|
陳柏翔,2018,以幾丁質和幾丁聚醣製備CD並探討其特性和應用於檢測微生物與金屬離子,國立臺灣海洋大學食品科學系碩士學位論文,基隆,台灣。 Ai, L., Yang, Y., Wang, B., Chang, J., Tang, Z., Yang, B., & Lu, S. (2021). Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science Bulletin, 66(8), 839-856. Alam, A.-M., Park, B.-Y., Ghouri, Z. K., Park, M., & Kim, H.-Y. (2015). Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chemistry, 17(7), 3791-3797. Amato, A., Becci, A., & Beolchini, F. (2020). Citric acid bioproduction: the technological innovation change. Critical Reviews in Biotechnology, 40(2), 199-212. Arca, H. C., Mosquera-Giraldo, L. I., Bi, V., Xu, D., Taylor, L. S., & Edgar, K. J. (2018). Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules, 19(7), 2351-2376. Bajpai, S., D’Souza, A., & Suhail, B. (2019). Blue light-emitting carbon dots (CD) from a milk protein and their interaction with Spinacia oleracea leaf cells. International Nano Letters, 9(3), 203-212. Barbosa, C. D. E. S., Corrêa, J. R., Medeiros, G. A., Barreto, G., Magalhães, K. G., de Oliveira, A. L., Spencer, J., Rodrigues, M. O., & Neto, B. A. (2015). Carbon dots (C-dots) from cow manure with impressive subcellular selectivity tuned by simple chemical modification. Chemistry, 21(13), 5055-5060. Chu, X., Wu, F., Sun, B., Zhang, M., Song, S., Zhang, P., Wang, Y., Zhang, Q., Zhou, N., & Shen, J. (2020). Genipin cross-linked carbon dots for antimicrobial, bioimaging and bacterial discrimination. Colloids and Surfaces B: Biointerfaces, 190, 110930. Dang, V. D., Ganganboina, A. B., & Doong, R.-A. (2020). Bipyridine-and copper-functionalized N-doped carbon dots for fluorescence turn off–on detection of Ciprofloxacin. ACS applied materials & interfaces, 12(29), 32247-32258. De, B., & Karak, N. (2013). A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 3(22), 8286-8290. Ding, H., Yu, S.-B., Wei, J.-S., & Xiong, H.-M. (2016). Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 10(1), 484-491. Dolai, S., Bhunia, S. K., Rajendran, S., UshaVipinachandran, V., Ray, S. C., & Kluson, P. (2021). Tunable fluorescent carbon dots: synthesis progress, fluorescence origin, selective and sensitive volatile organic compounds detection. Critical Reviews in Solid State and Materials Sciences, 46(4), 349-370. Dong, Y., Zhou, N., Lin, X., Lin, J., Chi, Y., & Chen, G. (2010). Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chemistry of Materials, 22(21), 5895-5899. Dong, Y., Pang, H., Yang, H. B., Guo, C., Shao, J., Chi, Y., Li, C. M., & Yu, T. (2013). Carbon‐based dots co‐doped with nitrogen and sulfur for high quantum yield and excitation‐independent emission. Angewandte Chemie International Edition, 52(30), 7800-7804. Edison, T. N. J. I., Atchudan, R., Sethuraman, M. G., Shim, J.-J., & Lee, Y. R. (2016). Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. Journal of Photochemistry and Photobiology B: Biology, 161, 154-161. Feng, Y., Zhong, D., Miao, H., & Yang, X. (2015). Carbon dots derived from rose flowers for tetracycline sensing. Talanta, 140, 128-133. Gan, J., Wu, Y., Yang, F., Wu, X., Wang, Y., & Wang, J. (2021). UV-Filtering cellulose nanocrystal/carbon quantum dot composite films for light conversion in glass windows. ACS Applied Nano Materials, 4(11), 12552-12560. Guo, X., Zhang, L., Wang, Z., Sun, Y., Liu, Q., Dong, W., & Hao, A. (2019). Fluorescent carbon dots based sensing system for detection of enrofloxacin in water solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 219, 15-22. Hammi, N., Chen, S., Dumeignil, F., Royer, S., & El Kadib, A. (2020). Chitosan as a sustainable precursor for nitrogen-containing carbon nanomaterials: Synthesis and uses. Materials Today Sustainability, 100053. Harja, M., & Ciobanu, G. (2018). Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Science of the Total Environment, 628, 36-43. Ho, C.-H., Chu, P.-Y., Peng, S.-L., Huang, S.-C., & Lin, Y.-H. (2020). The development of hyaluronan/fucoidan-based nanoparticles as macrophages targeting an epigallocatechin-3-gallate delivery system. International Journal of Molecular Sciences, 21(17), 6327. Hou, J., Wang, W., Zhou, T., Wang, B., Li, H., & Ding, L. (2016). Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nanoscale, 8(21), 11185-11193. Hu, S.-L., Niu, K.-Y., Sun, J., Yang, J., Zhao, N.-Q., & Du, X.-W. (2009). One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry, 19(4), 484-488. Hu, X., Zhao, Y., Dong, J., Liu, C., Qi, Y., Fang, G., & Wang, S. (2021). A strong blue fluorescent nanoprobe based on Mg/N co-doped carbon dots coupled with molecularly imprinted polymer for ultrasensitive and highly selective detection of tetracycline in animal-derived foods. Sensors and Actuators B: Chemical, 338, 129809. Hu, Y., Zhang, L., Li, X., Liu, R., Lin, L., & Zhao, S. (2017). Green preparation of S and N co-doped carbon dots from water chestnut and onion as well as their use as an off–on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustainable Chemistry & Engineering, 5(6), 4992-5000. Huang, Q., Li, Q., Chen, Y., Tong, L., Lin, X., Zhu, J., & Tong, Q. (2018). High quantum yield nitrogen-doped carbon dots: green synthesis and application as “off-on” fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sensors and Actuators B: Chemical, 276, 82-88. Jung, H.-S., Kim, H. C., & Park, W. H. (2019). Robust methylcellulose hydrogels reinforced with chitin nanocrystals. Carbohydrate Polymers, 213, 311-319. Kim, S., Yoo, B.-K., Choi, Y., Kim, B.-S., & Kwon, O.-H. (2018). Time-resolved spectroscopy of the ensembled photoluminescence of nitrogen-and boron/nitrogen-doped carbon dots. Physical Chemistry Chemical Physics, 20(17), 11673-11681. Kong, B., Zhu, A., Ding, C., Zhao, X., Li, B., & Tian, Y. (2012). Carbon dot‐based inorganic–organic nanosystem for two‐photon imaging and biosensing of pH variation in living cells and tissues. Advanced Materials, 24(43), 5844-5848. Kumar, S., & Foroozesh, J. (2021). Chitin nanocrystals based complex fluids: A green nanotechnology. Carbohydrate Polymers, 257, 117619. Lam, E., & Hemraz, U. D. (2021). Preparation and surface functionalization of carboxylated cellulose nanocrystals. Nanomaterials, 11(7), 1641. Lee, M.-C., & Huang, Y.-C. (2019). Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells. International Journal of Biological Macromolecules, 131, 949-958. Li, H., Sun, C., Ali, M., Zhou, F., Zhang, X., & MacFarlane, D. R. (2015). Sulfated carbon quantum dots as efficient visible‐light switchable acid catalysts for room‐temperature ring‐opening reactions. Angewandte Chemie, 127(29), 8540-8544. Li, H., Zhao, L., Xu, Y., Zhou, T., Liu, H., Huang, N., Ding, J., Li, Y., & Ding, L. (2018). Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey. Talanta, 185, 542-549. Li, L., Shi, L., Jia, J., Chang, D., Dong, C., & Shuang, S. (2020). Fe 3+ detection, bioimaging, and patterning based on bright blue-fluorescent N-doped carbon dots. Analyst, 145(16), 5450-5457. Li, L., Shi, L., Jia, J., Eltayeb, O., Lu, W., Tang, Y., Dong, C., & Shuang, S. (2021). Red fluorescent carbon dots for tetracycline antibiotics and pH discrimination from aggregation-induced emission mechanism. Sensors and Actuators B: Chemical, 332, 129513. Li, X., Liu, Y., Song, X., Wang, H., Gu, H., & Zeng, H. (2015). Intercrossed carbon nanorings with pure surface states as low‐cost and environment‐friendly phosphors for white‐light‐emitting diodes. Angewandte Chemie, 127(6), 1779-1784. Liao, X., Chen, C., Zhou, R., Huang, Q., Liang, Q., Huang, Z., Zhang, Y., Hu, H., & Liang, Y. (2020). Comparison of N-doped carbon dots synthesized from the main components of plants including cellulose, lignin, and xylose: characterized, fluorescence mechanism, and potential applications. Dyes and Pigments, 183, 108725. Liu, M. L., Chen, B. B., Li, C. M., & Huang, C. Z. (2019A). Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry, 21(3), 449-471. Liu, C., Bao, L., Yang, M., Zhang, S., Zhou, M., Tang, B., Wang, B., Liu, Y., Zhang, Z.-L., & Zhang, B. (2019B). Surface sensitive photoluminescence of carbon nanodots: coupling between the carbonyl group and π-electron system. The Journal of Physical Chemistry Letters, 10(13), 3621-3629. Liu, H., Li, R. S., Zhou, J., & Huang, C. Z. (2017). Branched polyethylenimine-functionalized carbon dots as sensitive and selective fluorescent probes for N-acetylcysteine via an off–on mechanism. Analyst, 142(22), 4221-4227. Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., Asiri, A. M., Al‐Youbi, A. O., & Sun, X. (2012). Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. Advanced Materials, 24(15), 2037-2041. Liu, X., Pang, J., Xu, F., & Zhang, X. (2016). Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Scientific Reports, 6(1), 1-8. Liu, Y., Liu, M., Yang, S., Luo, B., & Zhou, C. (2018). Liquid crystalline behaviors of chitin nanocrystals and their reinforcing effect on natural rubber. ACS Sustainable Chemistry & Engineering, 6(1), 325-336. Luo, Q., Ren, T., Lei, Z., Huang, Y., Huang, Y., Xu, D., Wan, C., Guo, X., & Wu, Y. (2022). Non-toxic chitosan-based hydrogel with strong adsorption and sensitive detection abilities for tetracycline. Chemical Engineering Journal, 427, 131738. Majdinasab, M., Mishra, R. K., Tang, X., & Marty, J. L. (2020). Detection of antibiotics in food: New achievements in the development of biosensors. TrAC Trends in Analytical Chemistry, 127, 115883. Meierhofer, F., Dissinger, F., Weigert, F., Jungclaus, J. r., Müller-Caspary, K., Waldvogel, S. R., Resch-Genger, U., & Voss, T. (2020). Citric acid based carbon dots with amine type stabilizers: pH-specific luminescence and quantum yield characteristics. The Journal of Physical Chemistry C, 124(16), 8894-8904. Mintz, K. J., Zhou, Y., & Leblanc, R. M. (2019). Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale, 11(11), 4634-4652. Nguyen, H. A., Srivastava, I., Pan, D., & Gruebele, M. (2020). Unraveling the fluorescence mechanism of carbon dots with sub-single-particle resolution. ACS Nano, 14(5), 6127-6137. Pandey, F. P., Rastogi, A., & Singh, S. (2020). Optical properties and zeta potential of carbon quantum dots (CQDs) dispersed nematic liquid crystal 4′-heptyl-4-biphenylcarbonitrile (7CB). Optical Materials, 105, 109849. Pandi, N., Sonawane, S. H., & Kishore, K. A. (2021). Synthesis of cellulose nanocrystals (CHNs) from cotton using ultrasound-assisted acid hydrolysis. Ultrasonics Sonochemistry, 70, 105353. Pawar, S., Kaja, S., & Nag, A. (2020). Red-emitting carbon dots as a dual sensor for In3+ and Pd2+ in water. ACS Omega, 5(14), 8362-8372. Pinheiro, A. C., Bourbon, A. I., Cerqueira, M. A., Maricato, É., Nunes, C., Coimbra, M. A., & Vicente, A. A. (2015). Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate Polymers, 115, 1-9. Qiao, C., Chen, G., Zhang, J., & Yao, J. (2016). Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocolloids, 55, 19-25. Qu, J.-H., Wei, Q., & Sun, D.-W. (2018). Carbon dots: Principles and their applications in food quality and safety detection. Critical Reviews in Food Science and Nutrition, 58(14), 2466-2475. Rahaiee, S., Shojaosadati, S. A., Hashemi, M., Moini, S., & Razavi, S. H. (2015). Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. International Journal of Biological Macromolecules, 79, 423-432. Ren, G., Tang, M., Chai, F., & Wu, H. (2018). One‐Pot Synthesis of Highly Fluorescent Carbon Dots from Spinach and Multipurpose Applications. European Journal of Inorganic Chemistry, 2018(2), 153-158. Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications, 48(70), 8835-8837. Saini, B., Singh, R. R., Nayak, D., & Mukherjee, T. K. (2020). Biocompatible pH-Responsive Luminescent Coacervate Nanodroplets from Carbon Dots and Poly (diallyldimethylammonium chloride) toward Theranostic Applications. ACS Applied Nano Materials, 3(6), 5826-5837. Schneider, J., Reckmeier, C. J., Xiong, Y., von Seckendorff, M., Susha, A. S., Kasak, P., & Rogach, A. L. (2017). Molecular fluorescence in citric acid-based carbon dots. Journal of Physical Chemistry C, 121(3), 2014-2022. Sharma, A. K., Kaith, B. S., Chandel, K., & Singh, A. (2020). Chemically modified chitosan‑sodium alginate as chemo-sensor adsorbent for the detection of picric acid and removal of biebrich scarlet. International Journal of Biological Macromolecules, 147, 582-594. Shi, C., Qi, H., Ma, R., Sun, Z., Xiao, L., Wei, G., Huang, Z., Liu, S., Li, J., & Dong, M. (2019). N, S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells. Materials Science and Engineering: C, 105, 110132. Singh Dhillon, G., Kaur Brar, S., Verma, M., & Tyagi, R. D. (2011). Recent advances in citric acid bio-production and recovery. Food and Bioprocess Technology, 4(4), 505-529. Song, Y., Zhu, S., Zhang, S., Fu, Y., Wang, L., Zhao, X., & Yang, B. (2015). Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 3(23), 5976-5984. Su, P., Yu, L., Ai, Y., Zhang, S., Ge, H., Bu, Y., Huang, D., Wang, X., & Wang, S. (2022). Conformational fixation induced fluorescence turn-on of oxytetracycline coordinated on aluminum-based metal-organic frameworks for ultrasensitive sensing application. Sensors and Actuators B: Chemical, 132043. Sun, S., Guan, Q., Liu, Y., Wei, B., Yang, Y., & Yu, Z. (2019). Highly luminescence manganese doped carbon dots. Chinese Chemical Letters, 30(5), 1051-1054. Supchocksoonthorn, P., Hanchaina, R., Sinoy, M. C. A., de Luna, M. D. G., Kangsamaksin, T., & Paoprasert, P. (2021). Novel solution-and paper-based sensors based on label-free fluorescent carbon dots for the selective detection of pyrimethanil. Applied Surface Science, 564, 150372. Tejwan, N., Saha, S. K., & Das, J. (2020). Multifaceted applications of green carbon dots synthesized from renewable sources. Advances in Colloid and Interface Science, 275, 102046. Tian, Z., Zhang, X., Li, D., Zhou, D., Jing, P., Shen, D., Qu, S., Zboril, R., & Rogach, A. L. (2017). Full‐color inorganic carbon dot phosphors for white‐light‐emitting diodes. Advanced Optical Materials, 5(19), 1700416. Tsai, W. C., Wang, S. T., Chang, K. L. B., & Tsai, M. L. (2019). Enhancing saltiness perception using chitin nanomaterials. Polymers, 11, 719. Vallan, L., Urriolabeitia, E. P., Ruipérez, F., Matxain, J. M., Canton-Vitoria, R., Tagmatarchis, N., Benito, A. M., & Maser, W. K. (2018). Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. Journal of the American Chemical Society, 140(40), 12862-12869. Venkatesan, J., Anil, S., Kim, S.-K., & Shim, M. S. (2016). Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. Polymers, 8(2), 30. Wang, J., & Qiu, J. (2016). A review of carbon dots in biological applications. Journal of Materials Science, 51(10), 4728-4738. Wang, Q., Liu, X., Zhang, L., & Lv, Y. (2012). Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst, 137(22), 5392-5397. Wang, Y., Liu, Y., Zhao, L., Sun, L., Zhao, X., & Xia, Y. (2021). κ-Carrageenan-derived carbon dots for highly selective and sensitive detection of Fe 3+ and oxytetracycline. Journal of Materials Science, 56(2), 1272-1285. Xing, X., Huang, L., Zhao, S., Xiao, J., & Lan, M. (2020). S, N-doped carbon dots for tetracyclines sensing with a fluorometric spectral response. Microchemical Journal, 105065. Xu, Q., Zhou, Q., Hua, Z., Xue, Q., Zhang, C., Wang, X., Pan, D., & Xiao, M. (2013). Single-particle spectroscopic measurements of fluorescent graphene quantum dots. ACS Nano, 7(12), 10654-10661. Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736-12737. Xu, Y., Li, H., Wang, B., Liu, H., Zhao, L., Zhou, T., Liu, M., Huang, N., Li, Y., & Ding, L. (2018). Microwave-assisted synthesis of carbon dots for" turn-on" fluorometric determination of Hg (II) via aggregation-induced emission. Microchimica Acta, 185(5), 1-7. Yan, F., Sun, Z., Zhang, H., Sun, X., Jiang, Y., & Bai, Z. (2019). The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchimica Acta, 186(8), 1-37. Yan, F., Sun, Z., Pang, J., Jiang, Y., & Zheng, W. (2020). Functionalized carbon dots of thiazole derivatives based on inner filter effect for tetracyclines detection. Dyes and Pigments, 183, 108673. Yang, L., Jiang, W., Qiu, L., Jiang, X., Zuo, D., Wang, D., & Yang, L. (2015). One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale, 7(14), 6104-6113. Yang, L., Zhao, H., Liu, N., & Wang, W. (2019). A target analyte induced fluorescence band shift of piperazine modified carbon quantum dots: a specific visual detection method for oxytetracycline. Chemical Communications, 55(82), 12364-12367. Yang, Q., Hong, H., & Luo, Y. (2020A). Heterogeneous nucleation and synthesis of carbon dots hybrid Zr-based MOFs for simultaneous recognition and effective removal of tetracycline. Chemical Engineering Journal, 392, 123680. Yang, X., Liu, J., Pei, Y., Zheng, X., & Tang, K. (2020B). Recent progress in preparation and application of nano‐chitin materials. Energy & Environmental Materials, 3(4), 492-515. Yuan, F., Li, S., Fan, Z., Meng, X., Fan, L., & Yang, S. (2016). Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today, 11(5), 565-586. Zeng, H., Hu, Z., Peng, C., Deng, L., & Liu, S. (2021). Effective adsorption and sensitive detection of Cr (VI) by chitosan/cellulose nanocrystals grafted with carbon dots composite hydrogel. Polymers, 13(21), 3788. Zhang, C., Liu, M., Li, T., Liu, S., Chen, Q., Zhang, J., & Zhang, K. (2020). One-pot hydrothermal synthesis of dual-emission fluorescent carbon dots for hypochlorous acid detection. Dyes and Pigments, 180, 108507. Zhang, J., & Yu, S.-H. (2016). Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 19(7), 382-393. Zhang, Y., Cui, P., Zhang, F., Feng, X., Wang, Y., Yang, Y., & Liu, X. (2016). Fluorescent probes for “off–on” highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots. Talanta, 152, 288-300. Zhang, Y., Yuan, R., He, M., Hu, G., Jiang, J., Xu, T., Zhou, L., Chen, W., Xiang, W., & Liang, X. (2017). Multicolour nitrogen-doped carbon dots: tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale, 9(45), 17849-17858. Zhao, N., Wang, Y., Hou, S., & Zhao, L. (2020A). Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging. Microchimica Acta, 187, 351. Zhao, Z., Guo, Y., Zhang, T., Ma, J., Li, H., Zhou, J., Wang, Z., & Sun, R. (2020B). Preparation of carbon dots from waste cellulose diacetate as a sensor for tetracycline detection and fluorescence ink. International Journal of Biological Macromolecules, 164, 4289-4298. Zhao, Q.-L., Zhang, Z.-L., Huang, B.-H., Peng, J., Zhang, M., & Pang, D.-W. (2008). Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical Communications, 2008(41), 5116-5118. Zhou, J., Butchosa, N. r., Jayawardena, H. S. N., Zhou, Q., Yan, M., & Ramström, O. (2014). Glycan-functionalized fluorescent chitin nanocrystals for biorecognition applications. Bioconjugate Chemistry, 25(4), 640-643. Zhou, Y., Desserre, A., Sharma, S. K., Li, S., Marksberry, M. H., Chusuei, C. C., Blackwelder, P. L., & Leblanc, R. M. (2017). Gel‐like carbon dots: characterization and their potential applications. ChemPhysChem, 18(8), 890-897. Zhuo, S., Shao, M., & Lee, S.-T. (2012). Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano, 6(2), 1059-1064. Zu, F., Yan, F., Bai, Z., Xu, J., Wang, Y., Huang, Y., & Zhou, X. (2017). The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchimica Acta, 184(7), 1899-1914.
|