|
王柔頻 (2016)。魚油改善肌少症骨骼肌退化及脂肪組織UCP1蛋白之表現。國立臺灣海洋大學食品科學系碩士論文。 吳欣陵 (2018)。綠茶多酚EGCG減緩老化促進小鼠肌少症之研究。國立成功大學生命科學系碩士論文。 陳予晴 (2019)。魚油對長期攝食高脂飲食大鼠肌肉影響之探討。國立臺灣海洋大學食品科學系碩士論文。 曾煒泰 (2018)。荔枝小分子寡酚Oligonol減緩老化促進老鼠肌肉萎縮之研究。國立成功大學生命科學系碩士論文。 Acharyya, S., Ladner, K. J., Nelsen, L. L., Damrauer, J., Reiser, P. J., Swoap, S., & Guttridge, D. C. (2004). Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. The journal of clinical investigation, 114(3), 370-378. Andersen, H., Gadeberg, P. C., Brock, B., & Jakobsen, J. (1997). Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia, 40(9), 1062-1069. Baar, K., & Esser, K. (1999). Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. American journal of physiology cell physiology, 276(1), C120-C127. Balkwill, F. (2006). TNF-α in promotion and progression of cancer. Cancer and metastasis reviews, 25(3), 409-416. Barclay, R. D., Burd, N. A., Tyler, C., Tillin, N. A., & Mackenzie, R. W. (2019). The role of the IGF-1 signaling cascade in muscle protein synthesis and anabolic resistance in aging skeletal muscle. Frontiers in nutrition, 6, 146. Baynes, H. W., Mideksa, S., & Ambachew, S. (2018). The role of polyunsaturated fatty acids (N-3 PUFAs) on the pancreatic β-cells and insulin action. Adipocyte, 7(2), 81-87. Bengal, E., Aviram, S., & Hayek, T. (2020). P38 mapk in glucose metabolism of skeletal muscle: beneficial or harmful?. International journal of molecular sciences, 21(18), 6480. Bi, X., Li, F., Liu, S., Liu, S., Jin, Y., Zhang, X., Yang, T., Li, X & Zhao, A. Z. (2017). ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. Journal of clinical investigation, 127(5), 1757-1771. Bodine, S. C., Latres, E., Baumhueter, S., Lai, V. K. M., Nunez, L., Clarke, B. A., & Glass, D. J. (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 294(5547), 1704-1708. Brennan, C. M., Emerson, C. P., Owens, J., & Christoforou, N. (2021). P38 MAPKs—roles in skeletal muscle physiology, disease mechanisms, and as potential therapeutic targets. JCI insight, 6(12). Broberg, S. Y. L. V. I. A., & Sahlin, K. E. N. T. (1989). Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. Journal of applied physiology, 67(1), 116-122. Broniowska, K. A., Oleson, B. J., & Corbett, J. A. (2014). β-Cell responses to nitric oxide. Vitamins & hormones, 95, 299-322. Calder, P. C. (2013). Omega‐3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?. British journal of clinical pharmacology, 75(3), 645-662. Calvani, R., Miccheli, A., Bernabei, R., & Marzetti, E. (2012). Diet and aging: role in prevention of muscle mass loss. Bioactive food as dietary interventions for the aging population: bioactive foods in chronic disease states, 109. Calvo, J. A., Daniels, T. G., Wang, X., Paul, A., Lin, J., Spiegelman, B. M. & Rangwala, S. M. (2008). Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. Journal of applied physiology, 104(5), 1304-1312. Chacińska, M., Zabielski, P., Książek, M., Szałaj, P., Jarząbek, K., Kojta, I., Chabowski., A & Błachnio-Zabielska, A. U. (2019). The impact of omega-3 fatty acids supplementation on insulin resistance and content of adipocytokines and biologically active lipids in adipose tissue of high-fat diet fed rats. Nutrients, 11(4), 835. Chamberlain, J. J., Rhinehart, A. S., Shaefer Jr, C. F., & Neuman, A. (2016). Diagnosis and management of diabetes: synopsis of the 2016 american diabetes association standards of medical care in diabetes. Annals of internal medicine, 164(8), 542-552. Chiu, C. Y., Wang, L. P., Liu, S. H., & Chiang, M. T. (2018). Fish oil supplementation alleviates the altered lipid homeostasis in blood, liver, and adipose tissues in high-fat diet-fed rats. Journal of agricultural and food chemistry, 66(16), 4118-4128. Chiu, C. Y., Yang, R. S., Sheu, M. L., Chan, D. C., Yang, T. H., Tsai, K. S., & Liu, S. H. (2016). Advanced glycation end‐products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE‐mediated, AMPK‐down‐regulated, AKT pathway. The journal of pathology, 238(3), 470-482. Chiu, C. Y., Yen, Y. P., Tsai, K. S., Yang, R. S., & Liu, S. H. (2014). Low-dose benzo (a) pyrene and its epoxide metabolite inhibit myogenic differentiation in human skeletal muscle-derived progenitor cells. Toxicological sciences, 138(2), 344-353. Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., & Zamboni, M. (2019). Sarcopenia: revised European consensus on definition and diagnosis. Age and ageing, 48(1), 16-31. Da Boit, M., Sibson, R., Sivasubramaniam, S., Meakin, J. R., Greig, C. A., Aspden, R. M., & Gray, S. R. (2017). Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: a randomized controlled trial. The american journal of clinical nutrition, 105(1), 151-158. Damsbo, P., Vaag, A., Hother-Nielsen, O., & Beck-Nielsen, H. (1991). Reduced glycogen synthase activity in skeletal muscle from obese patients with and without type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 34(4), 239-245. DeFronzo, R. A., Jacot, E., Jequier, E., Maeder, E., Wahren, J., & Felber, J. P. (1981). The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes, 30(12), 1000-1007. Drummond, M. J., Dreyer, H. C., Fry, C. S., Glynn, E. L., & Rasmussen, B. B. (2009). Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. Journal of applied physiology, 106(4), 1374-1384. Dwivedi, D. K., & Jena, G. B. (2020). NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress, inflammation, DNA damage and insulin signalling pathway. Naunyn-schmiedeberg's archives of pharmacology, 393(4), 705-716. Eid, R. A., Al-Shraim, M., Eleawa, S. M., Zaki, M. S. A., El-kott, A. F., Eldeen, M. A., Alkhateeb, M., Alassiri, M & Alderah, H. (2019). Fish oil protects against corn oil-induced cardiac insulin resistance and left ventricular dysfunction in rats via upregulation of PPAR-β/γ and inhibition of diacylglycerol/PCK axis activation. Journal of functional foods, 56, 342-352. Fischer, Andrew H., Kenneth A. Jacobson, Jack Rose, and Rolf Zeller. (2008). Hematoxylin and eosin staining of tissue and cell sections. Cold spring harbor protocols, 5, pdb-prot4986. Galmiche, G., Huneau, J. F., Mathé, V., Mourot, J., Simon, N., Le Guillou, C., & Hermier, D. (2016). N-3 Fatty acids preserve muscle mass and insulin sensitivity in a rat model of energy restriction. British Journal of nutrition, 116(7), 1141-1152. Garman, J. H., Mulroney, S., Manigrasso, M., Flynn, E., & Maric, C. (2009). Omega-3 fatty acid rich diet prevents diabetic renal disease. American journal of physiology-renal physiology, 296(2), F306-F316 Geloen, A. L. A. I. N., Roy, P. E., & Bukowiecki, L. J. (1989). Regression of white adipose tissue in diabetic rats. American journal of physiology-endocrinology and metabolism, 257(4), E547-E553. Ghosh, S., & Karin, M. (2002). Missing pieces in the NF-κB puzzle. Cell, 109(2), S81-S96. Gondim, P. N., Rosa, P. V., Okamura, D., Silva, V. D. O., Andrade, E. F., Biihrer, D. A., & Pereira, L. J. (2018). Benefits of fish oil consumption over other sources of lipids on metabolic parameters in obese rats. Nutrients, 10(1), 65. Gowans, G. J., & Hardie, D. G. (2014). AMPK: a cellular energy sensor primarily regulated by AMP. Biochemical society transactions, 42 (1), 71–75. Graciano, M. F., Leonelli, M., Curi, R., & Carpinelli, A. R. (2016). Omega-3 fatty acids control productions of superoxide and nitrogen oxide and insulin content in INS-1E cells. Journal of physiology and biochemistry, 72(4), 699-710. Haigis, M. C., & Sinclair, D. A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annual review of pathology:mechanisms of disease, 5, 253-295. Haus, J. M., Carrithers, J. A., Trappe, S. W., & Trappe, T. A. (2007). Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. Journal of applied physiology, 103(6), 2068-2076. Heras, G., Namuduri, A. V., Traini, L., Shevchenko, G., Falk, A., Bergström Lind, S., & Gastaldello, S. (2019). Muscle RING-finger protein-1 (MuRF1) functions and cellular localization are regulated by SUMO1 post-translational modification. Journal of molecular cell biology, 11(5), 356-370. Hong, T., Ning, J., Yang, X., Liu, H. Y., Han, J., Liu, Z., & Cao, W. (2011). Fine-tuned regulation of the PGC-1α gene transcription by different intracellular signaling pathways. American journal of physiology-endocrinology and metabolism, 300(3), E500-E507. Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nature reviews molecular cell biology, 13(4), 225-238. Huang, F., Wei, H., Luo, H., Jiang, S., & Peng, J. (2011). EPA inhibits the inhibitor of κBα (IκBα)/NF-κB/muscle RING finger 1 pathway in C2C12 myotubes in a PPARγ-dependent manner. British journal of nutrition, 105(3), 348-356. Huang, K. P., Chen, C., Hao, J., Huang, J. Y., Liu, P. Q., & Huang, H. Q. (2015). AGEs-RAGE system down-regulates Sirt1 through the ubiquitin-proteasome pathway to promote FN and TGF-β1 expression in male rat glomerular mesangial cells. Endocrinology, 156(1), 268-279. Huang, S., & Czech, M. P. (2007). The GLUT4 glucose transporter. Cell metabolism, 5(4), 237-252. Hwee, D. T., Baehr, L. M., Philp, A., Baar, K., & Bodine, S. C. (2014). Maintenance of muscle mass and load‐induced growth in Muscle RING Finger 1 null mice with age. Aging cell, 13(1), 92-101. Ishida, T., Iizuka, M., Ou, Y., Morisawa, S., Hirata, A., Yagi, Y., & Miyamura, M. (2019). Juzentaihoto suppresses muscle atrophy in streptozotocin-induced diabetic mice. Biological and pharmaceutical bulletin, 42(7), 1128-1133. Jackman, R. W., & Kandarian, S. C. (2004). The molecular basis of skeletal muscle atrophy. American journal of physiology-cell physiology, 287(4), C834-C843. Jaiswal, N., Gavin, M. G., Quinn III, W. J., Luongo, T. S., Gelfer, R. G., Baur, J. A., & Titchenell, P. M. (2019). The role of skeletal muscle AKT in the regulation of muscle mass and glucose homeostasis. Molecular metabolism, 28, 1-13. Jiang, J., Chen, P., Chen, J., Yu, X., Xie, D., Mei, C. & Hou, F. (2012). Accumulation of tissue advanced glycation end products correlated with glucose exposure dose and associated with cardiovascular morbidity in patients on peritoneal dialysis. Atherosclerosis, 224(1), 187-194. Junod, A. L. A. E. O. L. P. R. C. A. E. R. A. E., Lambert, A. E., Orci, L., Pictet, R., Gonet, A. E., & Renold, A. E. (1967). Studies of the diabetogenic action of streptozotocin. Proceedings of the society for experimental biology and medicine, 126(1), 201-205. Keapai, W., Apichai, S., Amornlerdpison, D., & Lailerd, N. (2016). Evaluation of fish oil-rich in MUFAs for anti-diabetic and anti-inflammation potential in experimental type 2 diabetic rats. The korean journal of physiology & pharmacology, 20(6), 581-593. Khadke, S., Mandave, P., Kuvalekar, A., Pandit, V., Karandikar, M., & Mantri, N. (2020). Synergistic effect of omega-3 fatty acids and oral-hypoglycemic drug on lipid normalization through modulation of hepatic gene expression in high fat diet with low streptozotocin-induced diabetic rats. Nutrients, 12(12), 3652. Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M. N., Pehmøller, C., & Lantier, L. (2018). AMPK in skeletal muscle function and metabolism. The federation of american societies for experimental biology journal, 32(4), 1741-1777. Ko, J. R., Seo, D. Y., Park, S. H., Kwak, H. B., Kim, M., Ko, K. S., & Han, J. (2018). Aerobic exercise training decreases cereblon and increases AMPK signaling in the skeletal muscle of STZ-induced diabetic rats. Biochemical and biophysical research communications, 501(2), 448-453. Koves, T. R., Ussher, J. R., Noland, R. C., Slentz, D., Mosedale, M., Ilkayeva, O. & Muoio, D. M. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell metabolism, 7(1), 45-56. Lee, I., & Schindelin, H. (2008). Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell, 134(2), 268-278. Leone, T. C., Lehman, J. J., Finck, B. N., Schaeffer, P. J., Wende, A. R., Boudina, S., & Kelly, D. P. (2005). PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. Public library of science biology, 3(4), e101. Liang, H., & Ward, W. F. (2006). PGC-1α: a key regulator of energy metabolism. Advances in physiology education, 30(4), 145-151. Lin, J., Handschin, C., & Spiegelman, B. M. (2005). Metabolic control through the PGC-1 family of transcription coactivators. Cell metabolism, 1(6), 361-370. Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O. & Spiegelman, B. M. (2002). Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature, 418(6899), 797-801. Lin, X., Li, S., Zhao, Y., Ma, X., Zhang, K., He, X., & Wang, Z. (2013). Interaction domains of p62: a bridge between p62 and selective autophagy. DNA and cell biology, 32(5), 220-227. Liu, S. H., Chen, Y. C., Tzeng, H. P., & Chiang, M. T. (2021). Fish oil enriched ω-3 fatty acids ameliorates protein synthesis/degradation imbalance, inflammation, and wasting in muscles of diet-induced obese rats. Journal of functional foods, 87, 104755. Liu, S. H., Chiu, C. Y., Wang, L. P., & Chiang, M. T. (2019). Omega-3 fatty acids-enriched fish oil activates AMPK/PGC-1α signaling and prevents obesity-related skeletal muscle wasting. Marine drugs, 17(6), 380. Liu, S. H., Ku, C. Y., & Chiang, M. T. (2022). Polysaccharide-Rich Red Algae (Gelidium amansii) Hot-water extracts alleviate abnormal hepatic lipid metabolism without suppression of glucose intolerance in a streptozotocin/nicotinamide-induced diabetic rat model. Molecules, 27(4), 1447. Liu, W. J., Ye, L., Huang, W. F., Guo, L. J., Xu, Z. G., Wu, H. L., & Liu, H. F. (2016). p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cellular & molecular biology letters, 21(1), 1-14. Lv, P., Huang, J., Yang, J., Deng, Y., Xu, J., Zhang, X., & Yang, Y. (2014). Autophagy in muscle of glucose-infusion hyperglycemia rats and streptozotocin-induced hyperglycemia rats via selective activation of m-TOR or FoxO3. Public library of science one, 9(2), e87254. MacDonald, I. A. (2016). A review of recent evidence relating to sugars, insulin resistance and diabetes. European journal of nutrition, 55(2), 17-23. Magee, P., Pearson, S., Whittingham-Dowd, J., & Allen, J. (2012). PPARγ as a molecular target of EPA anti-inflammatory activity during TNF-α-impaired skeletal muscle cell differentiation. The journal of nutritional biochemistry, 23(11), 1440-1448. Mahmud, I., Hossain, A., Hossain, S., Hannan, A., Ali, L., & Hashimoto, M. (2004). Effects of Hilsa ilisa fish oil on the atherogenic lipid profile and glycaemic status of streptozotocin‐treated type 1 diabetic rats. Clinical and experimental pharmacology and physiology, 31(1‐2), 76-81. Malmstrom, T. K., Miller, D. K., Simonsick, E. M., Ferrucci, L., & Morley, J. E. (2016). SARC‐F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. Journal of cachexia, sarcopenia and muscle, 7(1), 28-36. McMahon, G., Morse, C. I., Winwood, K., Burden, A., & Onambélé, G. L. (2019). Circulating tumor necrosis factor alpha may modulate the short-term detraining induced muscle mass loss following prolonged resistance training. Frontiers in physiology, 10, 527. Meng, Z. X., Gong, J., Chen, Z., Sun, J., Xiao, Y., Wang, L., Li, Y., Liu J., Xu X. Z., Lin, J.D., & Lin, J. D. (2017). Glucose sensing by skeletal myocytes couples nutrient signaling to systemic homeostasis. Molecular cell, 66(3), 332-344. Mesinovic, J., Zengin, A., De Courten, B., Ebeling, P. R., & Scott, D. (2019). Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes, metabolic syndrome and obesity: targets and therapy, 12, 1057. Miura, S., Kai, Y., Ono, M., & Ezaki, O. (2003). Overexpression of peroxisome proliferator-activated receptor γ coactivator-1α down-regulates GLUT4 mRNA in skeletal muscles. Journal of biological chemistry, 278(33), 31385-31390. Murton, A. J., Constantin, D., & Greenhaff, P. L. (2008). The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochimica et biophysica acta (BBA)-molecular basis of disease, 1782(12), 730-743. Myers, M. J., Shepherd, D. L., Durr, A. J., Stanton, D. S., Mohamed, J. S., Hollander, J. M., & Alway, S. E. (2019). The role of SIRT1 in skeletal muscle function and repair of older mice. Journal of cachexia, sarcopenia and muscle, 10(4), 929-949. Nakai, T., Oida, K., Tamai, T., Yamada, S., Kobayashi, T., Hayashi, T., & Takeda, R. (1984). Lipoprotein lipase activities in heart muscle of streptozotocin-induced diabetic rats. Hormone and metabolic research, 16(02), 67-70. Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F. E. N. G., Pan, Y. C., & Shaw, A. (1992). Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. Journal of biological chemistry, 267(21), 14998-15004. Noroozi Karimabad, M., Khalili, P., Ayoobi, F., Esmaeili-Nadimi, A., & La Vecchia, C. (2022). Serum liver enzymes and diabetes from the Rafsanjan cohort study. BMC endocrine disorders, 22(1), 1-12. Oberbach A, Bossenz Y, Lehmann S, Niebauer J, Adams V, Paschke R. (2006) Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes care, 29, 895–900. Oliveira, A. N., & Hood, D. A. (2019). Exercise is mitochondrial medicine for muscle. Sports medicine and health science, 1(1), 11-18. Peng, X. D., Xu, P. Z., Chen, M. L., Hahn-Windgassen, A., Skeen, J., Jacobs, J., & Hay, N. (2003). Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking AKT1 and AKT2. Genes & development, 17(11), 1352-1365. Pomiès, P., Blaquière, M., Maury, J., Mercier, J., Gouzi, F., & Hayot, M. (2016). Involvement of the FoxO1/MuRF1/Atrogin-1 signaling pathway in the oxidative stress-induced atrophy of cultured chronic obstructive pulmonary disease myotubes. Public library of science one, 11(8), e0160092. Pu, J., & Liu, P. (2012). Fatty acids stimulate glucose uptake by the PI3K/AMPK/Akt and PI3K/ERK1/2 pathways. Protein Phosphorylation Hum Health, 129(10.5772), 52456. Purushotham, A., Schug, T. T., Xu, Q., Surapureddi, S., Guo, X., & Li, X. (2009). Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell metabolism, 9(4), 327-338. Qinna, N. A., & Badwan, A. A. (2015). Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug design, development and therapy, 9, 2515. Rai, A. K., Jaiswal, N., Maurya, C. K., Sharma, A., Ahmad, I., Ahmad, S., ... & Tamrakar, A. K. (2019). Fructose-induced AGEs-RAGE signaling in skeletal muscle contributes to impairment of glucose homeostasis. The journal of nutritional biochemistry, 71, 35-44. Ramasamy, R., Yan, S. F., & Schmidt, A. M. (2012). The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vascular pharmacology, 57(5-6), 160-167. Rodacki, C. L., Rodacki, A. L., Pereira, G., Naliwaiko, K., Coelho, I., Pequito, D., & Fernandes, L. C. (2012). Fish-oil supplementation enhances the effects of strength training in elderly women. The american journal of clinical nutrition, 95(2), 428-436. Sasaki, T., Nakata, R., Inoue, H., Shimizu, M., Inoue, J., & Sato, R. (2014). Role of AMPK and PPARγ1 in exercise-induced lipoprotein lipase in skeletal muscle. American journal of physiology-endocrinology and metabolism, 306(9), E1085-E1092. Schiaffino, S., & Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1-AKT/PKB pathway: insights from genetic models. Skeletal muscle, 1(1), 1-14. Sishi, B., Loos, B., Ellis, B., Smith, W., du Toit, E. F., & Engelbrecht, A. M. (2011). Diet‐induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Experimental physiology, 96(2), 179-193. Smith, G. I., Atherton, P., Reeds, D. N., Mohammed, B. S., Rankin, D., Rennie, M. J., & Mittendorfer, B. (2011). Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. The American journal of clinical nutrition, 93(2), 402-412. Sorimachi, H., Imajoh-Ohmi, S., Emori, Y., Kawasaki, H., Ohno, S., Minami, Y., & Suzuki, K. (1989). Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m-and μ-types: specific expression of the mRNA in skeletal muscle. Journal of biological chemistry, 264(33), 20106-20111. Taltavull, N., Miralles-Pérez, B., Nogués, M. R., Ramos-Romero, S., Méndez, L., Medina, I., Torres, J., & Romeu, M. (2020). Effects of Fish Oil and Grape Seed Extract Combination on Hepatic Endogenous Antioxidants and Bioactive Lipids in Diet-Induced Early Stages of Insulin Resistance in Rats. Marine drugs, 18(6), 318. Tanida, I., Ueno, T., & Kominami, E. (2008). LC3 and Autophagy. Autophagosome and phagosome, 445, 77-88. Tanji, N., Markowitz, G. S., Fu, C., Kislinger, T., Taguchi, A., Pischetsrieder, M. & D'AGATI, V. D. (2000). Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. Journal of the american society of nephrology, 11(9), 1656-1666. Thoma, A., & Lightfoot, A. P. (2018). NF-kB and inflammatory cytokine signalling: role in skeletal muscle atrophy. Muscle atrophy, 267-279. Tokgöz, Z., Bohnsack, R. N., & Haas, A. L. (2006). Pleiotropic effects of ATP· Mg2+ binding in the catalytic cycle of ubiquitin-activating enzyme. Journal of biological chemistry, 281(21), 14729-14737. Veronese, N., Pizzol, D., Demurtas, J., Soysal, P., Smith, L., Sieber, C., & Maggi, S. (2019). Association between sarcopenia and diabetes: a systematic review and meta-analysis of observational studies. European geriatric medicine, 10(5), 685-696. Visser, M., Pahor, M., Taaffe, D. R., Goodpaster, B. H., Simonsick, E. M., Newman, A. B., & Harris, T. B. (2002). Relationship of interleukin-6 and tumor necrosis factor-α with muscle mass and muscle strength in elderly men and women: the Health ABC Study. The journals of gerontology series A: biological sciences and medical sciences, 57(5), M326-M332. Wackerhage, H. (2017). Sarcopenia: causes and treatments. German journal of sports medicine, 68(7-8), 178-183. Wang, X., & Terpstra, E. J. (2013). Ubiquitin receptors and protein quality control. Journal of molecular and cellular cardiology, 55, 73-84. Weiss, D. J. (1982). Improving measurement quality and efficiency with adaptive testing. Applied psychological measurement, 6(4), 473-492. Witard, O. C., Wardle, S. L., Macnaughton, L. S., Hodgson, A. B., & Tipton, K. D. (2016). Protein considerations for optimising skeletal muscle mass in healthy young and older adults. Nutrients, 8(4), 181. Wolfe, R. R. (2006). The underappreciated role of muscle in health and disease. The american journal of clinical nutrition, 84(3), 475-482. Xie, J., Méndez, J. D., Méndez-Valenzuela, V., & Aguilar-Hernández, M. M. (2013). Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular signalling, 25(11), 2185-2197. Xu, J., Wang, Y., Wang, Z., Guo, L., & Li, X. (2020). Fucoidan mitigated diabetic nephropathy through the downregulation of PKC and modulation of NF‐κB signaling pathway:in vitro and in vivo investigations. Phytotherapy research, 2020, 1-12. Yin, L., Chen, X., Li, N., Jia, W., Wang, N., Hou, B., & Du, G. (2021). Puerarin ameliorates skeletal muscle wasting and fiber type transformation in STZ-induced type 1 diabetic rats. Biomedicine & pharmacotherapy, 133, 110977. Yoon, M. S. (2017). mTOR as a key regulator in maintaining skeletal muscle mass. Frontiers in physiology, 8, 788. Zafar, M., & Naqvi, S. N. U. H. (2010). Effects of STZ-Induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. International journal of morphology, 28(1). Zayed, E. A., AinShoka, A. A., El Shazly, K. A., & Abd El Latif, H. A. (2018). Improvement of insulin resistance via increase of GLUT4 and PPARγ in metabolic syndrome‐ induced rats treated with Omega‐3 fatty acid or L‐carnitine. Journal of biochemical and molecular toxicology, 32(11), e22218. Zhang, Y., He, L., Chen, X., Shentu, P., Xu, Y., & Jiao, J. (2022). Omega-3 polyunsaturated fatty acids promote SNAREs mediated GLUT4 vesicle docking and fusion. The journal of nutritional biochemistry, 101, 108912. Zou, T., Kang Y., Wang B., Avila J., You J., Zhu M., & Du M. (2019). Raspberry supplementation reduces lipid accumulation and improves insulin sensitivity in skeletal muscle of mice fed a high-fat diet. Journal of functional foods, 63, 103572.
|