|
中華民國國家標準 (CNS)。(1984)。食品中水分之檢驗方法。總號: 5003,類號: N6114。 中華民國國家標準 (CNS)。(1984)。食品中粗灰分之檢驗方法。總號: 5034,類號: N6115。 中華民國國家標準 (CNS)。(1984)。食品中粗脂肪之檢驗方法。總號: 5036,類號: N6117。 中華民國國家標準 (CNS)。(1986)。食品中粗蛋白質之檢驗方法。總號: 5035,類號: N6116。 中華民國國家標準 (CNS)。(1997)。食品中粗纖維之檢驗方法。總號: 5037,類號: N6118。 中華民國國家標準 (CNS)。(2006)。水果及蔬菜汁飲料檢驗法-羥甲基氮之測定。總號: 12630,類號: N6219。 中華民國國家標準 (CNS)。(2007)。乳品檢驗法-酸度之滴定。總號: 3441,類號: N6057。 水產品中揮發性鹽基態氮之檢驗方法 (中華民國 109 年 2 月 15 日)。 紀妙盈。2021。以發酵槽進行複合菌株發酵豆粕之條件探討及所得發酵產品之活性物質分析。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。 美國黃豆出口協會。2019。美國黃豆與黃豆油之簡介。臺北。臺灣。 食品微生物之檢驗方法-生菌數之檢驗 (中華民國 101 年 11月 19日)。 張芸瑈。2020。複合菌株半固態發酵黃豆條件探討及其發酵產物活性物質分析。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。 楊舒卉。2015。魚腸道具植酸酶活性之乳酸菌株篩選及其降解黃豆質酸能力探討。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。 謝承哲。2018。利用 Lactobacillus sp. FPS2520 和 Bacillus sp. N1 菌株發酵豆粕開發飼料營養添加劑及利用細胞模式探討發酵產品之抗肥胖和促進葡萄糖吸收活性。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。 鐘昀峰。2016。複合菌株發酵黃豆製品開發功能性魚類飼料添加劑。國立臺灣海洋大學食品科學系碩士論文。基隆。臺灣。 Allagheny, N., Obanu, Z. A., Campbell-Platt, G., & Owens, J. D. (1996). Control of ammonia formation during Bacillus subtilis fermentation of legumes. International Journal of Food Microbiology, 29(2-3), 321-333. Bhargav, S., Panda, B. P., Ali, M., & Javed, S. (2008). Solid-state fermentation: An overview. Chemical and Biochemical Engineering Quarterly, 22(1), 49-70. Bi, H., Zhao, H., Lu, F., Zhang, C., Bie, X., & Lu, Z. (2015). Improvement of the nutritional quality and fibrinolytic enzyme activity of soybean meal by fermentation of Bacillus subtilis. Journal of Food Processing and Preservation, 39(6), 1235-1242. Bohn, L., Meyer, A. S., & Rasmussen, S. K. (2008). Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University Science B, 9(3), 165-191. Campbell‐Platt, G. (1980). African locust bean (Parkia species) and its West African fermented food product, dawadawa. Ecology of Food and Nutrition, 9(2), 123-132. Canabady-Rochelle, L. L., Selmeczi, K., Collin, S., Pasc, A., Muhr, L., & Boschi-Muller, S. (2018). SPR screening of metal chelating peptides in a hydrolysate for their antioxidant properties. Food Chemistry, 239, 478-485. Cao, C., Wu, R., Zhu, X., Li, Y., Li, M., An, F., & Wu, J. (2019). Ameliorative effect of Lactobacillus plantarum WW-fermented soy extract on rat fatty liver via the PPAR signaling pathway. Journal of Functional Foods, 60, 103439. Doi: 10.1016/j.jff.2019.103439. Chang, C. T., Fan, M. H., Kuo, F. C., & Sung, H. Y. (2000). Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. Journal of Agricultural and Food Chemistry, 48(8), 3210-3216. Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E., & Lumyong, S. (2002). Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. Science Asia, 28(4), 241-245. Chen, H. (2013). Modern solid state fermentation. Netherlands: Springer. Chen, H. Z., & He, Q. (2012). Value‐added bioconversion of biomass by solid‐state fermentation. Journal of Chemical Technology & Biotechnology, 87(12), 1619-1625. Chen, L., Teng, H., Jia, Z., Battino, M., Miron, A., Yu, Z., Cao, H., & Xiao, J. (2018). Intracellular signaling pathways of inflammation modulated by dietary flavonoids: The most recent evidence. Critical Reviews in Food Science and Nutrition, 58(17), 2908-2924. Chen, L., Zhao, Z., Yu, W., Zheng, L., Li, L., Gu, W., Xu, H., Wei, B., & Yan, X. (2021). Nutritional quality improvement of soybean meal by Bacillus velezensis and Lactobacillus plantarum during two-stage solid-state fermentation. AMB Express, 11(1), 1-11. Cheong, S. H., Furuhashi, K., Ito, K., Nagaoka, M., Yonezawa, T., Miura, Y., & Yagasaki, K. (2014). Daidzein promotes glucose uptake through glucose transporter 4 translocation to plasma membrane in L6 myocytes and improves glucose homeostasis in Type 2 diabetic model mice. The Journal of Nutritional Biochemistry, 25(2), 136-143. Chiari, L., Piovesan, N. D., Naoe, L. K., José, I. C., Viana, J. M. S., Moreira, M. A., & de Barros, E. G. (2004). Genetic parameters relating isoflavone and protein content in soybean seeds. Euphytica, 138(1), 55-60. Chun, J., Kim, G. M., Lee, K. W., Choi, I. D., Kwon, G. H., Park, J. Y., Jeong, S. J., Kim, I. D., & Kim, J. H. (2007). Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. Journal of Food Science, 72(2), M39-M44. Constantinou, A., Mehta, R., Runyan, C., Rao, K., Vaughan, A., & Moon, R. (1995). Flavonoids as DNA topoisomerase antagonists and poisons: Structure-activity relationships. Journal of Natural Products, 58(2), 217-225. Dai, C., Ma, H., He, R., Huang, L., Zhu, S., Ding, Q., & Luo, L. (2017). Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. LWT, 86, 1-7. Daneman, D. (2006). Type 1 diabetes. The Lancet, 367(9513), 847-858. de Olmos, A. R., & Garro, M. S. (2020). Metabolic profile of Lactobacillus paracasei subsp. paracasei CRL 207 in solid state fermentation using commercial soybean meal. Food Bioscience, 35, 100584. Doi: 10.1016/j.fbio.2020.100584. de Olmos, A. R., Bru, E., & Garro, M. S. (2015). Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation. International Journal of Food Microbiology, 196, 16-23. Dersjant‐Li, Y., Awati, A., Schulze, H., & Partridge, G. (2015). Phytase in non‐ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Science of Food and Agriculture, 95(5), 878-896. DiPietro, C. M., & Liener, I. E. (1989). Heat inactivation of the Kunitz and Bowman-Birk soybean protease inhibitors. Journal of Agricultural and Food Chemistry, 37(1), 39-44. Egounlety, M., & Aworh, O. C. (2003). Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering, 56(2-3), 249-254. Esteban-Torres, M., Reverón, I., Santamaría, L., Mancheño, J. M., De las Rivas, B., & Muñoz, R. (2016). The Lp_3561 and Lp_3562 enzymes support a functional divergence process in the lipase/esterase toolkit from Lactobacillus plantarum. Frontiers in Microbiology, 7, 1118. Doi: 10.3389/fmicb.2016.01118. Falade, K. O., & Akinrinde, I. M. (2021). Physical, chemical and adsorption isotherm characteristics of fermented soybean cultivars, and cracked and dehulled African locust bean using selected Bacillus spp. Journal of Food Science and Technology, 58(7), 2749-2760. Farinas, C. S. (2015). Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renewable and Sustainable Energy Reviews, 52, 179-188. Fernández-Tomé, S., & Hernández-Ledesma, B. (2019). Current state of art after twenty years of the discovery of bioactive peptide lunasin. Food Research International, 116, 71-78. Frias, J., Song, Y. S., Martínez-Villaluenga, C., De Mejia, E. G., & Vidal-Valverde, C. (2008). Immunoreactivity and amino acid content of fermented soybean products. Journal of Agricultural and Food Chemistry, 56(1), 99-105. Galvez, A. F., Revilleza, M. J. R., & De Lumen, B. O. (1997). A novel methionine-rich protein from soybean cotyledon: Cloning and characterization of cDNA (accession No. AF005030). Plant Register# PGR97-103. Plant Physiology, 114, 1567-1569. Garcia-Mora, P., Peñas, E., Frías, J., Gomez, R., & Martinez-Villaluenga, C. (2015). High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chemistry, 171, 224-232. Gu, C. J., Yi, H. H., Feng, J., Zhang, Z. G., Zhou, J., Zhou, L. N., Zhou, J. P., Li, M., & Li, Q. Y. (2018). Intermittent hypoxia disrupts glucose homeostasis in liver cells in an insulin-dependent and independent manner. Cellular Physiology and Biochemistry, 47(3), 1042-1050. Hämäläinen, M., Nieminen, R., Vuorela, P., Heinonen, M., & Moilanen, E. (2007). Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages. Mediators of Inflammation, 2007. Doi:10.1155/2007/45673. Heng, X., Chen, H., Lu, C., Feng, T., Li, K., & Gao, E. (2022). Study on synergistic fermentation of bean dregs and soybean meal by multiple strains and proteases. LWT, 154, 112626. Doi: 10.1016/j.lwt.2021.112626. Hitosugi, M., Hamada, K., & Misaka, K. (2015). Effects of Bacillus subtilis var. natto products on symptoms caused by blood flow disturbance in female patients with lifestyle diseases. International Journal of General Medicine, 8, 41-46. Hsiao, Y. H., & Hsieh, J. F. (2018). The conversion and deglycosylation of isoflavones and anthocyanins in black soymilk process. Food Chemistry, 261, 8-14. Hsiao, Y. H., Ho, C. T., & Pan, M. H. (2020). Bioavailability and health benefits of major isoflavone aglycones and their metabolites. Journal of Functional Foods, 74, 104164. Doi: 10.1016/j.jff.2020.104164. Hsiao, Y. H., Hsia, S. Y., Chan, Y. C., & Hsieh, J. F. (2017). Complex coacervation of soy proteins, isoflavones and chitosan. Molecules, 22(6), 1022. Doi: 10.3390/molecules22061022. Hsu, C., Wu, B. Y., Chang, Y. C., Chang, C. F., Chiou, T. Y., & Su, N. W. (2018). Phosphorylation of isoflavones by Bacillus subtilis BCRC 80517 may represent xenobiotic metabolism. Journal of Agricultural and Food Chemistry, 66(1), 127-137. Hsu, C., Ho, H. W., Chang, C. F., Wang, S. T., Fang, T. F., Lee, M. H., & Su, N. W. (2013). Soy isoflavone-phosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food Research International, 53(1), 487-495. Huang, C. H., Chen, C. L., Chang, S. H., & Tsai, G. J. (2020). Evaluation of antiobesity activity of soybean meal products fermented by Lactobacillus plantarum FPS 2520 and Bacillus subtilis N1 in rats fed with high-fat diet. Journal of Medicinal Food, 23(6), 667-675. Ilyas, A., Hirabayasi, M., Matsui, T., Yano, H., Yano, F., Kikishima, T., Takebe, M., & Hayakawa, K. (1995). A note on the removal of phytate in soybean meal using Aspergillus usami. Asian-Australasian Journal of Animal Sciences, 8(2), 135-138. International Monetary Fund. (August 9, 2021). Primary commodity prices. Retrieved August 19, from https://www.imf.org/en/Research/commodity-prices Ismail, B., & Hayes, K. (2005). β-Glycosidase activity toward different glycosidic forms of isoflavones. Journal of Agricultural and Food Chemistry, 53(12), 4918-4924. Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota, Y., & Kikuchi, M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. The Journal of Nutrition, 130(7), 1695-1699. Jhan, J. K., Chang, W. F., Wang, P. M., Chou, S. T., & Chung, Y. C. (2015). Production of fermented red beans with multiple bioactivities using co-cultures of Bacillus subtilis and Lactobacillus delbrueckii subsp. bulgaricus. LWT-food Science and Technology, 63(2), 1281-1287. Jiang, M., Yan, H., He, R., & Ma, Y. (2018). Purification and a molecular docking study of α-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment. European Food Research and Technology, 244(11), 1995-2005. Karami, Z., & Akbari-Adergani, B. (2019). Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. Journal of Food Science and Technology, 56(2), 535-547. Khalil, A. H., & El-Adawy, T. A. (1994). Isolation, identification and toxicity of saponin from different legumes. Food Chemistry, 50(2), 197-201. Ko, C. Y., Lin, H. T. V., & Tsai, G. J. (2013). Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochemistry, 48(4), 559-568. Krishnan, H. B., Kim, W. S., Jang, S., & Kerley, M. S. (2009). All three subunits of soybean β-conglycinin are potential food allergens. Journal of Agricultural and Food Chemistry, 57(3), 938-943. Kudou, S., Fleury, Y., Welti, D., Magnolato, D., Uchida, T., Kitamura, K., & Okubo, K. (1991). Malonyl isoflavone glycosides in soybean seeds (Glycine max MERRILL). Agricultural and Biological Chemistry, 55(9), 2227-2233. Kumar, V., Ahluwalia, V., Saran, S., Kumar, J., Patel, A. K., & Singhania, R. R. (2021). Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technology, 323, 124566. Kushida, M., Okouchi, R., Iwagaki, Y., Asano, M., Du, M. X., Yamamoto, K., & Tsuduki, T. (2018). Fermented soybean suppresses visceral fat accumulation in mice. Molecular Nutrition & Food Research, 62(17), 1701054. Doi: 10.1002/mnfr.201701054. Lalegani, S., Gavlighi, H. A., Azizi, M. H., & Sarteshnizi, R. A. (2018). Inhibitory activity of phenolic-rich pistachio green hull extract-enriched pasta on key type 2 diabetes relevant enzymes and glycemic index. Food Research International, 105, 94-101. Lammi, C., Zanoni, C., & Arnoldi, A. (2015a). IAVPGEVA, IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway. Journal of Functional Foods, 14, 469-478. Lammi, C., Zanoni, C., & Arnoldi, A. (2015b). Three peptides from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells. International Journal of Molecular Sciences, 16(11), 27362-27370. Lan, G., Li, C., He, L., Zeng, X., & Zhu, Q. (2020). Effects of different strains and fermentation method on nattokinase activity, biogenic amines, and sensory characteristics of natto. Journal of Food Science and Technology, 57(12), 4414-4423. Landete, J. M., Arqués, J., Medina, M., Gaya, P., de Las Rivas, B., & Muñoz, R. (2016). Bioactivation of phytoestrogens: Intestinal bacteria and health. Critical Reviews in Food Science and Nutrition, 56(11), 1826-1843. Lee, L. A., & Burks, A. W. (2006). Food allergies: Prevalence, molecular characterization, and treatment/prevention strategies. Annual Review of Nutrition, 26, 539-565. Li, S., Jin, Z., Hu, D., Yang, W., Yan, Y., Nie, X., Lin, J., Zhang, Q., Gai, D., Ji, Y., & Chen, X. (2020). Effect of solid-state fermentation with Lactobacillus casei on the nutritional value, isoflavones, phenolic acids and antioxidant activity of whole soybean flour. LWT, 125, 109264. Doi: 10.1016/j.lwt.2020.109264. Liener, I. E. (1994). Implications of antinutritional components in soybean foods. Critical Reviews in Food Science & Nutrition, 34(1), 31-67. Lim, K. H., Han, J. H., Lee, J. Y., Park, Y. S., Cho, Y. S., Kang, K. D., Yuk, W. J., Hwang, K. Y., Sheong, S. I., Kim, B. S., Kwon, J. K., Kang, C. W., & Kim, J. H. (2012). Assessment of antidiabetogenic potential of fermented soybean extracts in streptozotocin-induced diabetic rat. Food and Chemical Toxicology, 50(11), 3941-3948. Liu, C. W., Wang, Y. C., Hsieh, C. C., Lu, H. C., & Chiang, W. D. (2015). Guava (Psidium guajava Linn.) leaf extract promotes glucose uptake and glycogen accumulation by modulating the insulin signaling pathway in high-glucose-induced insulin-resistant mouse FL83B cells. Process Biochemistry, 50(7), 1128-1135. Liu, X., Feng, J., Xu, Z., Lu, Y., & Liu, Y. (2007). The effects of fermented soybean meal on growth performance and immune characteristics in weaned piglets. Turkish Journal of Veterinary and Animal Sciences, 31(5), 341-345. Liu, X., Zhu, L., Tan, J., Zhou, X., Xiao, L., Yang, X., & Wang, B. (2014). Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia Pilosa Ledeb. BMC Complementary and Alternative Medicine, 14(1), 1-10. Lonsane, B. K., Ghildyal, N. P., Budiatman, S., & Ramakrishna, S. V. (1985). Engineering aspects of solid state fermentation. Enzyme and Microbial Technology, 7(6), 258-265. Lu, Y., Zhao, A., Wu, Y., Zhao, Y., & Yang, X. (2019). Soybean soluble polysaccharides enhance bioavailability of genistein and its prevention against obesity and metabolic syndrome of mice with chronic high fat consumption. Food & Function, 10(7), 4153-4165. Luthria, D. L., Biswas, R., & Natarajan, S. (2007). Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. Food Chemistry, 105(1), 325-333. Ma, Y., & Wang, T. (2010). Deactivation of soybean agglutinin by enzymatic and other physical treatments. Journal of Agricultural and Food Chemistry, 58(21), 11413-11419. Malaypally, S. P., & Ismail, B. (2010). Effect of protein content and denaturation on the extractability and stability of isoflavones in different soy systems. Journal of Agricultural and Food Chemistry, 58(16), 8958-8965. Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94-102. Mathivanan, R., Selvaraj, P., & Nanjappan, K. (2006). Feeding of fermented soybean meal on broiler performance. International Journal of Poultry Science, 5(9), 868-872. Mitchell, D. A., Berovic, M., & Krieger, N. (2002). Overview of solid state bioprocessing. Biotechnology Annual Review, 8, 183-225. Mukherjee, R., Chakraborty, R., & Dutta, A. (2016). Role of fermentation in improving nutritional quality of soybean meal—A review. Asian-Australasian Journal of Animal Sciences, 29(11), 1523-1529. Nakamura, Y., Masuda, O., & Takano, T. (1996). Decrease of tissue angiotensin I-converting enzyme activity upon feeding sour milk in spontaneously hypertensive rats. Bioscience, Biotechnology, and Biochemistry, 60(3), 488-489. Nakano, M. M., Dailly, Y. P., Zuber, P., & Clark, D. P. (1997). Characterization of anaerobic fermentative growth of Bacillus subtilis: Identification of fermentation end products and genes required for growth. Journal of Bacteriology, 179(21), 6749-6755. Ogunleye, A., Bhat, A., Irorere, V. U., Hill, D., Williams, C., & Radecka, I. (2015). Poly-γ-glutamic acid: Production, properties and applications. Microbiology, 161(1), 1-17. Olguin, M. C., Hisano, N., D’Ottavio, A. E., Zingale, M. I., Revelant, G. C., & Calderari, S. A. (2003). Nutritional and antinutritional aspects of an Argentinian soy flour assessed on weanling rats. Journal of Food Composition and Analysis, 16(4), 441-449. Pan, L., Farouk, M. H., Qin, G., Zhao, Y., & Bao, N. (2018). The influences of soybean agglutinin and functional oligosaccharides on the intestinal tract of monogastric animals. International Journal of Molecular Sciences, 19(2), 554. Doi: 10.3390/ijms19020554. Park, C. U., Jeong, M. K., Park, M. H., Yeu, J., Park, M. S., Kim, M. J., Seon, M. A., Chang, P. S., & Lee, J. (2010). Formation of succinyl genistin and succinyl daidzin by Bacillus species. Journal of Food Science, 75(1), C128-C133. Park, M. J., General, T., & Lee, S. P. (2012). Physicochemical properties of roasted soybean flour bioconverted by solid-state fermentation using Bacillus subtilis and Lactobacillus plantarum. Preventive Nutrition and Food Science, 17(1), 36-45. Quettier-Deleu, C., Gressier, B., Vasseur, J., Dine, T., Brunet, C., Luyckx, M., Cazin, M., Cazin, J. C., Bailleul, F., & Trotin, F. (2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology, 72(1-2), 35-42. Rackis, J. J., Honig, D. J., Sessa, D. J., & Steggerda, F. R. (1970). Flavor and flatulence factors in soybean protein products. Journal of Agricultural and Food Chemistry, 18(6), 977-982. Raghavarao, K. S. M. S., Ranganathan, T. V., & Karanth, N. G. (2003). Some engineering aspects of solid-state fermentation. Biochemical Engineering Journal, 13(2-3), 127-135. Ravindran, V., Ravindran, G., & Sivalogan, S. (1994). Total and phytate phosphorus contents of various foods and feedstuffs of plant origin. Food chemistry, 50(2), 133-136. Roopashri, A. N., & Varadaraj, M. C. (2009). Molecular characterization of native isolates of lactic acid bacteria, bifidobacteria and yeasts for beneficial attributes. Applied Microbiology and Biotechnology, 83(6), 1115-1126. Şöhretoğlu, D., & Sari, S. (2020). Flavonoids as alpha-glucosidase inhibitors: Mechanistic approaches merged with enzyme kinetics and molecular modelling. Phytochemistry Reviews, 19(5), 1081-1092. Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5(1), 1-15. Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31(10), 1949-1956. Schwarz, M. W. (2000). Saponins. Ullmann's Encyclopedia of Industrial Chemistry. 23, 485-498. Setchell, K. D. R., & Adlercreutz, H. (1988). Mammalian lignans and phyto-oestrogens: Recent studies on their formation, metabolism and biological role in health and disease. Rowland, I. R. eds. Role of the Gut Flora in Toxicity and Cancer, 315-345 Academic Press, London, UK. Singhania, R. R., Patel, A. K., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13-18. Siu-Rodas, Y., de los Angeles Calixto-Romo, M., Guillén-Navarro, K., Sánchez, J. E., Zamora-Briseno, J. A., & Amaya-Delgado, L. (2018). Bacillus subtilis with endocellulase and exocellulase activities isolated in the thermophilic phase from composting with coffee residues. Revista argentina de microbiología, 50(3), 234-243. Soares, V. F., Castilho, L. R., Bon, E. P., & Freire, D. M. (2005). High-yield Bacillus subtilis protease production by solid-state fermentation. In Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals (pp. 311-319). Humana Press. Song, Y. S., Frías, J., Martinez-Villaluenga, C., Vidal-Valdeverde, C., & de Mejia, E. G. (2008). Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chemistry, 108(2), 571-581. Stillings, B. R., & Hackler, L. R. (1965). Amino acid studies on the effect of fermentation time and heat‐processing of tempeh. Journal of Food Science, 30(6), 1043-1048. Su, L. W., Cheng, Y. H., Hsiao, F. S. H., Han, J. C., & Yu, Y. H. (2018). Optimization of mixed solid-state fermentation of soybean meal by Lactobacillus species and Clostridium butyricum. Polish Journal of Microbiology, 67(3), 297-305. Tarade, K. M., Singhal, R. S., Jayram, R. V., & Pandit, A. B. (2006). Kinetics of degradation of saponins in soybean flour (Glycine max.) during food processing. Journal of Food Engineering, 76(3), 440-445. Taylor, W. H. (1957). Formol titration: An evaluation of its various modifications. Analyst, 82(976), 488-498. Teng, D., Gao, M., Yang, Y., Liu, B., Tian, Z., & Wang, J. (2012). Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatalysis and Agricultural Biotechnology, 1(1), 32-38. Terlabie, N. N., Sakyi-Dawson, E., & Amoa-Awua, W. K. (2006). The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. International journal of food microbiology, 106(2), 145-152. Uehara, H., Yoneda, Y., Yamane, K., & Maruo, B. (1974). Regulation of neutral protease productivity in Bacillus subtilis: Transformation of high protease productivity. Journal of Bacteriology, 119(1), 82-91. Usman, B., Sharma, N., Satija, S., Mehta, M., Vyas, M., Khatik, G. L., Khurana, N., Hansbro, P. M., Williams, K., & Dua, K. (2019). Recent developments in alpha-glucosidase inhibitors for management of type-2 diabetes: An update. Current pharmaceutical design, 25(23), 2510-2525. Vagadia, B. H., Vanga, S. K., & Raghavan, V. (2017). Inactivation methods of soybean trypsin inhibitor–A review. Trends in Food Science & Technology, 64, 115-125. Vázquez, L., Flórez, A. B., Guadamuro, L., & Mayo, B. (2017). Effect of soy isoflavones on growth of representative bacterial species from the human gut. Nutrients, 9(7), 727. Doi: 10.3390/nu9070727. Verhoeckx, K. C., Vissers, Y. M., Baumert, J. L., Faludi, R., Feys, M., Flanagan, S., Herouet-Guicheney, C., Holzhauser, T., Shimojo, R., van der Bolt, N., Wichers, H., & Kimber, I. (2015). Food processing and allergenicity. Food and Chemical Toxicology, 80, 223-240. Vinh, L. T., & Dworschak, E. (1986). Trypsin and chymotrypsin inhibitor activities in plant foods from Vietnam and Hungary. Food/Nahrung, 30(1), 53-58. Visessanguan, W., Benjakul, S., Potachareon, W., Panya, A., & Riebroy, S. (2005). Accelerated proteolysis of soy proteins during fermentation of thua‐nao inoculated with Bacillus subtilis. Journal of Food Biochemistry, 29(4), 349-366. Wang, H. J., & Murphy, P. A. (1994b). Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, crop year, and location. Journal of Agricultural and Food Chemistry, 42, 1674-1677. Wang, H. J., & Murphy, P. A. (1994a). Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry, 42, 1666-1673. Wang, J., Wang, Q., Xu, Z., Zhang, W., & Xiang, J. (2015). Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate. Journal of Microbiology and Biotechnology, 25(1), 26-32. Wang, K., Niu, M., Song, D., Liu, Y., Wu, Y., Zhao, J., Li, S., & Lu, B. (2020). Evaluation of biochemical and antioxidant dynamics during the co‐fermentation of dehusked barley with Rhizopus oryzae and Lactobacillus plantarum. Journal of Food Biochemistry, 44(2), e13106. Doi: 10.1111/jfbc.13106. Wang, L., Chen, S., & Yu, B. (2022). Poly-γ-glutamic acid: Recent achievements, diverse applications and future perspectives. Trends in Food Science & Technology, 119, 1-12. Wang, P., Chen, H., & Sang, S. (2016). Trapping methylglyoxal by genistein and its metabolites in mice. Chemical Research in Toxicology, 29(3), 406-414. Wang, R., Dong, P., Zhu, Y., Yan, M., Liu, W., Zhao, Y., Huang, L., Zhang, D., & Guo, H. (2021). Bacterial community dynamics reveal its key bacterium, Bacillus amyloliquefaciens ZB, involved in soybean meal fermentation for efficient water-soluble protein production. LWT, 135, 110068. Doi: 10.1016/j.lwt.2020.110068. Wang, Z., Cui, Y., Liu, P., Zhao, Y., Wang, L., Liu, Y., & Xie, J. (2017). Small peptides isolated from enzymatic hydrolyzate of fermented soybean meal promote endothelium-independent vasorelaxation and ACE inhibition. Journal of Agricultural and Food Chemistry, 65(50), 10844-10850. Washen, S., & Steinkraus, K. H. (1980). The potentials of microbial cells as protein cells for man. Journal of Biological Sciences, 30, 397-398. Xiao, J. (2017). Dietary flavonoid aglycones and their glycosides: Which show better biological significance?. Critical Reviews in Food Science and Nutrition, 57(9), 1874-1905. Xie, C. L., Hwang, C. E., Oh, C. K., Yoon, N. A., Ryu, J. H., Jeong, J. Y., Roh, G. S., Kim, H. J., Cho, G. J., Choi, W. S., Kang, S. S., Cho, K. M., & Lee, D. H. (2017). Fermented soy‐powder milk with Lactobacillus plantarum P1201 protects against high‐fat diet‐induced obesity. International Journal of Food Science & Technology, 52(7), 1614-1622. Yang, J., Wu, X. B., Chen, H. L., Sun-Waterhouse, D., Zhong, H. B., & Cui, C. (2019). A value-added approach to improve the nutritional quality of soybean meal byproduct: Enhancing its antioxidant activity through fermentation by Bacillus amyloliquefaciens SWJS22. Food Chemistry, 272, 396-403. Yerramsetty, V., Mathias, K., Bunzel, M., & Ismail, B. (2011). Detection and structural characterization of thermally generated isoflavone malonylglucoside derivatives. Journal of agricultural and food chemistry, 59(1), 174-183. Yao, Y., Li, H., Li, J., Zhu, B., & Gao, T. (2021). Anaerobic solid-state fermentation of soybean meal with Bacillus sp. to improve nutritional quality. Frontiers in Nutrition, 552. Doi: 10.3389/fnut.2021.706977. Yoshikawa, M. (2015). Bioactive peptides derived from natural proteins with respect to diversity of their receptors and physiological effects. Peptides, 72, 208-225. Yu, F., Liu, Z., Tong, Z., Zhao, Z., & Liang, H. (2015). Soybean isoflavone treatment induces osteoblast differentiation and proliferation by regulating analysis of Wnt/β-catenin pathway. Gene, 573(2), 273-277. Zhang, B., Deng, Z., Ramdath, D. D., Tang, Y., Chen, P. X., Liu, R., Liu, Q., & Tsao, R. (2015). Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chemistry, 172, 862-872. Zhang, B., Yang, Z., Huang, W., Omedi, J. O., Wang, F., Zou, Q., & Zheng, J. (2019). Isoflavone aglycones enrichment in soybean sourdough bread fermented by lactic acid bacteria strains isolated from traditional Qu starters: Effects on in vitro gastrointestinal digestion, nutritional, and baking properties. Cereal Chemistry, 96(1), 129-141. Zhang, S., Shi, Y., Zhang, S., Shang, W., Gao, X., & Wang, H. (2014). Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation. Food Control, 41, 1-6. Zheng, L., Li, D., Li, Z. L., Kang, L. N., Jiang, Y. Y., Liu, X. Y., Chi, Y. P., Li, Y. Q., & Wang, J. H. (2017). Effects of Bacillus fermentation on the protein microstructure and anti‐nutritional factors of soybean meal. Letters in Applied Microbiology, 65(6), 520-526. Zhou, L., Xiao, X., Zhang, Q., Zheng, J., Li, M., Yu, M., Wang, X., Deng, M., Zhai, X., Li, R., & Liu, J. (2019). Dietary genistein could modulate hypothalamic circadian entrainment, reduce body weight, and improve glucose and lipid metabolism in female mice. International Journal of Endocrinology, 2019. Doi: 10.1155/2019/2163838. Zhu, J., Ren, J., & Tang, L. (2018). Genistein inhibits invasion and migration of colon cancer cells by recovering WIF1 expression. Molecular Medicine Reports, 17(5), 7265-7273. |