z., Liu, S., Le, Y., Qin, Z., He, M., Xu, F., Zhu, Y., Zhao, J., Mao, C., & Zheng, L. (2019b). An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials, 218, 119190.
Lu, S., Liu, L., Wang, H., Zhao, W., Li, Z., Qu, Z., Li, J., Sun, T., Wang, T., & Sui, G. (2019c). Synthesis of dual functional gallic-acid-based carbon dots for bioimaging and antitumor therapy. Biomaterials Science, 7(8), 3258-3265.
Lv, X., Zhang, W., Liu, Y., Zhao, Y., Zhang, J., & Hou, M. (2018). Hygroscopicity modulation of hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes and its application as pH-sensitive delivery system. Carbohydrate Polymers, 198, 86-93.
Mane, S., Ponrathnam, S., & Chavan, N. (2015). Effect of chemical cross-linking on properties of polymer microbeads: a review. Can Chem Trans, 3(4), 473-485.
Mantha, S., Pillai, S., Khayambashi, P., Upadhyay, A., Zhang, Y., Tao, O., Pham, H. M., & Tran, S. D. (2019). Smart hydrogels in tissue engineering and regenerative medicine. Materials, 12(20), 3323.
Mate, D. M., & Alcalde, M. (2017). Laccase: a multi‐purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 10(6), 1457-1467.
More, S. M., Kulkarni, R. V., Sa, B., & Kayane, N. V. (2010). Glutaraldehyde‐crosslinked poly (vinyl alcohol) hydrogel discs for the controlled release of antidiabetic drug. Journal of Applied Polymer Science, 116(3), 1732-1738.
Moulisová, V., Poveda-Reyes, S., Sanmartín-Masiá, E., Quintanilla-Sierra, L., Salmerón-Sánchez, M., & Gallego Ferrer, G. (2017). Hybrid protein–glycosaminoglycan hydrogels promote chondrogenic stem cell differentiation. ACS Omega, 2(11), 7609-7620.
Mourya, V. K., Inamdar, N. N., & Tiwari, A. (2010). Carboxymethyl chitosan and its applications. Advanced Materials Letters, 1(1), 11-33.
Narayanaswamy, R., & Torchilin, V. P. (2019). Hydrogels and their applications in targeted drug delivery. Molecules, 24(3), 603.
Nawaz, A., Shafi, T., Khaliq, A., Mukhtar, H., & ul Haq, I. (2017). Tyrosinase: sources, structure and applications. International Journal of Biotechnology and Bioengineering, 3(5), 142-148.
Newland, B., Baeger, M., Eigel, D., Newland, H., & Werner, C. (2017). Oxygen-producing gellan gum hydrogels for dual delivery of either oxygen or peroxide with doxorubicin. ACS Biomaterials Science & Engineering, 3(5), 787-792.
Niu, J., Yuan, M., Chen, C., Wang, L., Tang, Z., Fan, Y., Liu, X., Ma, Y. J., & Gan, Y. (2020). Berberine-loaded thiolated pluronic f127 polymeric micelles for improving skin permeation and retention. International Journal of Nanomedicine, 15, 9987.
Och, A., Podgórski, R., & Nowak, R. (2020). Biological activity of berberine—a summary update. Toxins, 12(11), 713.
Öztürk, E., Stauber, T., Levinson, C., Cavalli, E., Arlov, Ø., & Zenobi-Wong, M. (2020). Tyrosinase-crosslinked, tissue adhesive and biomimetic alginate sulfate hydrogels for cartilage repair. Biomedical Materials, 15(4), 045019.
Park, S., & Park, K. M. (2018). Hyperbaric oxygen-generating hydrogels. Biomaterials, 182, 234-244.
Pellá, M. C., Lima-Tenório, M. K., Tenório-Neto, E. T., Guilherme, M. R., Muniz, E. C., & Rubira, A. F. (2018). Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydrate Polymers, 196, 233-245.
Pereira, A. G., Muniz, E. C., & Hsieh, Y. L. (2015). 1H NMR and 1H–13C HSQC surface characterization of chitosan–chitin sheath-core nanowhiskers. Carbohydrate Polymers, 123, 46-52.
Petit, A., Redout, E. M., van de Lest, C. H., de Grauw, J. C., Müller, B., Meyboom, R., van Midwoud, P., Vermonden, T., Hennink, W. E., & van Weeren, P. R. (2015). Sustained intra-articular release of celecoxib from in situ forming gels made of acetyl-capped PCLA-PEG-PCLA triblock copolymers in horses. Biomaterials, 53, 426-436.
Reddy, K. J., & Karunakaran, K. T. (2013). Purification and characterization of hyaluronic acid produced by Streptococcus zooepidemicus strain 3523-7. Journal of BioScience & Biotechnology, 2(3).
Reddy, N., Reddy, R., & Jiang, Q. (2015). Crosslinking biopolymers for biomedical applications. Trends in Biotechnology, 33(6), 362-369.
Rocasalbas, G., Francesko, A., Touriño, S., Fernández-Francos, X., Guebitz, G. M., & Tzanov, T. (2013). Laccase-assisted formation of bioactive chitosan/gelatin hydrogel stabilized with plant polyphenols. Carbohydrate Polymers, 92(2), 989-996.
Ruzengwe, F. M., Amonsou, E. O., & Kudanga, T. (2020). Transglutaminase-mediated crosslinking of Bambara groundnut protein hydrogels: Implications on rheological, textural and microstructural properties. Food Research International, 137, 109734.
Song, B., Yang, L., Han, L., & Jia, L. (2019). Metal ion-chelated tannic acid coating for hemostatic dressing. Materials, 12(11), 1803.
Song, D., Hao, J., & Fan, D. (2020). Biological properties and clinical applications of berberine. Frontiers of Medicine, 14(5), 564-582.
Spicer, C. D. (2020). Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polymer Chemistry, 11(2), 184-219.
Tavakoli, S., & Klar, A. S. (2020). Advanced hydrogels as wound dressings. Biomolecules, 10(8), 1169.
Teixeira, L. S. M., Feijen, J., van Blitterswijk, C. A., Dijkstra, P. J., & Karperien, M. (2012). Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials, 33(5), 1281-1290.
Tian, Z., Liu, W., & Li, G. (2016). The microstructure and stability of collagen hydrogel cross-linked by glutaraldehyde. Polymer Degradation and Stability, 130, 264-270.
Torky, A. S., Freag, M. S., Nasra, M. M., & Abdallah, O. Y. (2018). Novel skin penetrating berberine oleate complex capitalizing on hydrophobic ion pairing approach. International Journal of Pharmaceutics, 549(1-2), 76-86.
Upadhyaya, L., Singh, J., Agarwal, V., & Tewari, R. P. (2013). Biomedical applications of carboxymethyl chitosans. Carbohydrate Polymers, 91(1), 452-466.
Vate, N. K., & Benjakul, S. (2016). Combined effect of squid ink tyrosinase and tannic acid on heat induced aggregation of natural actomyosin from sardine. Food Hydrocolloids, 56, 62-70.
Wang, L., Xu, B., Nong, Y., Wang, P., Yu, Y., Deng, C., Yuan, J., & Wang, Q. (2020a). Laccase-mediated construction of flexible double-network hydrogels based on silk fibroin and tyramine-modified hyaluronic acid. International Journal of Biological Macromolecules, 160, 795-805.zh
Wang, L., Li, J., Zhang, D., Ma, S., Zhang, J., Gao, F., Guan, F., & Yao, M. (2020b). Dual-enzymatically crosslinked and injectable hyaluronic acid hydrogels for potential application in tissue engineering. RSC Advances, 10(5), 2870-2876.
Weber, G. C., Buhren, B. A., Schrumpf, H., Wohlrab, J., & Gerber, P. A. (2019). Clinical applications of hyaluronidase. Therapeutic Enzymes: Function and Clinical Implications, 255-277.
Wong, S. K., Chin, K. Y., & Ima-Nirwana, S. (2020). Berberine and musculoskeletal disorders: The therapeutic potential and underlying molecular mechanisms. Phytomedicine, 73, 152892.
Xu, J., Liu, Y., & Hsu, S. H. (2019). Hydrogels based on Schiff base linkages for biomedical applications. Molecules, 24(16), 3005.
Yang, J., Li, M., Wang, Y., Wu, H., Zhen, T., Xiong, L., & Sun, Q. (2019). Double cross-linked chitosan composite films developed with oxidized tannic acid and ferric ions exhibit high strength and excellent water resistance. Biomacromolecules, 20(2), 801-812.
Yen, G. C., & Hsieh, C. L. (1997). Antioxidant effects of dopamine and related compounds. Bioscience, Biotechnology, and Biochemistry, 61(10), 1646-1649.
Yoshida, M., Sai, S., Marumo, K., Tanaka, T., Itano, N., Kimata, K., & Fujii, K. (2004). Expression analysis of three isoforms of hyaluronan synthase and hyaluronidase in the synovium of knees in osteoarthritis and rheumatoid arthritis by quantitative real-time reverse transcriptase polymerase chain reaction. Arthritis Res Ther, 6(6), 1-7.
Yu, Y., Feng, R., Li, J., Wang, Y., Song, Y., Tan, G., Liu, D., Liu, W., Yang, X., Pan, H., & Li, S. (2019). A hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier ocular drug delivery platform. Asian Journal of Pharmaceutical Sciences, 14(4), 423-434.
Zhai, P., Peng, X., Li, B., Liu, Y., Sun, H., & Li, X. (2020). The application of hyaluronic acid in bone regeneration. International Journal of Biological Macromolecules, 151, 1224-1239.
Zhang, X., Miao, F., Niu, L., Wei, Y., Hu, Y., Lian, X., Zhao, L., Chen, W., & Huang, D. (2021). Berberine carried gelatin/sodium alginate hydrogels with antibacterial and EDTA-induced detachment performances. International Journal of Biological Macromolecules, 181, 1039-1046.
Zhang, Y., Cao, Y., Zhao, H., Zhang, L., Ni, T., Liu, Y., An, Z., Liu, M., & Pei, R. (2020a). An injectable BMSC-laden enzyme-catalyzed crosslinking collagen-hyaluronic acid hydrogel for cartilage repair and regeneration. Journal of Materials Chemistry B, 8(19), 4237-4244.
Zhang, Z. Y., Sun, Y., Zheng, Y. D., He, W., Yang, Y. Y., Xie, Y. J., Feng, Z. X., & Qiao, K. (2020b). A biocompatible bacterial cellulose/tannic acid composite with antibacterial and anti-biofilm activities for biomedical applications. Materials Science and Engineering: C, 106, 110249.
Zhu, T., Mao, J., Cheng, Y., Liu, H., Lv, L., Ge, M., Li, S., Huang, J., Chen, Z., Li, H., Yang, L., & Lai, Y. (2019). Recent progress of polysaccharide‐based hydrogel interfaces for wound healing and tissue engineering. Advanced Materials Interfaces, 6(17), 1900761.
Zou, Z., Zhang, B., Nie, X., Cheng, Y., Hu, Z., Liao, M., & Li, S. (2020). A sodium alginate-based sustained-release IPN hydrogel and its applications. RSC Advances, 10(65), 39722-39730.
(此全文20250802後開放外部瀏覽)
電子全文
全文檔開放日期:2025/08/02
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *