字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:張凱崴
研究生英文姓名:Chang, Kai-Wei
中文論文名稱:以真空微波乾燥製備鯖魚蒸煮液調味粉及其潛在活性胜肽與生理活性探討
英文論文名稱:Study on the Seasoning Powder of Mackerel (Scomber australasicus) Steaming Juice Prepared by Vacuum Microwave Drying and their Potential Bioactive Peptides and Biological Properties
指導教授姓名:張祐維
口試委員中文姓名:教授︰張祐維
教授︰徐國強
教授︰徐慶琳
教授︰楊登傑
副教授︰陳與國
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932016
請選擇論文為:應用型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:69
中文關鍵詞:鯖魚蒸煮液活性胜肽抗氧化活性降血壓活性體外模擬腸胃道消化有效期限評估
英文關鍵字:mackerel steaming juicebioactive peptidesantioxidant activityantihypertensive activitysimulated gastrointestinal digestionself life evaluation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏收藏:0
代謝症候群 (Metabolic syndrome) 是一種複雜的臨床病症,而代謝症候群的發病機制進行了近30年的深入研究。根據最近的研究,氧化壓力也與代謝症候群的形成機制有關。因此,攝入外源性抗氧化劑對於維持體內氧化壓力的平衡非常重要。本實驗的樣本是花腹鯖 (Scomber australasicus) 之蒸煮液,這是一種遠洋魚類,在世界各地進行加工並製造許多副產物。而這些副產物可以經過處理分離出活性胜肽,是一種具有特定功能的化合物,如抗氧化、抗高血壓等。本實驗的方法是使用胃蛋白酵素、木瓜蛋白酵素、鳳梨蛋白酵素等三種酵素分別水解六個小時。並測定水解物之抗氧化活性和降血壓活性。最後,為了了解這些胜肽在人體內的變化,在體外模擬胃腸消化後,對其生理活性進行了分析和討論。結果表明,用三種不同的酵素水解後。胃蛋白酵素、木瓜蛋白酵素和鳳梨蛋白酵素在第6小時水解率最高,分別為25.15 %、35.04 %和19.28 %。並比較三種酵素水解物的DPPH自由基清除能力,分別為胃蛋白酵素水解物87.42 %、木瓜蛋白酵素水解物90.97 %和鳳梨蛋白酵素水解物82.44 %。鐵離子螯合活性為胃蛋白酵素水解物77.54 %、木瓜蛋白酵素水解物80.07 %和鳳梨蛋白酵素水解物78.50 %。ABTS自由基清除活性為胃蛋白酵素水解物42.17 %、木瓜蛋白酵素水解物41.71 %和鳳梨蛋白酵素水解物41.02 %。最後ACE抑制活性為胃蛋白酵素水解物65.61 %、木瓜蛋白酵素水解物74.12 %和鳳梨蛋白酵素水解物79.96 %。然而經過體外模擬胃腸消化後,除了鐵離子螯合活性有上升之外,其餘抗氧化活性以及ACE抑制活性均有顯著下降,但是ACE抑制活性仍然保有50 %以上之能力。本研究也將鯖魚蒸煮液乾燥粉末及其水解物進行保存期限之相關分析,分別在4°C以及25°C下進行保存12週和15天,各組樣品在pH值、水分以及水活性都沒有顯著變化,不過TVBN以及TBARS值則是隨著保存天數延長而持續增加,表示溫度是影響鯖魚蒸煮液乾燥粉末腐敗之重要因素。綜合以上結果可見,鯖魚蒸煮液乾燥粉末經過酵素水解後可以提高其生理活性,具有開發成新產品的潛力。
Metabolic syndrome (MS) is a complex clinical condition, and the pathogenesis of metabolic syndrome has been intensively studied for nearly 30 years. According to recent studies, oxidative stress has also been implicated in the mechanism of the formation of metabolic syndrome. Therefore, the intake of exogenous antioxidants is important to maintain the balance of oxidative stress in the body. The sample for this study was the steaming juice of Mackerel (Scomber australasicus). These by-products can be processed to separate bioactive peptides, which are compounds with specific functions, such as anti-oxidation and anti-hypertension. The method of this study is to use three enzymes such as pepsin, papain, and bromelain to hydrolysis for six hours respectively. The antioxidant activity and hypotensive activity of the hydrolysate were determined. Their physiological activities were analyzed after in vitro simulating gastrointestinal digestion. The results showed that after hydrolysis with three different enzymes. Pepsin, papain, and bromelain had the highest hydrolysis rates after 6 hours, 25.15 %, 35.04 %, and 19.28 %, respectively. And compared to the DPPH free radical scavenging ability of the three enzymes were pepsin 87.42%, papain 90.97%, and bromelain 82.44% respectively. The iron ion chelating activity was pepsin 77.54%, papain 80.07%, and bromelain 78.50%. The free radical scavenging activity of ABTS was pepsin 42.17 %, papain 41.71 %, and bromelain 41.02 %. The ACE inhibitory activity was pepsin 65.61%, papain 74.12%, and bromelain 79.96%. However, after simulating gastrointestinal digestion in vitro, except for the increase in iron ion digesting activity, the other antioxidant activities and ACE inhibitory activities were significantly decreased, but the ACE inhibitory activity still retained more than 50% of the activity. In this study, the dry powder of mackerel steaming juice and its hydrolysate were also analyzed for the store test. They were stored at 4°C and 25°C for 12 weeks and 15 days, respectively. The pH value, moisture, and water activity of each group of samples were not significantly changed, but the TVBN and TBARS values continued to increase with the storage days. Based on the above results, it can be seen that the dry powder of mackerel steaming juice can improve its physiological activity after enzymatic hydrolysis, and has the potential to be developed as a functional product.
謝誌 I
摘要 II
Abstract III
目錄 IV
圖次 VII
表次 VIII
壹、前言 1
貳、文獻回顧 2
一、花腹鯖 (Scomber australasicus) 2
1.簡介 2
2.水產品罐頭加工 3
3.水產品加工蒸煮液 3
3.1多元不飽和脂肪酸 3
3.2蛋白質 4
3.3游離胺基酸 5
4.活性胜肽 5
4.1抗氧化活性 6
4.2降血壓活性 7
二、代謝症候群 7
1.代謝症候群之定義及標準 7
2.併發症 8
三、真空微波乾燥 9
1.乾燥對於魚類食品之影響 9
2.真空微波乾燥之應用 9
四、有效期限評估 10
1.pH值 10
2.總揮發性鹽基態氮(Total volatile basic nitrogen, TVBN) 11
3.硫代巴比妥酸 11
參、實驗架構 12
肆、實驗器材與方法 13
一、實驗藥品 13
二、儀器設備 14
三、實驗方法 15
1.樣品前處理與乾燥 15
2.一般成分分析 15
3.蛋白質定量分析 16
4.酵素水解物製備 16
4.1水解率測定 16
4.2胜肽含量分析 17
4.3 SDS-PAGE分析 17
4.3.1膠片製作 17
4.3.2樣品制備 17
4.3.3電泳分離 17
5.活性胜肽生理活性測定 18
5.1降血壓活性 18
5.1.1血管收縮素轉換酵素抑制活性測定 18
5.2抗氧化活性 19
5.2.1 DPPH 自由基清除能力測定 19
5.2.2亞鐵離子螯合能力測定 19
5.2.3 ABTS 自由基清除活性測定 20
6.超過濾 20
7.體外模擬腸胃道消化試驗 20
8.有效期限評估 21
8.1儲藏性試驗 21
8.2色度分析 22
8.3揮發性鹽基態氮測定 22
8.4硫代巴比妥酸測定 23
9.統計分析 23
伍、結果與討論 24
一、鯖魚蒸煮液乾燥粉末之成分 24
二、酵素水解物之水解率及電泳分析 24
三、酵素水解物之生理活性比較 25
1.體外抗氧化活性比較 25
2.體外ACE抑制活性比較 26
3.分子大小對於水解物生理活性之影響 26
4.體外模擬腸胃道消化對於水解物生理活性之影響 27
四、保存性評估 28
1.水分、水活性及pH值 28
2.色度分析 30
3.揮發性鹽基態氮測定 30
4.硫代巴比妥酸測定 31
陸、結論 33
柒、未來研究方向 34
捌、參考文獻 35
玖、圖表 48
拾、附圖 69
衛生福利部食品藥物管理署. (2020a). 衛受食字第 1091900145 號-水產品中揮發性鹽基態氮之檢驗方法
Abachi, S., Bazinet, L., & Beaulieu, L. (2019). Antihypertensive and Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from Fish as Potential Cardioprotective Compounds. Marine drugs, 17(11), 613.
Adeyeye, S. A. O. (2019). An overview of fish drying kinetics. Nutrition & Food Science, 49 (5), 886-902
Aguilar Diaz De Leon, J., & Borges, C. R. (2020). Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. The Journal of Visualized Experiments, 44, 159
Agustini, T. W., Suzuki, T., Hagiwara, T., Ishizaki, S., Tanaka, M., & Takai, R. (2001). Change of K value and water state of yellowfin tuna Thunnus albacares meat stored in a wide temperature range (20℃ to-84℃). Bachelor of Fisheries Science, 67(2), 306-313.
Ahmed, A. S., El-Bassiony, T., Elmalt, L. M., & Ibrahim, H. R. (2015). Identification of potent antioxidant bioactive peptides from goat milk proteins. Food Research International, 74, 80-88.
Aluko, R. E. (2015). Antihypertensive peptides from food proteins. Annual review of food science and technology, 6, 235-262.
Ansorena, M. R., del Valle, C., & Salvadori, V. O. (2010). Application of transfer functions to canned tuna fish thermal processing. Food Science and Technology International, 16(1), 43-51.
Aubourg, S. P. (2001). Review: Loss of Quality during the Manufacture of Canned Fish Products. Food Science and Technology International, 7(3), 199-215.
Banga, J. R., Alonso, A. A., Gallardo, J. M., & Perez-Martin, R. I. (1993). Mathematical modelling and simulation of the thermal processing of anisotropic and non-homogeneous conduction-heated canned foods: Application to canned tuna. Journal of Food Engineering, 18(4), 369-387.
Barbosa, E. A., Oliveira, A., Plácido, A., Socodato, R., Portugal, C. C., Mafud, A. C., Leite, J. (2018). Structure and function of a novel antioxidant peptide from the skin of tropical frogs. Free Radical Biology and Medicine, 115, 68-79.
Bashir, K. M. I., Park, Y.J., An, J. H., Choi, S.J., Kim, J.H., Baek, M.-K., Choi, J.-S. (2018). Antioxidant properties of Scomber japonicus hydrolysates prepared by enzymatic hydrolysis. Journal of aquatic food product technology, 27(1), 107-121.
Bashir, K. M. I., Sohn, J. H., Kim, J.S., & Choi, J.S. (2020). Identification and characterization of novel antioxidant peptides from mackerel (Scomber japonicus) muscle protein hydrolysates. Food Chemistry, 323, 126809.
Baur, F., & Ensminger, L. (1996). AOAC—Association of Official Analytical Chemists Official Methods of Analysis. AOAC: Washington, DC, USA.
Beck-Nielsen, H. (2013). Introduction and Definition of the Metabolic Syndrome. In H. Beck-Nielsen (Ed.), The Metabolic Syndrome: Pharmacology and Clinical Aspects, 1-6
Boutrou, R., Gaudichon, C., Dupont, D., Jardin, J., Airinei, G., Marsset-Baglieri, A., .Leonil, J. (2013). Sequential release of milk protein–derived bioactive peptides in the jejunum in healthy humans. The American journal of clinical nutrition, 97(6), 1314-1323
Byun, H.-G., & Kim, S.-K. (2001). Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochemistry, 36(12), 1155-1162.
Cai, L., Wu, X., Zhang, Y., Li, X., Ma, S., & Li, J. (2015). Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin. Journal of functional foods, 16(5), 234-242.
Chalamaiah, M., Dinesh kumar, B., Hemalatha, R., & Jyothirmayi, T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135(4), 3020-3038.
Chan, J. T., Omana, D. A., & Betti, M. (2011). Effect of ultimate pH and freezing on the biochemical properties of proteins in turkey breast meat. Food Chemistry, 127(1), 109-117.
Chen, H.-Y., & Shih, H.-H. (2015). Occurrence and prevalence of fish-borne Anisakis larvae in the spotted mackerel Scomber australasicus from Taiwanese waters. Acta Tropica, 145, 61-67.
Chen, J., Li, J., Li, Z., Yi, R., Shi, S., Wu, K., Wu, S. (2019). Physicochemical and Functional Properties of Type I Collagens in Red Stingray (Dasyatis akajei) Skin. Marine drugs, 17(10), 558.
Chen, J., Sun, S., Li, Y., & Liu, R. (2021). Proteolysis of tilapia skin collagen: Identification and release behavior of ACE-inhibitory peptides. Food Science and Technology, 139, 110502.
Cheung, I. W., Nakayama, S., Hsu, M. N., Samaranayaka, A. G., & Li-Chan, E. C. (2009). Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. Journal of Agricultural and Food Chemistry, 57(19), 9234-9242.
Chi, C. F., Cao, Z. H., Wang, B., Hu, F. Y., Li, Z. R., & Zhang, B. (2014). Antioxidant and functional properties of collagen hydrolysates from Spanish mackerel skin as influenced by average molecular weight. Molecules, 19(8), 11211-11230.
Choonpicharn, S., Tateing, S., Jaturasitha, S., Rakariyatham, N., Suree, N., & Niamsup, H. (2016). Identification of bioactive peptide from Oreochromis niloticus skin gelatin. Journal of food science and technology, 53(2), 1222-1229.
Choopan, W., Panpipat, W., Nisoa, M., Cheong, L. Z., & Chaijan, M. (2021). Physico-chemical aspects of Thai fermented fish viscera, Tai-Pla, curry powder processed by hot air drying and hybrid microwave-infrared drying. Public Library of Science, 16(6), e0253834.
Cian, R. E., Vioque, J., & Drago, S. R. (2015). Structure–mechanism relationship of antioxidant and ACE I inhibitory peptides from wheat gluten hydrolysate fractionated by pH. Food Research International, 69, 216-223.
Contreras, M. (2011). Hernández-Ledesma B, Amigo L, Martín-Álvarez PJ, Recio I. Production of antioxidant hydrolyzates from a whey protein concentrate with thermolysin: Optimization by response surface methodology. Food Science and Technology, 44, 9-15.
Cushman, D., & Cheung, H. (1971). Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical pharmacology, 20(7), 1637-1648.
Dalmau, M. E., Bornhorst, G. M., Eim, V., Rosselló, C., & Simal, S. (2017). Effects of freezing, freeze drying and convective drying on in vitro gastric digestion of apples. Food Chemistry, 215, 7-16.
Darewicz, M., Borawska, J., Vegarud, G. E., Minkiewicz, P., & Iwaniak, A. (2014). Angiotensin I-converting enzyme (ACE) inhibitory activity and ACE inhibitory peptides of salmon (Salmo salar) protein hydrolysates obtained by human and porcine gastrointestinal enzymes. International Journal of Molecular Sciences, 15(8), 14077-14101.
Davies, M. J. (2005). The oxidative environment and protein damage. Biochimica et Biophysica Acta, 1703(2), 93-109.
Duan, Z.h., Jiang, L.n., Wang, J.l., Yu, X.y., & Wang, T. (2011). Drying and quality characteristics of tilapia fish fillets dried with hot air-microwave heating. Food and Bioproducts Processing, 89(4), 472-476.
Dunajski, E. (1980). Texture of fish muscle. Journal of Texture Studies, 10(4), 301-318.
Díez-Manglano, J., Barquero-Romero, J., Almagro, P., Cabrera, F. J., López García, F., Montero, L., Spanish Society of Internal, M. (2014). COPD patients with and without metabolic syndrome: clinical and functional differences. Internal and Emergency Medicine, 9(4), 419-425.
Echeverría, F., Valenzuela, R., Hernandez-Rodas, M. C., & Valenzuela, A. (2017). Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins, Leukotrienes and Essential Fatty Acids, 124, 1-10.
Egan, B. M. (2015). Treatment Resistant Hypertension. Ethnicity & disease, 25(4), 495-498.
Egger, L., & Ménard, O. (2017). Update on bioactive peptides after milk and cheese digestion. Current Opinion in Food Science, 14, 116-121.
Elavarasan, K., Shamasundar, B. A., Badii, F., & Howell, N. (2016). Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven- and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala). Food Chemistry, 206, 210-216.
Ertbjerg, P., & Puolanne, E. (2017). Muscle structure, sarcomere length and influences on meat quality: A review. Meat science, 132, 139-152.
Ferraro, V., Carvalho, A. P., Piccirillo, C., Santos, M. M., L. Castro, P. M., & E. Pintado, M. (2013). Extraction of high added value biological compounds from sardine, sardine-type fish and mackerel canning residues — A review. Materials Science and Engineering: C, 33(6), 3111-3120.
Ferraro, V., Cruz, I. B., Ferreira Jorge, R., Pintado, M. E., & Castro, P. M. L. (2011). Solvent extraction of sodium chloride from codfish (Gadus morhua) salting processing wastewater. Desalination, 281, 42-48.
Fjerbæk Søtoft, L., Lizarazu, J. M., Razi Parjikolaei, B., Karring, H., & Christensen, K. V. (2015). Membrane fractionation of herring marinade for separation and recovery of fats, proteins, amino acids, salt, acetic acid and water. Journal of Food Engineering, 158, 39-47.
Food and Agriculture Organization of the United Nations – FAO. (2013). Innovative
uses of fisheries by-products Rome: FAO. GLOBEFISH.
Fujita, H. (2000). Yokoyama K and Yoshikawa M, Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. The Journal of Agricultural and Food Chemistry, 65, 564-569.
Gaiker, C. T. (2004). Handbook for the Prevention and Minimization of Waste and Valorisation of By-products in European Agro-food Industries: AWARENET.
Goycoolea, F. M., Nieblas, J. M., Noriega, L. O., & Higuera-Ciapara, I. (1997). Temperature and concentration effects on the flow behaviour of stickwater. Bioresource Technology, 59(2), 217-225.
Grundy, S. M. (2008). Metabolic syndrome pandemic. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(4), 629-636.
Gu, Y., & Wu, J. (2013). LC–MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins. Food Chemistry, 141(3), 2682-2690.
Gulcin, I., Tel, A. Z., & Kirecci, E. (2008). Antioxidant, antimicrobial, antifungal, and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. International Journal of Food Properties, 11(2), 450-471.
Harnedy, P. A., Parthsarathy, V., McLaughlin, C. M., O'Keeffe, M. B., Allsopp, P. J., McSorley, E. M., FitzGerald, R. J. (2018). Atlantic salmon (Salmo salar) co-product-derived protein hydrolysates: A source of antidiabetic peptides. Food Research International, 106, 598-606.
Hao Ruoyi, Yang Liu, Liming Sun, Lining Xia, Hui Jia, Qi Li, Jinfeng Pan, (2017). Sodium alginate coating with plant extract affected microbial communities, biogenic amine formation and quality properties of abalone (Haliotis discus hannai Ino) during chill storage, LWT - Food Science and Technology, 81, 1-9
Hernández-Ledesma, B., Dávalos, A., Bartolomé, B., & Amigo, L. (2005). Preparation of Antioxidant Enzymatic Hydrolysates from α-Lactalbumin and β-Lactoglobulin. Identification of Active Peptides by HPLC-MS/MS. Journal of Agricultural and Food Chemistry, 53(3), 588-593.
Hsieh, C. H., Wang, T. Y., Hung, C. C., Chen, M. C., & Hsu, K. C. (2015). Improvement of glycemic control in streptozotocin-induced diabetic rats by Atlantic salmon skin gelatin hydrolysate as the dipeptidyl-peptidase IV inhibitor. Functional food reviews, 6(6), 1887-1892.
Hsu, K.C. (2010). Purification of antioxidative peptides prepared from enzymatic hydrolysates of tuna dark muscle by-product. Food Chemistry, 122(1), 42-48.
Hsu, K.C., Lu, G.H., & Jao, C.L. (2009). Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis). Food Research International, 42(5), 647-652.
Huang, H., & Huang, G. (2020). Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides. Chemical Biology & Drug Design, 96(5), 1209-1222.
International Diabetes Federation, 2017. Available online: https://www.idf.org/e-library/epidemiologyresearch/diabetes-atlas/134-idf-diabetes-atlas-8th-edition.htmL (accessed on 22 January 2019).
Jacques, C., Levy, E., Muckle, G., Jacobson, S. W., Bastien, C., Dewailly, É., Saint-Amour, D. (2011). Long-term effects of prenatal omega-3 fatty acid intake on visual function in school-age children. The Journal of pediatrics, 158(1), 83-90. e81.
Jain, D., & Pathare, P. B. (2007). Study the drying kinetics of open sun drying of fish. Journal of Food Engineering, 78(4), 1315-1319.
Je, J.Y., Lee, K.H., Lee, M. H., & Ahn, C.B. (2009). Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International, 42(9), 1266-1272.
Karoui, R., & Hassoun, A. (2017). Efficiency of Rosemary and Basil Essential Oils on the Shelf-Life Extension of Atlantic Mackerel (Scomber scombrus) Fillets Stored at 2°C. Journal of Association of Official Agricultural Chemists, 100(2), 335-344.
Kasiwut, J., Youravong, W., & Sirinupong, N. (2019). Angiotensin I-converting enzyme inhibitory peptides produced from tuna cooking juice hydrolysate by continuous enzymatic membrane reactor. Journal of food biochemistry, 43(12), e13058.
Kasiwut, J., Youravong, W., & Sirinupong, N. (2019). Angiotensin I-converting enzyme inhibitory peptides produced from tuna cooking juice hydrolysate by continuous enzymatic membrane reactor. Journal of Food Biochemistry, 43(12), e13058.
Kelli, H. M., Kassas, I., & Lattouf, O. M. (2015). Cardio metabolic syndrome: a global epidemic. Diabetes & Metabolism Journal, 6(3), 2-14.
Kristinsson, H. G., & Hultin, H. O. (2003). Effect of Low and High pH Treatment on the Functional Properties of Cod Muscle Proteins. Journal of Agricultural and Food Chemistry, 51(17), 5103-5110.
Lee, S.H., Qian, Z.J., & Kim, S.K. (2010). A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry, 118(1), 96-102.
Leeb, E., Kulozik, U., & Cheison, S. (2011). Thermal pre-treatment of β-Lactoglobulin as a tool to steer enzymatic hydrolysis and control the release of peptides. Procedia Food Science, 1, 1540-1546.
Liu, C., Gu, Z., Lin, X., Wang, Y., Wang, A., Sun, Y., & Shi, Y. (2022). Effects of high hydrostatic pressure (HHP) and storage temperature on bacterial counts, color change, fatty acids and non-volatile taste active compounds of oysters (Crassostrea ariakensis). Food Chemistry, 372, 131247.
Liu, Z., Dong, S., Xu, J., Zeng, M., Song, H., & Zhao, Y. (2008). Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control, 19(3), 231-235.
Mahmoodani, F., Ghassem, M., Babji, A. S., Yusop, S. M., & Khosrokhavar, R. (2014). ACE inhibitory activity of pangasius catfish (Pangasius sutchi) skin and bone gelatin hydrolysate. Journal of Food Science and Technology, 51(9), 1847-1856.
Maslov, L. N., Naryzhnaya, N. V., Boshchenko, A. A., Popov, S. V., Ivanov, V. V., & Oeltgen, P. R. (2019). Is oxidative stress of adipocytes a cause or a consequence of the metabolic syndrome? Journal of Clinical & Translational Endocrinology, 15, 1-5.
Matheus, A. S., Tannus, L. R., Cobas, R. A., Palma, C. C., Negrato, C. A., & Gomes, M. B. (2013). Impact of diabetes on cardiovascular disease: an update. International journal of hypertension, 2013, 653789.
Matsushita, K., & Dzau, V. J. (2017). Mesenchymal stem cells in obesity: insights for translational applications. Laboratory Investigation, 97(10), 1158-1166.
Min, J., Lee, S., Jang, A., Jo, C., Park, C., & Lee, M. (2007). Relationship between the concentration of biogenic amines and volatile basic nitrogen in fresh beef, pork, and chicken meat. Asian-Australasian Journal of Animal Sciences, 20(8), 1278-1284.
Mirzapour-Kouhdasht, A., Moosavi-Nasab, M., Kim, Y.-M., & Eun, J.-B. (2021). Antioxidant mechanism, antibacterial activity, and functional characterization of peptide fractions obtained from barred mackerel gelatin with a focus on application in carbonated beverages. Food Chemistry, 342, 128339.
Najafian, L., & Babji, A. S. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides, 33(1), 178-185.
Nakazawa, N., Fuchiyama, Y., Shimamori, S., Shibayama, S., Okumura, K., Maeda, T., & Okazaki, E. (2022). Effects of treatment at a subzero temperature on pH, water retention, and metabolites in spotted mackerel (Scomber australasicus) muscle. LWT - Food Science and Technology, 154, 112591.
Nakazawa, N., Wada, R., Fukushima, H., Tanaka, R., Kono, S., & Okazaki, E. (2020). Effect of long-term storage, ultra-low temperature, and freshness on the quality characteristics of frozen tuna meat. International Journal of Refrigeration, 112, 270-280.
Neklyudov, A., Ivankin, A., & Berdutina, A. (2000). Properties and uses of protein hydrolysates. Applied Biochemistry and Microbiology, 36(5), 452-459.
Ngo, D.H., Qian, Z.J., Ryu, B., Park, J. W., & Kim, S.K. (2010). In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. Journal of functional foods, 2(2), 107-117.
Ning, X., Feng, Y., Gong, Y., Chen, Y., Qin, J., & Wang, D. (2019). Drying features of microwave and far-infrared combination drying on white ginseng slices. Food science and biotechnology, 28(4), 1065-1072.
Nongonierma, A. B., & FitzGerald, R. J. (2015). Bioactive properties of milk proteins in humans: A review. Peptides, 73, 20-34.
Nongonierma, A. B., & FitzGerald, R. J. (2018). Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Analytical and Bioanalytical Chemistry, 410(15), 3407-3423.
Oosterveer, P. (2008). Governing global fish provisioning: ownership and management of marine resources. Ocean & Coastal Management, 51(12), 797-805.
Ovissipour, M., Abedian, A., Motamedzadegan, A., Rasco, B., Safari, R., & Shahiri, H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1), 238-242.
Özoğul, F., & Özoğul, Y. (2000). Comparision of methods used for determination of total volatile basic nitrogen (TVB-N) in rainbow trout (Oncorhynchus mykiss). Turkish journal of zoology, 24(1), 113-120.
Özyurt, G., Kuley, E., Özkütük, S., & Özogul, F. (2009). Sensory, microbiological and chemical assessment of the freshness of red mullet (Mullus barbatus) and goldband goatfish (Upeneus moluccensis) during storage in ice. Food Chemistry, 114(2), 505-510.
Pacheco-Aguilar, R., Mazorra-Manzano, M. A., & Ramírez-Suárez, J. C. (2008). Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chemistry, 109(4), 782-789.
Picot, L., Bordenave, S., Didelot, S., Fruitier-Arnaudin, I., Sannier, F., Thorkelsson, G., Piot, J. M. (2006). Antiproliferative activity of fish protein hydrolysates on human breast cancer cell lines. Process Biochemistry, 41(5), 1217-1222.
Picot, L., Ravallec, R., Fouchereau-Péron, M., Vandanjon, L., Jaouen, P., Chaplain-Derouiniot, M., Bourseau, P. (2010). Impact of ultrafiltration and nanofiltration of an industrial fish protein hydrolysate on its bioactive properties. Journal of the Science of Food and Agriculture, 90(11), 1819-1826.
Piskov, S., Timchenko, L., Grimm, W.-D., Rzhepakovsky, I., Avanesyan, S., Sizonenko, M., & Kurchenko, V. (2020). Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus). Foods (Basel, Switzerland), 9(2), 160.
Prego, R., Vázquez, M., Cobelo-García, A., & Aubourg, S. P. (2020). Macroelements and Trace Elements Content in Brine-Canned Mackerel (Scomber colias) Subjected to High-Pressure Processing and Frozen Storage. Foods (Basel, Switzerland), 9(12), 1868.
Pripp, A. H. (2005). Initial proteolysis of milk proteins and its effect on formation of ACE-inhibitory peptides during gastrointestinal proteolysis: a bioinformatic, in silico, approach. European Food Research and Technology, 221(5), 712-716.
Raghavan, S., & Kristinsson, H. G. (2009). ACE-inhibitory activity of tilapia protein hydrolysates. Food Chemistry, 117(4), 582-588.
Rasmussen, R. S., & Morrissey, M. T. (2007). Marine biotechnology for production of food ingredients. Advances in food and nutrition research, 52, 237-292.
Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Xue, S. J. (2008). Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry, 108(2), 727-736.
Rustad, T., Storrø, I., & Slizyte, R. (2011). Possibilities for the utilisation of marine by-products. International Journal of Food Science & Technology, 46(10), 2001-2014.
Ríos, M. T., Domínguez-Sardiña, M., Ayala, D. E., Gomara, S., Sineiro, E., Pousa, L., . . . Hermida, R. C. (2013). Prevalence and clinical characteristics of isolated-office and true resistant hypertension determined by ambulatory blood pressure monitoring. Chronobiology international, 30(1-2), 207-220.
Sachindra, N. M., & Bhaskar, N. (2008). In vitro antioxidant activity of liquor from fermented shrimp biowaste. Bioresource Technology, 99(18), 9013-9016.
Sampath Kumar, N. S., Nazeer, R. A., & Jaiganesh, R. (2011). Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides, 32(7), 1496-1501.
Sasai, H., Matsuo, T., Fujita, M., Saito, M., & Tanaka, K. (2011). Effects of regular exercise combined with ingestion of vespa amino acid mixture on aerobic fitness and cardiovascular disease risk factors in sedentary older women: a preliminary study. Geriatrics & Gerontology International, 11(1), 24-31.
Shiao, W.C., Wu, T.C., Kuo, C.H., Tsai, Y.H., Tsai, M.L., Hong, Y.H., & Huang, C.Y. (2021). Physicochemical and Antioxidant Properties of Gelatin and Gelatin Hydrolysates Obtained from Extrusion-Pretreated Fish (Oreochromis sp.) Scales. Marine drugs, 19(5), 275.
Shinozaki, F., & Abe, T. (2008). Synergistic Effect of Vespa Amino Acid Mixture on Lipolysis in Rat Adipocytes. Bioscience, Biotechnology, and Biochemistry, 72(7), 1860-1868.
Shrimpton, A. J., Walker, S. L. M., & Ackland, G. L. (2020). Angiotensin converting enzyme inhibitors and angiotensin receptor blockers. The British Journal of Anaesthesia, 20(11), 362-367.
Shukla, D., & Trout, B. L. (2011). Understanding the Synergistic Effect of Arginine and Glutamic Acid Mixtures on Protein Solubility. The Journal of Physical Chemistry B, 115(41), 11831-11839.
Skurikhin, E. G., Pershina, O. V., Pakhomova, A. V., Pan, E. S., Krupin, V. A., Ermakova, N. N., Skurikhina, V. E. (2019). Endothelial progenitor cells as pathogenetic and diagnostic factors, and potential targets for GLP-1 in combination with metabolic syndrome and chronic obstructive pulmonary disease. International Journal of Molecular Sciences, 20(5), 1105.
Song, R., Wei, R. B., Luo, H. Y., & Wang, D. F. (2012). Isolation and characterization of an antibacterial peptide fraction from the pepsin hydrolysate of half-fin anchovy (Setipinna taty). Molecules (Basel, Switzerland), 17(3), 2980-2991.
Sonko, P., Chen, S., Chou, C. M., Huang, Y. C., Hsu, S. L., Barčák, D., . . . Fan, C.-K. (2020). Multidisciplinary approach in study of the zoonotic Anisakis larval infection in the blue mackerel (Scomber australasicus) and the largehead hairtail (Trichiurus lepturus) in Northern Taiwan. Journal of Microbiology, Immunology and Infection, 53(6), 1021-1029.
Tallima, H., & El Ridi, R. (2018). Arachidonic acid: physiological roles and potential health benefits–a review. Journal of advanced research, 11, 33-41.
Tang, W., Zhang, H., Wang, L., Qian, H., & Qi, X. (2015). Targeted separation of antibacterial peptide from protein hydrolysate of anchovy cooking wastewater by equilibrium dialysis. Food Chemistry, 168, 115-123.
Tian, Y., Zhao, Y., Huang, J., Zeng, H., & Zheng, B. (2016). Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chemistry, 197, 714-722.
Tocher, D. R. (2015). Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture, 449, 94-107.
Toopcham, T., Mes, J. J., Wichers, H. J., Roytrakul, S., & Yongsawatdigul, J. (2017). Bioavailability of angiotensin I-converting enzyme (ACE) inhibitory peptides derived from Virgibacillus halodenitrificans SK1-3-7 proteinases hydrolyzed tilapia muscle proteins. Food Chemistry, 220, 190-197.
Tsukamasa, Y., Nakamura, K., Nagato, T., Yamamoto, K., Morita, T., Hiraoka, T., Ando, M. (2018). Study on the delay of discoloration of frozen skipjack Katsuwonus pelamis meat. Nippon Suisan Gakkaishi, 84(1), 111-118.
van Loon, L. J., Saris, W. H., Verhagen, H., & Wagenmakers, A. J. (2000). Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. The American Journal of Clinical Nutrition, 72(1), 96-105.
van der Ven, C., Gruppen, H., de Bont, D. B., & Voragen, A. G. (2002). Optimisation of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology. International Dairy Journal, 12(10), 813-820.
Viji, P., Shanmuka Sai, K. S., Debbarma, J., Dhiju Das, P. H., Madhusudana Rao, B., & Ravishankar, C. N. (2019). Evaluation of physicochemical characteristics of microwave vacuum dried mackerel and inhibition of oxidation by essential oils. Journal of Food Science and Technology, 56(4), 1890-1898.
Vinci, G., & Antonelli, M. L. (2002). Biogenic amines: quality index of freshness in red and white meat. Food Control, 13(8), 519-524.
Wang, K., Luo, Q., Hong, H., Liu, H., & Luo, Y. (2021). Novel antioxidant and ACE inhibitory peptide identified from Arthrospira platensis protein and stability against thermal/pH treatments and simulated gastrointestinal digestion. Food Research International, 139, 109908.
Wang, X., Chen, H., Fu, X., Li, S., & Wei, J. (2017). A novel antioxidant and ACE inhibitory peptide from rice bran protein: Biochemical characterization and molecular docking study. LWT - Food Science and Technology, 75, 93-99.
Wojdyło, A., Figiel, A., Lech, K., Nowicka, P., & Oszmiański, J. (2014). Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology, 7(3), 829-841.
Yang, X., Zhang, J., & Cheng, Y. (2016). The evaluation of the three edible tissues of dead adult Chinese mitten crabs (Eriocheir sinensis) freshness in harvest season, based on the analysis of TVBN and biogenic amine. SpringerPlus, 5(1), 1906-1906.
Zamora-Sillero, J., Gharsallaoui, A., & Prentice, C. (2018). Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: an Overview. Marine Biotechnology, 20(2), 118-130.
Zhang, G., Zheng, S., Feng, Y., Shen, G., Xiong, S., & Du, H. (2018). Changes in Nutrient Profile and Antioxidant Activities of Different Fish Soups, Before and After Simulated Gastrointestinal Digestion. Molecules (Basel, Switzerland), 23(8), 1965.
Zhang, J., Du, H., Zhang, G., Kong, F., Hu, Y., Xiong, S., & Zhao, S. (2020). Identification and characterization of novel antioxidant peptides from crucian carp (Carassius auratus) cooking juice released in simulated gastrointestinal digestion by UPLC-MS/MS and in silico analysis. Journal of Chromatography B, 1136, 121893.
Zhang, J., Li, M., Zhang, G., Tian, Y., Kong, F., Xiong, S., Du, H. (2021). Identification of novel antioxidant peptides from snakehead (Channa argus) soup generated during gastrointestinal digestion and insights into the anti-oxidation mechanisms. Food Chemistry, 337, 127921.
Zhang, J., Yang, X., Fan, P., Zhao, L., Wang, C., Yang, Z., Cheng, Y. (2012). Changes in total volatile basic nitrogen and biogenic amines in two common species of marine fish at high temperature. Acta Hydrobiologica Sinica, 36(2), 284-290.
Zhang, Y., Duan, X., & Zhuang, Y. (2012). Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides, 38(1), 13-21.
Zuta, C. P., Simpson, B. K., Chan, H. M., & Phillips, L. (2003). Concentrating PUFA from mackerel processing waste. Journal of the American Oil Chemists' Society, 80(9), 933-936.

電子全文
全文檔開放日期:2022/08/03
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *