字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:郭秝瑜
研究生英文姓名:Kuo, Li-Yu
中文論文名稱:利用蛋白質工程提升源自 Deinococcus indicus DSM 15307 重組澱粉蔗糖酶之熱穩定性
英文論文名稱:Enhancing Thermostability of Recombinant Amylosucrase from Deinococcus indicus DSM 15307 by Protein Engineering
指導教授姓名:方翠筠
口試委員中文姓名:教授︰方翠筠
教授︰林泓廷
教授︰曾文祺
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932004
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:69
中文關鍵詞:澱粉蔗糖酶松二糖熱穩定性
英文關鍵字:amylosucraseturanosethermostability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
目錄
摘要 I
Abstract II
目錄 III
表目錄 V
圖目錄 VI
壹、 研究背景與目的 1
一、 研究背景 1
二、 研究目的 1
貳、 文獻整理 2
一、 稀有醣類 rare sugars 2
1. 簡介 2
2. 松二糖 2
二、 澱粉蔗糖酶 3
1. 簡介 3
2. 不同來源之AS 4
3. Deinococcus indicus DSM 15307之AS 7
4. GH 13 家族之 AS 晶體結構 8
三、 提升熱穩定性方法 9
1. 氫鍵 hydrogen bonds 9
2. 雙硫鍵 disulfide bond 10
3. 蛋白質表面增加精胺酸 (arginine, Arg, R) 10
4. 減少甘胺酸 (glycine, Gly, G)或增加脯胺酸 (proline, Pro, P) 11
四、 電腦輔助軟體簡介 11
1. SWISS-MODEL 11
2. GETAREA 11
3. PyMOL 12
4. Enzfitter 12
參、 實驗設計與流程 13
一、 以軟體評估突變之可能性 13
二、 重組 Di-AS 之突變與特性分析 13
肆、 實驗材料及方法 14
一、 實驗材料 14
1. 菌株與載體 14
2. 抗生素 14
3. 標準品 14
4. 市售套組 14
5. 酵素 15
6. 化學藥品 15
7. 實驗設備 17
8. 軟體 18
二、 實驗方法 18
1. 選擇突變點 18
2. 定位突變 18
3. 質體轉形至表現宿主 23
4. 突變型 Di-AS之表現與純化 24
5. 突變型 Di-AS之活性分析與特性探討 28
伍、 結果與討論 31
一、 突變點選擇及引子設計並進行定位突變 31
二、 突變型酵素之粗酵素液活性及熱穩定性 31
三、 探討純化突變型酵素特性 32
1. 大量表現與純化 32
2. 熱穩定性 32
3. 酵素動力學參數 33
4. 最適作用溫度 34
5. 最適作用 pH 值 34
陸、 結論 35
柒、 參考文獻 36
捌、 圖表 41
吳泰徵,2017,Actinotalea fermentans ATCC 43279 來源重組 L- 核糖異構酶之特性與固定化並以蛋白質工程改變其熱穩定性,國立臺灣海洋大學食品科學系碩士學位論文,基隆。
馬莉婷,2020,臺灣杉萜類合成酶的演化與生化功能探討,臺灣大學森林環境暨資源學研究所學位論文,台北。
顏艾,2021,Deinococcus indicus DSM 15307 來源重組澱粉蔗糖酶之特性探討並以蛋白質工程改變其熱穩定性,國立臺灣海洋大學食品科學系碩士學位論文,基隆。
Agarwal, N., Narnoliya, L. K., & Singh, S. P. (2019). Characterization of a novel amylosucrase gene from the metagenome of a thermal aquatic habitat, and its use in turanose production from sucrose biomass. Enzyme and microbial technology, 131, 109372.
Bae, J., Jun S. J., Chang P. S., & Yoo S. H. (2022). A unique biochemical reaction pathway towards trehalulose synthesis by an amylosucrase isolated form Deinococcus deserti. New Biotechnology, 70, 1-8.
Beerens, K., Desmet T., & Soetaert W. (2012). Enzymes for the biocatalytic production of rare sugars. Journal of Industrial Microbiology & Biotechnology, 39(6), 823-834.
Borders Jr, C., Broadwater, J. A., Bekeny, P. A., Salmon, J. E., Lee, A. S., Eldridge, A. M., & Pett, V. B. (1994). A structural role for arginine in proteins: multiple hydrogen bonds to backbone carbonyl oxygens. Protein Science, 3(4), 541-548.
But, S. Y., Khmelenina, V. N., Reshetnikov, A. S., Mustakhimov, I. I., Kalyuzhnaya, M. G., & Trotsenko, Y. A. (2015). Sucrose metabolism in halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. Archives of Microbiology, 197(3), 471-480.
Cambon E., Barbe S., Pizzut-Serin S., Remaud-Simeon M., & André I. (2014). Essential role of amino acid position 226 in oligosaccharide elongation by amylosucrase from I. Biotechnology and Bioengineering, 111, 1719-1728.
Choi S. W., Lee J. A., & Yoo, S. H. (2019). Sucrose-based biosynthetic process for chain-length-defined α-glucan and functional sweetener by Bifidobacterium amylosucrase. Carbohydrate Polymers, 205, 581-588.
Chung, J.Y., Kim Y. S., Kim Y., & Yoo S. H. (2017). Regulation of inflammation by sucrose isomer, turanose, in Raw 264.7 cells. Journal of Cancer Prevention, 22(3), 195-201.
Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: a web-based tool for disulfide engineering in proteins. BMC bioinformatics, 14(1), 1-7.
Dai, Y., Zhang, J., Zhang, T., Chen, J., Hassanin, H. A., & Jiang, B. (2020). Characteristics of a fructose 6-phosphate 4-epimerase from Caldilinea aerophila DSM 14535 and its application for biosynthesis of tagatose. Enzyme and Microbial Technology, 139, 109594.
Das, S., Paul, S., Bag, S. K., & Dutta, C. (2006). Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC genomics, 7(1), 1-16.
Diaz, J. E., Lin, C. S., Kunishiro, K., Feld, B. K., Avrantinis, S. K., Bronson, J., Greaves, J., Saven J. G., & Weiss G. A. (2011). Computational design and selections for an engineered, thermostable terpene synthase. Protein Science, 2011, 20(9), 1597-1606.
Dror, A., Shemesh, E., Dayan, N., & Fishman, A. (2014). Protein engineering by random mutagenesis and structure-guided consensus of Geobacillus stearothermophilus lipase T6 for enhanced stability in methanol. Applied and environmental microbiology, 80(4), 1515-1527.
Emond, S., Mondeil, S., Jaziri, K., André, I., Monsan, P., Remaud-Siméon, M., & Potocki-Véronèse, G. (2008). Cloning, purification and characterization of a thermostable amylosucrase from Deinococcus geothermalis. FEMS microbiology letters, 285(1), 25-32.
Guérin, F., Barbe, S., Pizzut-Serin, S., Potocki-Véronèse, G., Guieysse, D., Guillet, V., ... & Tranier, S. (2012). Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis. Journal of Biological Chemistry, 287(9), 6642-6654.
Grodberg, J., & Dunn, J. J. (1988). ompT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. Journal of Bacteriology. 170, 1245–1253.
Ha, S. J., Seo, D. H., Jung, J. H., Cha, J., Kim, T. J., Kim, Y. W., & Park, C. S. (2009). Molecular cloning and functional expression of a new amylosucrase from Alteromonas macleodii. Bioscience, biotechnology, and biochemistry, 73(7), 1505-1512.
Hodoniczky, J., Morris C.A., & Rae A.L. Oral and intestinal digestion of oligosaccharides as potential sweeteners: A systematic evaluation. Food Chemistry, 2012. 132(4),1951-1958.
Jeong, J. W., Seo, D. H., Jung, J. H., Park, J. H., Baek, N. I., Kim, M. J., & Park, C. S. Biosynthesis of glucosyl glycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from Methylobacillus flagellatus KT. Applied Biochemistry and Biotechnology, 2014, 173, 904-917.
Jo, B. H., Park, T. Y., Park, H. J., Yeon, Y. J., Yoo, Y. J., & Cha, H. J. (2016). Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration. Scientific reports, 6(1), 1-9.
Kim, K. T., Rha, C. S., Jung, Y. S., Kim, Y.-J., Jung, D.-H., Seo, D.-H., & Park, C.-S. (2019). Comparative study on amylosucrases derived from Deinococcus species and catalytic characterization and use of amylosucrase derived from Deinococcus wulumuqiensis. Amylase, 3(1), 19-31.
Leite, J. D. C., Trugo, L. C., Costa, L. S. M., Quinteiro, L. M. C., Barth, O. M., Dutra, V. M. L., & De Maria, C. A. B. (2000). Determination of oligosaccharides in Brazilian honeys of different botanical origin. Food Chemistry, 70(1), 93-98.
Li, L., Liao, H., Yang, Y., Gong, J., Liu, J., Jiang, Z., Zhu, Y., Xiao, A., & Ni, H. (2018). Improving the thermostability by introduction of arginines on the surface of α-L-rhamnosidase (r-Rha1) from Aspergillus niger. International journal of biological macromolecules, 112, 14-21.
MANUAL, Instruction. BL21-CodonPlus® Competent Cells. 2018
Mazzoni, V., Bradesi, P., Tomi F., & Casanova J. Direct qualitative and quantitative analysis of carbohydrate mixtures using 13C NMR spectroscopy: application to honey. Magnetic Resonance in Chemistry, 1997. 35(13). S81-S90.
Niesen, F. H., Berglund, H., & Vedadi, M. (2007). The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nature protocols, 2(9), 2212-2221.
Ordu, E. B., Sessions, R. B., Clarke, A. R., & Karagüler, N. G. (2013). Effect of surface electrostatic interactions on the stability and folding of formate dehydrogenase from Candida methylica. Journal of Molecular Catalysis B: Enzymatic, 95, 23-28.
Park, M. O., Chandrasekaran, M., & Yoo, S. H. (2018). Expression, purification, and characterization of a novel amylosucrase from Neisseria subflava. International Journal of Biological Macromolecules, 109, 160-166.
Park, M. O., Lee, B. H., Lim, E., Lim, J. Y., Kim, Y., Park, C. S., Lee, H. G., Kang, H. K., & Yoo, S. H. (2016). Enzymatic process for high-yield turanose production and its potential property as an adipogenesis regulator. Journal of Agricultural and Food Chemistry, 64, 4758-4764.
Perez-Cenci, M., & Salerno, G. L. (2014). Functional characterization of Synechococcus amylosucrase and fructokinase encoding genes discovers two novel actors on the stage of cyanobacterial sucrose metabolism. Plant Science, 224, 95-102.
Pizzut-Serin, S., Potocki-Véronèse, G., van der Veen, B. A., Albenne, C., Monsan, P., & Remaud-Simeon, M. (2005). Characterisation of a novel amylosucrase from Deinococcus radiodurans. FEBS Letters, 579(6), 1405-1410.
Rosano, G. L., and Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in microbiology, 5, 172.
Rubinstein, R., & Fiser, A. (2008). Predicting disulfide bond connectivity in proteins by correlated mutations analysis. Bioinformatics, 24(4), 498-504.
Seo, D.H., Jung, J. H., Choi, H. C., Cho, H. K., Kim, H. H., Ha, S. J., Yoo, S. H., Cha, J., & Park, C. S. (2012). Functional expression of amylosucrase, a glucan-synthesizing enzyme, from Arthrobacter chlorophenolicus A6. Journal of Microbiology and Biotechnology, 22(9), 1253-1257.
Shibuya, T., Mandai, T., Kubota, M., Fukuda, S., Kurimoto, M., & Tsujisaka, Y. (2004). Production of turanose by cyclomaltodextrin glucanotransferase from Bacillus stearothermophilus. Journal of Applied Glycoscience, 51(3), 223-227.
Skov, L.K., Osman, M., Henriksen, A., De Montalk, G. P., Remaud-Simeon, M., Sarcabal, P., Willemot, R. M., Mosan, P., & Gajhede, M. (2001). Amylosucrase, a glucan-synthesizing enzyme from the alpha-amylase family. Journal of Biological Chemistry, 276(27), 25273-25278.
Skov, L. K., Pizzut-Serin, S., Remaud-Simeon, M., Ernst, H. A., Gajhede, M., & Mirza, O. (2013). The structure of amylosucrase from Deinococcus radiodurans has an unusual open active-site topology. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 69(9), 973-978.
Souvignier C., & Porter M. (2017). Endotoxin-Free ClearColi® BL21 (DE3) for protein expression: Reduced risk of masked endotoxin.
Su, L., Zhao, Y., Wu, D. & Wu, J., (2020). Heterogeneous expression, molecular modification of amylosucrase from Neisseria polysaccharea, and its application in the preparation of turanose. Food Chemistry, 314, 126212.
Suresh, K., Reddy, G., Sengupta, S., & Shivaji, S. (2004). Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. International Journal of Systematic and Evolutionary Microbiology, 54(2), 457- 461.
Sun, Z., Liu, Q., Qu, G., Feng, Y., & Reetz, M. T. (2019). Utility of B-factors in protein science: Interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chemical reviews, 119(3), 1626-1665.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Leopore, R. & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296-W303.
Wang, R., Bae, J. S., Kim, J. H., Kim, B. S., Yoon, S. H., Park, C. S., & Yoo, S. H. (2012). Development of an efficient bioprocess for turanose production by sucrose isomerisation reaction of amylosucrase. Food Chemistry, 132(2), 773-779.
Weston, R.J. and L.K. Brocklebank, The oligosaccharide composition of some New Zealand honeys. Food Chemistry, 1999. 64(1), 33-37.
Xu, Z., Cen, Y. K., Zou, S. P., Xue, Y. P., & Zheng, Y. G. (2020). Recent advances in the improvement of enzyme thermostability by structure modification. Critical reviews in biotechnology, 40(1), 83-98.
Yu, H., Zhao, Y., Guo, C., Gan, Y., & Huang, H. (2015). The role of proline substitutions within flexible regions on thermostability of luciferase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1854(1), 65-72.
Yu, S., Wang, Y., Tian, Y., Xu, W., Bai, Y., Zhang, T., & Mu, W. (2018). Highly efficient biosynthesis of α-arbutin from hydroquinone by an amylosucrase from Cellulomonas carboniz. Process Biochemistry, 68, 93-99.
Zhang, H., Zhou, X., He, J., Wang, T., Luo, X., Wang, L., & Chen, Z. (2017). Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch. Food chemistry, 220, 413-419.
(此全文20270731後開放外部瀏覽)
電子全文
全文檔開放日期:2027/07/31
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Deinococcus indicus DSM 15307 來源重組澱粉蔗糖酶之特性探討並以蛋白質工程改變其熱穩定性
2. 嗜高溫海藻糖生成相關酵素之基因選殖以及海藻糖苷糊精生成酶的生產與特性探討
3. 嗜高溫古細菌之重組肝醣支切酶的純化及其特性之探討
4. 利用羧酸化磁珠固定 C 端帶有離胺酸標籤之Thermoanaerobacterium saccharolyticum NTOU1 L-鼠李糖異構酶
5. Agrobacterium sp. ATCC 31750 菌株經基因重組後所產阿洛酮糖表異構酶對於活性及特性之影響
6. 源自Synechocystis sp. PCC6803 藍藻蛋白合成酶在大腸桿菌之表現及特性探討
7. 源自Thermoanaerobacterium saccharolyticum NTOU1 之 L-鼠李糖異構酶的固定化探討
8. Agrobacterium sp. ATCC 31750菌株所產阿洛酮糖表異構酶之基因選殖、表現、純化及特性探討
9. Geodermatophilus obscurus DSM 43160 來源之 L-核糖異構酶之基因選殖、表現、純化及特性探討
10. 由攜帶藍藻蛋白合成酶基因的重組乳酸菌生產藍藻蛋白與利用反應曲面法進行培養基最適化之探討
11. 熱穩定鼠李糖異構酶之表現、純化、特性探討及蛋白質工程
12. 海藻糖生成酶的生產與特性探討
13. 活性部位芳香族殘基對於海藻糖苷糊精生成酶之轉糖基與水解作用的影響
14. 鹽濃度對於嗜熱性肝醣支切酶的活性及構形之影響
15. 活性部位殘基突變後對於海藻糖生成酶之活性與基質選擇性的影響
 
* *