字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:蔡旻真
研究生英文姓名:Tsai, Min-Chen
中文論文名稱:氮摻雜碳點應用於抗生素之快速檢測
英文論文名稱:Nitrogen-doped carbon dots for quick detection of antibiotics
指導教授姓名:蔡敏郎
糜福龍
口試委員中文姓名:教授︰蔡敏郎
教授︰糜福龍
教授︰董崇民
助理教授︰郭志宇
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932006
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:66
中文關鍵詞:摻雜碳點螢光淬滅抗生素檢測甲基纖維素奈米晶體
英文關鍵字:doped carbon dotsfluorescence quenchingantibiotics detectionmethylcellulosenanocrystals
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
摘要 I
ABSTRACT II
目次 III
圖目次 VI
表目次 VIII
附錄 IX
縮寫表 X
第一章 前言 1
第二章 文獻回顧 3
2.1. 碳點 3
2.1.1. 簡介 3
2.1.2. 製備方法 3
2.2. 光學特性 4
2.2.1. UV-Vis吸收 5
2.2.2. 光致發光與其機制 5
2.2.3. 螢光穩定性 8
2.3. 量子產率 8
2.4. 螢光探針 8
2.4.1. 螢光淬滅(turn off) 9
2.4.2. 螢光恢復(turn off-on) 10
2.4.3. 螢光增加(turn on) 10
2.5. CD應用於抗生素檢測 11
2.5.1. 檢測抗生素之CD螢光探針 11
2.5.2. 檢測抗生素之CD結合金屬離子的螢光探針 11
2.5.3. 檢測抗生素之CD複合物 12
2.6. 奈米晶體 12
2.6.1. 幾丁質奈米晶體 12
2.6.2. 纖維素奈米晶體 13
2.7. 即時檢測OTC的傳感器 13
第三章 實驗材料 15
3.1. 實驗藥品 15
3.2. 儀器設備 16
第四章 實驗架構 18
第五章 實驗方法 19
5.1. CD製備 19
5.2. CD之特性分析 19
5.2.1. CD的粒徑與形態分析 19
5.2.2. 界達電位 19
5.2.3. 螢光與UV-Vis光譜 20
5.2.4. FT-IR分析 20
5.2.5. 量子產率 20
5.3. 影響CD螢光穩定性的因子 21
5.3.1. pH值 21
5.3.2. 鹽離子濃度 21
5.3.3. 溫度 21
5.4. CD應用於抗生素檢測 21
5.4.1. 檢測OTC之CD螢光探針 21
5.4.2. CD對不同金屬離子的選擇性 22
5.4.3. 檢測OTC之CD結合金屬離子螢光探針 22
5.5. 纖維素奈米晶體之製備 22
5.6. 幾丁質奈米晶體之製備 22
5.7. 纖維素和幾丁質奈米晶體特性之分析 23
5.7.1. TEM分析 23
5.7.2. XRD分析 23
5.7.3. FTIR分析 23
5.7.4. 介達電位 23
5.8. 即時檢測OTC之CD傳感器試片 24
5.8.1. 即時檢測OTC之CD/TLC試片 24
5.8.2. 即時檢測OTC之CD結合金屬離子/TLC試片 24
第六章 結果與討論 25
6.1. NCD-EA和NCD-EDA之特性分析 25
6.1.1. NCD-EA和NCD-EDA之粒徑分布與形狀 25
6.1.2. NCD-EA和NCD-EDA之電位 25
6.1.3. NCD-EA和NCD-EDA之FTIR圖譜 25
6.1.4. NCD-EA和NCD-EDA之UV-VIS吸收光譜 26
6.1.5. NCD-EA和NCD-EDA之螢光光譜 26
6.1.6. NCD-EA和NCD-EDA之量子產率 26
6.2. PH對CD螢光穩定性的影響 26
6.3. CD應用於抗生素檢測 27
6.4. 纖維素和幾丁質奈米晶體特性之分析 28
6.4.1. 纖維素和幾丁質奈米晶體長度分布與形狀 28
6.4.2. 纖維素和幾丁質奈米晶體之XRD和FTIR分析 29
6.4.3. 纖維素和幾丁質奈米晶體之電位 29
6.5. 即時檢測OTC之CD傳感器試片 30
6.5.1. 即時檢測OTC之CD/TLC試片 30
6.5.2. 即時檢測OTC之CD結合金屬離子/TLC試片 31
第七章 結論 32
參考文獻 33
第八章 圖 42
第九章 表 60
附錄 65

陳柏翔,2018,以幾丁質和幾丁聚醣製備CD並探討其特性和應用於檢測微生物與金屬離子,國立臺灣海洋大學食品科學系碩士學位論文,基隆,台灣。
Ai, L., Yang, Y., Wang, B., Chang, J., Tang, Z., Yang, B., & Lu, S. (2021). Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science Bulletin, 66(8), 839-856.
Alam, A.-M., Park, B.-Y., Ghouri, Z. K., Park, M., & Kim, H.-Y. (2015). Synthesis of carbon quantum dots from cabbage with down-and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications. Green Chemistry, 17(7), 3791-3797.
Amato, A., Becci, A., & Beolchini, F. (2020). Citric acid bioproduction: the technological innovation change. Critical Reviews in Biotechnology, 40(2), 199-212.
Arca, H. C., Mosquera-Giraldo, L. I., Bi, V., Xu, D., Taylor, L. S., & Edgar, K. J. (2018). Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules, 19(7), 2351-2376.
Bajpai, S., D’Souza, A., & Suhail, B. (2019). Blue light-emitting carbon dots (CD) from a milk protein and their interaction with Spinacia oleracea leaf cells. International Nano Letters, 9(3), 203-212.
Barbosa, C. D. E. S., Corrêa, J. R., Medeiros, G. A., Barreto, G., Magalhães, K. G., de Oliveira, A. L., Spencer, J., Rodrigues, M. O., & Neto, B. A. (2015). Carbon dots (C-dots) from cow manure with impressive subcellular selectivity tuned by simple chemical modification. Chemistry, 21(13), 5055-5060.
Chu, X., Wu, F., Sun, B., Zhang, M., Song, S., Zhang, P., Wang, Y., Zhang, Q., Zhou, N., & Shen, J. (2020). Genipin cross-linked carbon dots for antimicrobial, bioimaging and bacterial discrimination. Colloids and Surfaces B: Biointerfaces, 190, 110930.
Dang, V. D., Ganganboina, A. B., & Doong, R.-A. (2020). Bipyridine-and copper-functionalized N-doped carbon dots for fluorescence turn off–on detection of Ciprofloxacin. ACS applied materials & interfaces, 12(29), 32247-32258.
De, B., & Karak, N. (2013). A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 3(22), 8286-8290.
Ding, H., Yu, S.-B., Wei, J.-S., & Xiong, H.-M. (2016). Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano, 10(1), 484-491.
Dolai, S., Bhunia, S. K., Rajendran, S., UshaVipinachandran, V., Ray, S. C., & Kluson, P. (2021). Tunable fluorescent carbon dots: synthesis progress, fluorescence origin, selective and sensitive volatile organic compounds detection. Critical Reviews in Solid State and Materials Sciences, 46(4), 349-370.
Dong, Y., Zhou, N., Lin, X., Lin, J., Chi, Y., & Chen, G. (2010). Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chemistry of Materials, 22(21), 5895-5899.
Dong, Y., Pang, H., Yang, H. B., Guo, C., Shao, J., Chi, Y., Li, C. M., & Yu, T. (2013). Carbon‐based dots co‐doped with nitrogen and sulfur for high quantum yield and excitation‐independent emission. Angewandte Chemie International Edition, 52(30), 7800-7804.
Edison, T. N. J. I., Atchudan, R., Sethuraman, M. G., Shim, J.-J., & Lee, Y. R. (2016). Microwave assisted green synthesis of fluorescent N-doped carbon dots: cytotoxicity and bio-imaging applications. Journal of Photochemistry and Photobiology B: Biology, 161, 154-161.
Feng, Y., Zhong, D., Miao, H., & Yang, X. (2015). Carbon dots derived from rose flowers for tetracycline sensing. Talanta, 140, 128-133.
Gan, J., Wu, Y., Yang, F., Wu, X., Wang, Y., & Wang, J. (2021). UV-Filtering cellulose nanocrystal/carbon quantum dot composite films for light conversion in glass windows. ACS Applied Nano Materials, 4(11), 12552-12560.
Guo, X., Zhang, L., Wang, Z., Sun, Y., Liu, Q., Dong, W., & Hao, A. (2019). Fluorescent carbon dots based sensing system for detection of enrofloxacin in water solutions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 219, 15-22.
Hammi, N., Chen, S., Dumeignil, F., Royer, S., & El Kadib, A. (2020). Chitosan as a sustainable precursor for nitrogen-containing carbon nanomaterials: Synthesis and uses. Materials Today Sustainability, 100053.
Harja, M., & Ciobanu, G. (2018). Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Science of the Total Environment, 628, 36-43.
Ho, C.-H., Chu, P.-Y., Peng, S.-L., Huang, S.-C., & Lin, Y.-H. (2020). The development of hyaluronan/fucoidan-based nanoparticles as macrophages targeting an epigallocatechin-3-gallate delivery system. International Journal of Molecular Sciences, 21(17), 6327.
Hou, J., Wang, W., Zhou, T., Wang, B., Li, H., & Ding, L. (2016). Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nanoscale, 8(21), 11185-11193.
Hu, S.-L., Niu, K.-Y., Sun, J., Yang, J., Zhao, N.-Q., & Du, X.-W. (2009). One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. Journal of Materials Chemistry, 19(4), 484-488.
Hu, X., Zhao, Y., Dong, J., Liu, C., Qi, Y., Fang, G., & Wang, S. (2021). A strong blue fluorescent nanoprobe based on Mg/N co-doped carbon dots coupled with molecularly imprinted polymer for ultrasensitive and highly selective detection of tetracycline in animal-derived foods. Sensors and Actuators B: Chemical, 338, 129809.
Hu, Y., Zhang, L., Li, X., Liu, R., Lin, L., & Zhao, S. (2017). Green preparation of S and N co-doped carbon dots from water chestnut and onion as well as their use as an off–on fluorescent probe for the quantification and imaging of coenzyme A. ACS Sustainable Chemistry & Engineering, 5(6), 4992-5000.
Huang, Q., Li, Q., Chen, Y., Tong, L., Lin, X., Zhu, J., & Tong, Q. (2018). High quantum yield nitrogen-doped carbon dots: green synthesis and application as “off-on” fluorescent sensors for the determination of Fe3+ and adenosine triphosphate in biological samples. Sensors and Actuators B: Chemical, 276, 82-88.
Jung, H.-S., Kim, H. C., & Park, W. H. (2019). Robust methylcellulose hydrogels reinforced with chitin nanocrystals. Carbohydrate Polymers, 213, 311-319.
Kim, S., Yoo, B.-K., Choi, Y., Kim, B.-S., & Kwon, O.-H. (2018). Time-resolved spectroscopy of the ensembled photoluminescence of nitrogen-and boron/nitrogen-doped carbon dots. Physical Chemistry Chemical Physics, 20(17), 11673-11681.
Kong, B., Zhu, A., Ding, C., Zhao, X., Li, B., & Tian, Y. (2012). Carbon dot‐based inorganic–organic nanosystem for two‐photon imaging and biosensing of pH variation in living cells and tissues. Advanced Materials, 24(43), 5844-5848.
Kumar, S., & Foroozesh, J. (2021). Chitin nanocrystals based complex fluids: A green nanotechnology. Carbohydrate Polymers, 257, 117619.
Lam, E., & Hemraz, U. D. (2021). Preparation and surface functionalization of carboxylated cellulose nanocrystals. Nanomaterials, 11(7), 1641.
Lee, M.-C., & Huang, Y.-C. (2019). Soluble eggshell membrane protein-loaded chitosan/fucoidan nanoparticles for treatment of defective intestinal epithelial cells. International Journal of Biological Macromolecules, 131, 949-958.
Li, H., Sun, C., Ali, M., Zhou, F., Zhang, X., & MacFarlane, D. R. (2015). Sulfated carbon quantum dots as efficient visible‐light switchable acid catalysts for room‐temperature ring‐opening reactions. Angewandte Chemie, 127(29), 8540-8544.
Li, H., Zhao, L., Xu, Y., Zhou, T., Liu, H., Huang, N., Ding, J., Li, Y., & Ding, L. (2018). Single-hole hollow molecularly imprinted polymer embedded carbon dot for fast detection of tetracycline in honey. Talanta, 185, 542-549.
Li, L., Shi, L., Jia, J., Chang, D., Dong, C., & Shuang, S. (2020). Fe 3+ detection, bioimaging, and patterning based on bright blue-fluorescent N-doped carbon dots. Analyst, 145(16), 5450-5457.
Li, L., Shi, L., Jia, J., Eltayeb, O., Lu, W., Tang, Y., Dong, C., & Shuang, S. (2021). Red fluorescent carbon dots for tetracycline antibiotics and pH discrimination from aggregation-induced emission mechanism. Sensors and Actuators B: Chemical, 332, 129513.
Li, X., Liu, Y., Song, X., Wang, H., Gu, H., & Zeng, H. (2015). Intercrossed carbon nanorings with pure surface states as low‐cost and environment‐friendly phosphors for white‐light‐emitting diodes. Angewandte Chemie, 127(6), 1779-1784.
Liao, X., Chen, C., Zhou, R., Huang, Q., Liang, Q., Huang, Z., Zhang, Y., Hu, H., & Liang, Y. (2020). Comparison of N-doped carbon dots synthesized from the main components of plants including cellulose, lignin, and xylose: characterized, fluorescence mechanism, and potential applications. Dyes and Pigments, 183, 108725.
Liu, M. L., Chen, B. B., Li, C. M., & Huang, C. Z. (2019A). Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry, 21(3), 449-471.
Liu, C., Bao, L., Yang, M., Zhang, S., Zhou, M., Tang, B., Wang, B., Liu, Y., Zhang, Z.-L., & Zhang, B. (2019B). Surface sensitive photoluminescence of carbon nanodots: coupling between the carbonyl group and π-electron system. The Journal of Physical Chemistry Letters, 10(13), 3621-3629.
Liu, H., Li, R. S., Zhou, J., & Huang, C. Z. (2017). Branched polyethylenimine-functionalized carbon dots as sensitive and selective fluorescent probes for N-acetylcysteine via an off–on mechanism. Analyst, 142(22), 4221-4227.
Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., Asiri, A. M., Al‐Youbi, A. O., & Sun, X. (2012). Hydrothermal treatment of grass: a low‐cost, green route to nitrogen‐doped, carbon‐rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label‐free detection of Cu (II) ions. Advanced Materials, 24(15), 2037-2041.
Liu, X., Pang, J., Xu, F., & Zhang, X. (2016). Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Scientific Reports, 6(1), 1-8.
Liu, Y., Liu, M., Yang, S., Luo, B., & Zhou, C. (2018). Liquid crystalline behaviors of chitin nanocrystals and their reinforcing effect on natural rubber. ACS Sustainable Chemistry & Engineering, 6(1), 325-336.
Luo, Q., Ren, T., Lei, Z., Huang, Y., Huang, Y., Xu, D., Wan, C., Guo, X., & Wu, Y. (2022). Non-toxic chitosan-based hydrogel with strong adsorption and sensitive detection abilities for tetracycline. Chemical Engineering Journal, 427, 131738.
Majdinasab, M., Mishra, R. K., Tang, X., & Marty, J. L. (2020). Detection of antibiotics in food: New achievements in the development of biosensors. TrAC Trends in Analytical Chemistry, 127, 115883.
Meierhofer, F., Dissinger, F., Weigert, F., Jungclaus, J. r., Müller-Caspary, K., Waldvogel, S. R., Resch-Genger, U., & Voss, T. (2020). Citric acid based carbon dots with amine type stabilizers: pH-specific luminescence and quantum yield characteristics. The Journal of Physical Chemistry C, 124(16), 8894-8904.
Mintz, K. J., Zhou, Y., & Leblanc, R. M. (2019). Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale, 11(11), 4634-4652.
Nguyen, H. A., Srivastava, I., Pan, D., & Gruebele, M. (2020). Unraveling the fluorescence mechanism of carbon dots with sub-single-particle resolution. ACS Nano, 14(5), 6127-6137.
Pandey, F. P., Rastogi, A., & Singh, S. (2020). Optical properties and zeta potential of carbon quantum dots (CQDs) dispersed nematic liquid crystal 4′-heptyl-4-biphenylcarbonitrile (7CB). Optical Materials, 105, 109849.
Pandi, N., Sonawane, S. H., & Kishore, K. A. (2021). Synthesis of cellulose nanocrystals (CHNs) from cotton using ultrasound-assisted acid hydrolysis. Ultrasonics Sonochemistry, 70, 105353.
Pawar, S., Kaja, S., & Nag, A. (2020). Red-emitting carbon dots as a dual sensor for In3+ and Pd2+ in water. ACS Omega, 5(14), 8362-8372.
Pinheiro, A. C., Bourbon, A. I., Cerqueira, M. A., Maricato, É., Nunes, C., Coimbra, M. A., & Vicente, A. A. (2015). Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydrate Polymers, 115, 1-9.
Qiao, C., Chen, G., Zhang, J., & Yao, J. (2016). Structure and rheological properties of cellulose nanocrystals suspension. Food Hydrocolloids, 55, 19-25.
Qu, J.-H., Wei, Q., & Sun, D.-W. (2018). Carbon dots: Principles and their applications in food quality and safety detection. Critical Reviews in Food Science and Nutrition, 58(14), 2466-2475.
Rahaiee, S., Shojaosadati, S. A., Hashemi, M., Moini, S., & Razavi, S. H. (2015). Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. International Journal of Biological Macromolecules, 79, 423-432.
Ren, G., Tang, M., Chai, F., & Wu, H. (2018). One‐Pot Synthesis of Highly Fluorescent Carbon Dots from Spinach and Multipurpose Applications. European Journal of Inorganic Chemistry, 2018(2), 153-158.
Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications, 48(70), 8835-8837.
Saini, B., Singh, R. R., Nayak, D., & Mukherjee, T. K. (2020). Biocompatible pH-Responsive Luminescent Coacervate Nanodroplets from Carbon Dots and Poly (diallyldimethylammonium chloride) toward Theranostic Applications. ACS Applied Nano Materials, 3(6), 5826-5837.
Schneider, J., Reckmeier, C. J., Xiong, Y., von Seckendorff, M., Susha, A. S., Kasak, P., & Rogach, A. L. (2017). Molecular fluorescence in citric acid-based carbon dots. Journal of Physical Chemistry C, 121(3), 2014-2022.
Sharma, A. K., Kaith, B. S., Chandel, K., & Singh, A. (2020). Chemically modified chitosan‑sodium alginate as chemo-sensor adsorbent for the detection of picric acid and removal of biebrich scarlet. International Journal of Biological Macromolecules, 147, 582-594.
Shi, C., Qi, H., Ma, R., Sun, Z., Xiao, L., Wei, G., Huang, Z., Liu, S., Li, J., & Dong, M. (2019). N, S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells. Materials Science and Engineering: C, 105, 110132.
Singh Dhillon, G., Kaur Brar, S., Verma, M., & Tyagi, R. D. (2011). Recent advances in citric acid bio-production and recovery. Food and Bioprocess Technology, 4(4), 505-529.
Song, Y., Zhu, S., Zhang, S., Fu, Y., Wang, L., Zhao, X., & Yang, B. (2015). Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 3(23), 5976-5984.
Su, P., Yu, L., Ai, Y., Zhang, S., Ge, H., Bu, Y., Huang, D., Wang, X., & Wang, S. (2022). Conformational fixation induced fluorescence turn-on of oxytetracycline coordinated on aluminum-based metal-organic frameworks for ultrasensitive sensing application. Sensors and Actuators B: Chemical, 132043.
Sun, S., Guan, Q., Liu, Y., Wei, B., Yang, Y., & Yu, Z. (2019). Highly luminescence manganese doped carbon dots. Chinese Chemical Letters, 30(5), 1051-1054.
Supchocksoonthorn, P., Hanchaina, R., Sinoy, M. C. A., de Luna, M. D. G., Kangsamaksin, T., & Paoprasert, P. (2021). Novel solution-and paper-based sensors based on label-free fluorescent carbon dots for the selective detection of pyrimethanil. Applied Surface Science, 564, 150372.
Tejwan, N., Saha, S. K., & Das, J. (2020). Multifaceted applications of green carbon dots synthesized from renewable sources. Advances in Colloid and Interface Science, 275, 102046.
Tian, Z., Zhang, X., Li, D., Zhou, D., Jing, P., Shen, D., Qu, S., Zboril, R., & Rogach, A. L. (2017). Full‐color inorganic carbon dot phosphors for white‐light‐emitting diodes. Advanced Optical Materials, 5(19), 1700416.
Tsai, W. C., Wang, S. T., Chang, K. L. B., & Tsai, M. L. (2019). Enhancing saltiness perception using chitin nanomaterials. Polymers, 11, 719.
Vallan, L., Urriolabeitia, E. P., Ruipérez, F., Matxain, J. M., Canton-Vitoria, R., Tagmatarchis, N., Benito, A. M., & Maser, W. K. (2018). Supramolecular-enhanced charge transfer within entangled polyamide chains as the origin of the universal blue fluorescence of polymer carbon dots. Journal of the American Chemical Society, 140(40), 12862-12869.
Venkatesan, J., Anil, S., Kim, S.-K., & Shim, M. S. (2016). Seaweed polysaccharide-based nanoparticles: preparation and applications for drug delivery. Polymers, 8(2), 30.
Wang, J., & Qiu, J. (2016). A review of carbon dots in biological applications. Journal of Materials Science, 51(10), 4728-4738.
Wang, Q., Liu, X., Zhang, L., & Lv, Y. (2012). Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application. Analyst, 137(22), 5392-5397.
Wang, Y., Liu, Y., Zhao, L., Sun, L., Zhao, X., & Xia, Y. (2021). κ-Carrageenan-derived carbon dots for highly selective and sensitive detection of Fe 3+ and oxytetracycline. Journal of Materials Science, 56(2), 1272-1285.
Xing, X., Huang, L., Zhao, S., Xiao, J., & Lan, M. (2020). S, N-doped carbon dots for tetracyclines sensing with a fluorometric spectral response. Microchemical Journal, 105065.
Xu, Q., Zhou, Q., Hua, Z., Xue, Q., Zhang, C., Wang, X., Pan, D., & Xiao, M. (2013). Single-particle spectroscopic measurements of fluorescent graphene quantum dots. ACS Nano, 7(12), 10654-10661.
Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736-12737.
Xu, Y., Li, H., Wang, B., Liu, H., Zhao, L., Zhou, T., Liu, M., Huang, N., Li, Y., & Ding, L. (2018). Microwave-assisted synthesis of carbon dots for" turn-on" fluorometric determination of Hg (II) via aggregation-induced emission. Microchimica Acta, 185(5), 1-7.
Yan, F., Sun, Z., Zhang, H., Sun, X., Jiang, Y., & Bai, Z. (2019). The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchimica Acta, 186(8), 1-37.
Yan, F., Sun, Z., Pang, J., Jiang, Y., & Zheng, W. (2020). Functionalized carbon dots of thiazole derivatives based on inner filter effect for tetracyclines detection. Dyes and Pigments, 183, 108673.
Yang, L., Jiang, W., Qiu, L., Jiang, X., Zuo, D., Wang, D., & Yang, L. (2015). One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale, 7(14), 6104-6113.
Yang, L., Zhao, H., Liu, N., & Wang, W. (2019). A target analyte induced fluorescence band shift of piperazine modified carbon quantum dots: a specific visual detection method for oxytetracycline. Chemical Communications, 55(82), 12364-12367.
Yang, Q., Hong, H., & Luo, Y. (2020A). Heterogeneous nucleation and synthesis of carbon dots hybrid Zr-based MOFs for simultaneous recognition and effective removal of tetracycline. Chemical Engineering Journal, 392, 123680.
Yang, X., Liu, J., Pei, Y., Zheng, X., & Tang, K. (2020B). Recent progress in preparation and application of nano‐chitin materials. Energy & Environmental Materials, 3(4), 492-515.
Yuan, F., Li, S., Fan, Z., Meng, X., Fan, L., & Yang, S. (2016). Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today, 11(5), 565-586.
Zeng, H., Hu, Z., Peng, C., Deng, L., & Liu, S. (2021). Effective adsorption and sensitive detection of Cr (VI) by chitosan/cellulose nanocrystals grafted with carbon dots composite hydrogel. Polymers, 13(21), 3788.
Zhang, C., Liu, M., Li, T., Liu, S., Chen, Q., Zhang, J., & Zhang, K. (2020). One-pot hydrothermal synthesis of dual-emission fluorescent carbon dots for hypochlorous acid detection. Dyes and Pigments, 180, 108507.
Zhang, J., & Yu, S.-H. (2016). Carbon dots: large-scale synthesis, sensing and bioimaging. Materials Today, 19(7), 382-393.
Zhang, Y., Cui, P., Zhang, F., Feng, X., Wang, Y., Yang, Y., & Liu, X. (2016). Fluorescent probes for “off–on” highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots. Talanta, 152, 288-300.
Zhang, Y., Yuan, R., He, M., Hu, G., Jiang, J., Xu, T., Zhou, L., Chen, W., Xiang, W., & Liang, X. (2017). Multicolour nitrogen-doped carbon dots: tunable photoluminescence and sandwich fluorescent glass-based light-emitting diodes. Nanoscale, 9(45), 17849-17858.
Zhao, N., Wang, Y., Hou, S., & Zhao, L. (2020A). Functionalized carbon quantum dots as fluorescent nanoprobe for determination of tetracyclines and cell imaging. Microchimica Acta, 187, 351.
Zhao, Z., Guo, Y., Zhang, T., Ma, J., Li, H., Zhou, J., Wang, Z., & Sun, R. (2020B). Preparation of carbon dots from waste cellulose diacetate as a sensor for tetracycline detection and fluorescence ink. International Journal of Biological Macromolecules, 164, 4289-4298.
Zhao, Q.-L., Zhang, Z.-L., Huang, B.-H., Peng, J., Zhang, M., & Pang, D.-W. (2008). Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical Communications, 2008(41), 5116-5118.
Zhou, J., Butchosa, N. r., Jayawardena, H. S. N., Zhou, Q., Yan, M., & Ramström, O. (2014). Glycan-functionalized fluorescent chitin nanocrystals for biorecognition applications. Bioconjugate Chemistry, 25(4), 640-643.
Zhou, Y., Desserre, A., Sharma, S. K., Li, S., Marksberry, M. H., Chusuei, C. C., Blackwelder, P. L., & Leblanc, R. M. (2017). Gel‐like carbon dots: characterization and their potential applications. ChemPhysChem, 18(8), 890-897.
Zhuo, S., Shao, M., & Lee, S.-T. (2012). Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano, 6(2), 1059-1064.
Zu, F., Yan, F., Bai, Z., Xu, J., Wang, Y., Huang, Y., & Zhou, X. (2017). The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchimica Acta, 184(7), 1899-1914.
(此全文20250802後開放外部瀏覽)
電子全文
全文檔開放日期:2025/08/02
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *