字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:林煒軒
研究生英文姓名:Lin, Wei-Hsuan
中文論文名稱:探討魚油對Streptozocin引起的糖尿病大鼠糖代謝及肌少症影響之機制研究
英文論文名稱:Studies on the effect of fish oil on glucose metabolism and sarcopenia in diabetic rats induced by streptozocin
指導教授姓名:江孟燦
劉興華
口試委員中文姓名:教授︰江文章
教授︰張素瓊
教授︰林璧鳳
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10932003
請選擇論文為:學術型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:91
中文關鍵詞:魚油糖尿病肌少症脂肪堆積蛋白質合成蛋白質分解細胞自噬粒線體功能發炎
英文關鍵字:Fish oilDiabetesSarcopeniaFatty acid accumulationProtein synthesisProtein degradationAutophagyMitochondria functionInflammation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
糖尿病及高脂飲食皆會加速的肌肉流失,魚油在人體實驗中已被證實可以增加肌肉蛋白質合成,但動物實驗研究較少探討魚油對糖尿病引起的肌少症之影響,因此作用機制仍不明確,故本實驗探討在糖尿病及高脂飲食下給予魚油對肌肉流失之影響。先前本研究室於高脂飲食中添加 5% 魚油,飼養16週後發現肌肉中的AKT、mTOR、AMPK及PGC-1α蛋白質表現量顯著增加,進而改善高脂飲食所導致的粒線體功能異常及蛋白質合成減緩;另外魚油也可以使PPARγ、TNF-α及NF-κB表現量顯著下降,減少肌肉中的脂肪堆積並抑制發炎反應,改善高脂飲食所導致的肌肉流失。本研究以6週齡雄性Wistar大鼠為實驗動物,共分為三組:(1) 正常飲食組 (Normal control diet, NC) (2) 糖尿病組 (Diabetes + high fat diet, DM) (3) 魚油組 (Diabetes + high fat diet + 5% fish oil, DF)。實驗共進行18週。結果顯示,魚油可以降低血液中的TC及肝臟中TG,肝臟切片顯示NC組及DF組肝臟脂肪油滴相較於DM組顯著減少。魚油透過活化肌肉p-AMPKα/AMPKα、LPL使肌肉中的三酸甘油酯分解成游離脂肪酸,減少肌肉脂肪的堆積。魚油也可以透過增加肌肉p-AKT/AKT、p-mTOR/mTOR途徑,使p-p70s6k1/p70s6k1蛋白質表現增加,增加肌肉中的蛋白質合成,並使Sirt1、PGC-1α蛋白質表現增加,增加粒線體的生合成。同時魚油會降低血液中的AGEs,並增加肌肉中的RAGE、GLUT4表現。此外,魚油透過增加肌肉中p-mTOR/mTOR,使ATG5、LC3及p62表現減少,減緩糖尿病引起的自噬作用速率增加。抑制促發炎因子TNF-α、p-p38MAPK/p38MAPK,抑制FoxO1a進入細胞中轉錄成Atrogin-1及MuRF1。綜合上述結果,推測魚油有助於改善糖尿病在高脂飲食下所導致的肌少症。
Both diabetes and high fat diet will accelerate the loss of muscle weight. Fish oil has been confirmed to increase protein synthesis in human study, but it is lack of animal study between diabetes and sarcopenia so the mechanism is still unknown. In this experiment, we study the effect of fish oil enriched in omega-3 fatty acids on sarcopenia in diabetic rats induced by streptozotocin. In present study, we found that after 16 weeks, 5% fish oil with high fat diet could significantly increase AKT, mTOR, AMPK, and PGC-1α protein level expressions in muscle to improve mitochondrial dysfunction and increase protein synthesis which are caused by high fat diet. Moreover, fish oil could significantly decrease PPARγ, TNF-α, and NF-κB protein expressions to reduce the accumulation of fatty acid and anti-inflammation, in order to improve muscle wasting which was result from high fat diet. This study used male Wistar rats (six-weeks-old). Rats were randomly divided into three groups. Normal control diet (NC), Diabetes with high fat diet (DM), and Diabetes with high fat diet and 5% fish oil (HF+FO). After 18 weeks feeding, the results showed fish oil could decrease total cholesterol in plasma and triglyceride in liver. H&E stain showed that free fatty acid in liver were significantly decrease in NC and DF groups. Fish oil could promote adipolysis in muscle by activating p-AMPKα/AMPKα and LPL. Besides, fish oil could increase protein synthesis in muscle by activating AKT/mTOR pathway and p-p70s6k1/ p70s6k1 protein expressions and increase mitochondria synthesis by activating Sirt1 and PGC-1α. Fish oil could decrease AGEs in plasma, increase RAGE and GLUT4 expression. Moreover, fish oil could reduce the rate of autophagy which was cause by diabetes by activating p-mTOR/mTOR and decreasing ATG5, LC3 and p62 expressions. Fish oil also could inhibit proinflammatory cytokine TNF-α and p-p38MAPK/p38MAPK, also inhibit transcription of FoxO1a and NF-κB to Atrogin-1 and MuRF1. In conclusions, our results demonstrated fish oil could improve sarcopenia in diabetes with HFD.
第壹章 前言 1
第貳章 文獻回顧 2
第一節 肌少症 2
第二節 糖尿病 3
第三節 魚油 4
第四節 肌肉的合成與降解 5
第五節 鏈佐菌素 (Streptozotocin, STZ) 誘導糖尿病 7
第六節 粒線體 7
第七節 發炎介質 8
第八節 肌肉代謝基因蛋白 8
第九節 脂質代謝基因蛋白 11
第十節 醣類代謝基因蛋白 12
第參章 實驗設計 14
第一節 實驗動機 14
第二節 實驗流程 14
第三節 分析項目 16
第肆章 實驗材料 17
第一節 實驗動物 17
第二節 實驗飼料 17
第三節 實驗藥品 17
第四節 膳食魚油 17
第五節 實驗儀器 18
第伍章 實驗方法 20
第一節 實驗分組 20
第二節 動物飼養 20
第三節 樣品收集 20
第四節 飼料配方 21
第五節 樣品分析 22
第陸章 結果 29
第一節 誘導後空腹血糖之結果 29
第二節 實驗期間大鼠口服葡萄糖耐受性試驗之結果 29
第三節 實驗期間大鼠體重、攝食量、飲水量及排尿量 29
第四節 犧牲後大鼠組織臟器重量 29
第五節 犧牲後大鼠血漿生化指標 30
第六節 犧牲後大鼠肝臟生化指標 30
第七節 犧牲後大鼠肌肉生化指標 31
第八節 犧牲後大鼠肌肉及肝臟蛋白表現 31
第柒章 討論 34
第一節 魚油對糖尿病大鼠體重、攝食量及組織臟器之影響 34
第二節 魚油對糖尿病大鼠糖類代謝之影響 35
第三節 魚油對糖尿病大鼠脂質代謝之影響 36
第四節 魚油對糖尿病大鼠肝功能及發炎因子之影響 36
第五節 魚油對糖尿病大鼠肌肉蛋白質合成之影響 37
第六節 魚油對糖尿病大鼠肌肉蛋白質分解之影響 37
第捌章 結論 40
參考文獻 42
王柔頻 (2016)。魚油改善肌少症骨骼肌退化及脂肪組織UCP1蛋白之表現。國立臺灣海洋大學食品科學系碩士論文。
吳欣陵 (2018)。綠茶多酚EGCG減緩老化促進小鼠肌少症之研究。國立成功大學生命科學系碩士論文。
陳予晴 (2019)。魚油對長期攝食高脂飲食大鼠肌肉影響之探討。國立臺灣海洋大學食品科學系碩士論文。
曾煒泰 (2018)。荔枝小分子寡酚Oligonol減緩老化促進老鼠肌肉萎縮之研究。國立成功大學生命科學系碩士論文。
Acharyya, S., Ladner, K. J., Nelsen, L. L., Damrauer, J., Reiser, P. J., Swoap, S., & Guttridge, D. C. (2004). Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. The journal of clinical investigation, 114(3), 370-378.
Andersen, H., Gadeberg, P. C., Brock, B., & Jakobsen, J. (1997). Muscular atrophy in diabetic neuropathy: a stereological magnetic resonance imaging study. Diabetologia, 40(9), 1062-1069.
Baar, K., & Esser, K. (1999). Phosphorylation of p70S6k correlates with increased skeletal muscle mass following resistance exercise. American journal of physiology cell physiology, 276(1), C120-C127.
Balkwill, F. (2006). TNF-α in promotion and progression of cancer. Cancer and metastasis reviews, 25(3), 409-416.
Barclay, R. D., Burd, N. A., Tyler, C., Tillin, N. A., & Mackenzie, R. W. (2019). The role of the IGF-1 signaling cascade in muscle protein synthesis and anabolic resistance in aging skeletal muscle. Frontiers in nutrition, 6, 146.
Baynes, H. W., Mideksa, S., & Ambachew, S. (2018). The role of polyunsaturated fatty acids (N-3 PUFAs) on the pancreatic β-cells and insulin action. Adipocyte, 7(2), 81-87.
Bengal, E., Aviram, S., & Hayek, T. (2020). P38 mapk in glucose metabolism of skeletal muscle: beneficial or harmful?. International journal of molecular sciences, 21(18), 6480.
Bi, X., Li, F., Liu, S., Liu, S., Jin, Y., Zhang, X., Yang, T., Li, X & Zhao, A. Z. (2017). ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. Journal of clinical investigation, 127(5), 1757-1771.
Bodine, S. C., Latres, E., Baumhueter, S., Lai, V. K. M., Nunez, L., Clarke, B. A., & Glass, D. J. (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 294(5547), 1704-1708.
Brennan, C. M., Emerson, C. P., Owens, J., & Christoforou, N. (2021). P38 MAPKs—roles in skeletal muscle physiology, disease mechanisms, and as potential therapeutic targets. JCI insight, 6(12).
Broberg, S. Y. L. V. I. A., & Sahlin, K. E. N. T. (1989). Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. Journal of applied physiology, 67(1), 116-122.
Broniowska, K. A., Oleson, B. J., & Corbett, J. A. (2014). β-Cell responses to nitric oxide. Vitamins & hormones, 95, 299-322.
Calder, P. C. (2013). Omega‐3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?. British journal of clinical pharmacology, 75(3), 645-662.
Calvani, R., Miccheli, A., Bernabei, R., & Marzetti, E. (2012). Diet and aging: role in prevention of muscle mass loss. Bioactive food as dietary interventions for the aging population: bioactive foods in chronic disease states, 109.
Calvo, J. A., Daniels, T. G., Wang, X., Paul, A., Lin, J., Spiegelman, B. M. & Rangwala, S. M. (2008). Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake. Journal of applied physiology, 104(5), 1304-1312.
Chacińska, M., Zabielski, P., Książek, M., Szałaj, P., Jarząbek, K., Kojta, I., Chabowski., A & Błachnio-Zabielska, A. U. (2019). The impact of omega-3 fatty acids supplementation on insulin resistance and content of adipocytokines and biologically active lipids in adipose tissue of high-fat diet fed rats. Nutrients, 11(4), 835.
Chamberlain, J. J., Rhinehart, A. S., Shaefer Jr, C. F., & Neuman, A. (2016). Diagnosis and management of diabetes: synopsis of the 2016 american diabetes association standards of medical care in diabetes. Annals of internal medicine, 164(8), 542-552.
Chiu, C. Y., Wang, L. P., Liu, S. H., & Chiang, M. T. (2018). Fish oil supplementation alleviates the altered lipid homeostasis in blood, liver, and adipose tissues in high-fat diet-fed rats. Journal of agricultural and food chemistry, 66(16), 4118-4128.
Chiu, C. Y., Yang, R. S., Sheu, M. L., Chan, D. C., Yang, T. H., Tsai, K. S., & Liu, S. H. (2016). Advanced glycation end‐products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE‐mediated, AMPK‐down‐regulated, AKT pathway. The journal of pathology, 238(3), 470-482.
Chiu, C. Y., Yen, Y. P., Tsai, K. S., Yang, R. S., & Liu, S. H. (2014). Low-dose benzo (a) pyrene and its epoxide metabolite inhibit myogenic differentiation in human skeletal muscle-derived progenitor cells. Toxicological sciences, 138(2), 344-353.
Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., & Zamboni, M. (2019). Sarcopenia: revised European consensus on definition and diagnosis. Age and ageing, 48(1), 16-31.
Da Boit, M., Sibson, R., Sivasubramaniam, S., Meakin, J. R., Greig, C. A., Aspden, R. M., & Gray, S. R. (2017). Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: a randomized controlled trial. The american journal of clinical nutrition, 105(1), 151-158.
Damsbo, P., Vaag, A., Hother-Nielsen, O., & Beck-Nielsen, H. (1991). Reduced glycogen synthase activity in skeletal muscle from obese patients with and without type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 34(4), 239-245.
DeFronzo, R. A., Jacot, E., Jequier, E., Maeder, E., Wahren, J., & Felber, J. P. (1981). The effect of insulin on the disposal of intravenous glucose: results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes, 30(12), 1000-1007.
Drummond, M. J., Dreyer, H. C., Fry, C. S., Glynn, E. L., & Rasmussen, B. B. (2009). Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. Journal of applied physiology, 106(4), 1374-1384.
Dwivedi, D. K., & Jena, G. B. (2020). NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: studies on oxidative stress, inflammation, DNA damage and insulin signalling pathway. Naunyn-schmiedeberg's archives of pharmacology, 393(4), 705-716.
Eid, R. A., Al-Shraim, M., Eleawa, S. M., Zaki, M. S. A., El-kott, A. F., Eldeen, M. A., Alkhateeb, M., Alassiri, M & Alderah, H. (2019). Fish oil protects against corn oil-induced cardiac insulin resistance and left ventricular dysfunction in rats via upregulation of PPAR-β/γ and inhibition of diacylglycerol/PCK axis activation. Journal of functional foods, 56, 342-352.
Fischer, Andrew H., Kenneth A. Jacobson, Jack Rose, and Rolf Zeller. (2008). Hematoxylin and eosin staining of tissue and cell sections. Cold spring harbor protocols, 5, pdb-prot4986.
Galmiche, G., Huneau, J. F., Mathé, V., Mourot, J., Simon, N., Le Guillou, C., & Hermier, D. (2016). N-3 Fatty acids preserve muscle mass and insulin sensitivity in a rat model of energy restriction. British Journal of nutrition, 116(7), 1141-1152.
Garman, J. H., Mulroney, S., Manigrasso, M., Flynn, E., & Maric, C. (2009). Omega-3 fatty acid rich diet prevents diabetic renal disease. American journal of physiology-renal physiology, 296(2), F306-F316
Geloen, A. L. A. I. N., Roy, P. E., & Bukowiecki, L. J. (1989). Regression of white adipose tissue in diabetic rats. American journal of physiology-endocrinology and metabolism, 257(4), E547-E553.
Ghosh, S., & Karin, M. (2002). Missing pieces in the NF-κB puzzle. Cell, 109(2), S81-S96.
Gondim, P. N., Rosa, P. V., Okamura, D., Silva, V. D. O., Andrade, E. F., Biihrer, D. A., & Pereira, L. J. (2018). Benefits of fish oil consumption over other sources of lipids on metabolic parameters in obese rats. Nutrients, 10(1), 65.
Gowans, G. J., & Hardie, D. G. (2014). AMPK: a cellular energy sensor primarily regulated by AMP. Biochemical society transactions, 42 (1), 71–75.
Graciano, M. F., Leonelli, M., Curi, R., & Carpinelli, A. R. (2016). Omega-3 fatty acids control productions of superoxide and nitrogen oxide and insulin content in INS-1E cells. Journal of physiology and biochemistry, 72(4), 699-710.
Haigis, M. C., & Sinclair, D. A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annual review of pathology:mechanisms of disease, 5, 253-295.
Haus, J. M., Carrithers, J. A., Trappe, S. W., & Trappe, T. A. (2007). Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. Journal of applied physiology, 103(6), 2068-2076.
Heras, G., Namuduri, A. V., Traini, L., Shevchenko, G., Falk, A., Bergström Lind, S., & Gastaldello, S. (2019). Muscle RING-finger protein-1 (MuRF1) functions and cellular localization are regulated by SUMO1 post-translational modification. Journal of molecular cell biology, 11(5), 356-370.
Hong, T., Ning, J., Yang, X., Liu, H. Y., Han, J., Liu, Z., & Cao, W. (2011). Fine-tuned regulation of the PGC-1α gene transcription by different intracellular signaling pathways. American journal of physiology-endocrinology and metabolism, 300(3), E500-E507.
Houtkooper, R. H., Pirinen, E., & Auwerx, J. (2012). Sirtuins as regulators of metabolism and healthspan. Nature reviews molecular cell biology, 13(4), 225-238.
Huang, F., Wei, H., Luo, H., Jiang, S., & Peng, J. (2011). EPA inhibits the inhibitor of κBα (IκBα)/NF-κB/muscle RING finger 1 pathway in C2C12 myotubes in a PPARγ-dependent manner. British journal of nutrition, 105(3), 348-356.
Huang, K. P., Chen, C., Hao, J., Huang, J. Y., Liu, P. Q., & Huang, H. Q. (2015). AGEs-RAGE system down-regulates Sirt1 through the ubiquitin-proteasome pathway to promote FN and TGF-β1 expression in male rat glomerular mesangial cells. Endocrinology, 156(1), 268-279.
Huang, S., & Czech, M. P. (2007). The GLUT4 glucose transporter. Cell metabolism, 5(4), 237-252.
Hwee, D. T., Baehr, L. M., Philp, A., Baar, K., & Bodine, S. C. (2014). Maintenance of muscle mass and load‐induced growth in Muscle RING Finger 1 null mice with age. Aging cell, 13(1), 92-101.
Ishida, T., Iizuka, M., Ou, Y., Morisawa, S., Hirata, A., Yagi, Y., & Miyamura, M. (2019). Juzentaihoto suppresses muscle atrophy in streptozotocin-induced diabetic mice. Biological and pharmaceutical bulletin, 42(7), 1128-1133.
Jackman, R. W., & Kandarian, S. C. (2004). The molecular basis of skeletal muscle atrophy. American journal of physiology-cell physiology, 287(4), C834-C843.
Jaiswal, N., Gavin, M. G., Quinn III, W. J., Luongo, T. S., Gelfer, R. G., Baur, J. A., & Titchenell, P. M. (2019). The role of skeletal muscle AKT in the regulation of muscle mass and glucose homeostasis. Molecular metabolism, 28, 1-13.
Jiang, J., Chen, P., Chen, J., Yu, X., Xie, D., Mei, C. & Hou, F. (2012). Accumulation of tissue advanced glycation end products correlated with glucose exposure dose and associated with cardiovascular morbidity in patients on peritoneal dialysis. Atherosclerosis, 224(1), 187-194.
Junod, A. L. A. E. O. L. P. R. C. A. E. R. A. E., Lambert, A. E., Orci, L., Pictet, R., Gonet, A. E., & Renold, A. E. (1967). Studies of the diabetogenic action of streptozotocin. Proceedings of the society for experimental biology and medicine, 126(1), 201-205.
Keapai, W., Apichai, S., Amornlerdpison, D., & Lailerd, N. (2016). Evaluation of fish oil-rich in MUFAs for anti-diabetic and anti-inflammation potential in experimental type 2 diabetic rats. The korean journal of physiology & pharmacology, 20(6), 581-593.
Khadke, S., Mandave, P., Kuvalekar, A., Pandit, V., Karandikar, M., & Mantri, N. (2020). Synergistic effect of omega-3 fatty acids and oral-hypoglycemic drug on lipid normalization through modulation of hepatic gene expression in high fat diet with low streptozotocin-induced diabetic rats. Nutrients, 12(12), 3652.
Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M. N., Pehmøller, C., & Lantier, L. (2018). AMPK in skeletal muscle function and metabolism. The federation of american societies for experimental biology journal, 32(4), 1741-1777.
Ko, J. R., Seo, D. Y., Park, S. H., Kwak, H. B., Kim, M., Ko, K. S., & Han, J. (2018). Aerobic exercise training decreases cereblon and increases AMPK signaling in the skeletal muscle of STZ-induced diabetic rats. Biochemical and biophysical research communications, 501(2), 448-453.
Koves, T. R., Ussher, J. R., Noland, R. C., Slentz, D., Mosedale, M., Ilkayeva, O. & Muoio, D. M. (2008). Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell metabolism, 7(1), 45-56.
Lee, I., & Schindelin, H. (2008). Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell, 134(2), 268-278.
Leone, T. C., Lehman, J. J., Finck, B. N., Schaeffer, P. J., Wende, A. R., Boudina, S., & Kelly, D. P. (2005). PGC-1α deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. Public library of science biology, 3(4), e101.
Liang, H., & Ward, W. F. (2006). PGC-1α: a key regulator of energy metabolism. Advances in physiology education, 30(4), 145-151.
Lin, J., Handschin, C., & Spiegelman, B. M. (2005). Metabolic control through the PGC-1 family of transcription coactivators. Cell metabolism, 1(6), 361-370.
Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O. & Spiegelman, B. M. (2002). Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature, 418(6899), 797-801.
Lin, X., Li, S., Zhao, Y., Ma, X., Zhang, K., He, X., & Wang, Z. (2013). Interaction domains of p62: a bridge between p62 and selective autophagy. DNA and cell biology, 32(5), 220-227.
Liu, S. H., Chen, Y. C., Tzeng, H. P., & Chiang, M. T. (2021). Fish oil enriched ω-3 fatty acids ameliorates protein synthesis/degradation imbalance, inflammation, and wasting in muscles of diet-induced obese rats. Journal of functional foods, 87, 104755.
Liu, S. H., Chiu, C. Y., Wang, L. P., & Chiang, M. T. (2019). Omega-3 fatty acids-enriched fish oil activates AMPK/PGC-1α signaling and prevents obesity-related skeletal muscle wasting. Marine drugs, 17(6), 380.
Liu, S. H., Ku, C. Y., & Chiang, M. T. (2022). Polysaccharide-Rich Red Algae (Gelidium amansii) Hot-water extracts alleviate abnormal hepatic lipid metabolism without suppression of glucose intolerance in a streptozotocin/nicotinamide-induced diabetic rat model. Molecules, 27(4), 1447.
Liu, W. J., Ye, L., Huang, W. F., Guo, L. J., Xu, Z. G., Wu, H. L., & Liu, H. F. (2016). p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cellular & molecular biology letters, 21(1), 1-14.
Lv, P., Huang, J., Yang, J., Deng, Y., Xu, J., Zhang, X., & Yang, Y. (2014). Autophagy in muscle of glucose-infusion hyperglycemia rats and streptozotocin-induced hyperglycemia rats via selective activation of m-TOR or FoxO3. Public library of science one, 9(2), e87254.
MacDonald, I. A. (2016). A review of recent evidence relating to sugars, insulin resistance and diabetes. European journal of nutrition, 55(2), 17-23.
Magee, P., Pearson, S., Whittingham-Dowd, J., & Allen, J. (2012). PPARγ as a molecular target of EPA anti-inflammatory activity during TNF-α-impaired skeletal muscle cell differentiation. The journal of nutritional biochemistry, 23(11), 1440-1448.
Mahmud, I., Hossain, A., Hossain, S., Hannan, A., Ali, L., & Hashimoto, M. (2004). Effects of Hilsa ilisa fish oil on the atherogenic lipid profile and glycaemic status of streptozotocin‐treated type 1 diabetic rats. Clinical and experimental pharmacology and physiology, 31(1‐2), 76-81.
Malmstrom, T. K., Miller, D. K., Simonsick, E. M., Ferrucci, L., & Morley, J. E. (2016). SARC‐F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. Journal of cachexia, sarcopenia and muscle, 7(1), 28-36.
McMahon, G., Morse, C. I., Winwood, K., Burden, A., & Onambélé, G. L. (2019). Circulating tumor necrosis factor alpha may modulate the short-term detraining induced muscle mass loss following prolonged resistance training. Frontiers in physiology, 10, 527.
Meng, Z. X., Gong, J., Chen, Z., Sun, J., Xiao, Y., Wang, L., Li, Y., Liu J., Xu X. Z., Lin, J.D., & Lin, J. D. (2017). Glucose sensing by skeletal myocytes couples nutrient signaling to systemic homeostasis. Molecular cell, 66(3), 332-344.
Mesinovic, J., Zengin, A., De Courten, B., Ebeling, P. R., & Scott, D. (2019). Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship. Diabetes, metabolic syndrome and obesity: targets and therapy, 12, 1057.
Miura, S., Kai, Y., Ono, M., & Ezaki, O. (2003). Overexpression of peroxisome proliferator-activated receptor γ coactivator-1α down-regulates GLUT4 mRNA in skeletal muscles. Journal of biological chemistry, 278(33), 31385-31390.
Murton, A. J., Constantin, D., & Greenhaff, P. L. (2008). The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochimica et biophysica acta (BBA)-molecular basis of disease, 1782(12), 730-743.
Myers, M. J., Shepherd, D. L., Durr, A. J., Stanton, D. S., Mohamed, J. S., Hollander, J. M., & Alway, S. E. (2019). The role of SIRT1 in skeletal muscle function and repair of older mice. Journal of cachexia, sarcopenia and muscle, 10(4), 929-949.
Nakai, T., Oida, K., Tamai, T., Yamada, S., Kobayashi, T., Hayashi, T., & Takeda, R. (1984). Lipoprotein lipase activities in heart muscle of streptozotocin-induced diabetic rats. Hormone and metabolic research, 16(02), 67-70.
Neeper, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F. E. N. G., Pan, Y. C., & Shaw, A. (1992). Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. Journal of biological chemistry, 267(21), 14998-15004.
Noroozi Karimabad, M., Khalili, P., Ayoobi, F., Esmaeili-Nadimi, A., & La Vecchia, C. (2022). Serum liver enzymes and diabetes from the Rafsanjan cohort study. BMC endocrine disorders, 22(1), 1-12.
Oberbach A, Bossenz Y, Lehmann S, Niebauer J, Adams V, Paschke R. (2006) Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Diabetes care, 29, 895–900.
Oliveira, A. N., & Hood, D. A. (2019). Exercise is mitochondrial medicine for muscle. Sports medicine and health science, 1(1), 11-18.
Peng, X. D., Xu, P. Z., Chen, M. L., Hahn-Windgassen, A., Skeen, J., Jacobs, J., & Hay, N. (2003). Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking AKT1 and AKT2. Genes & development, 17(11), 1352-1365.
Pomiès, P., Blaquière, M., Maury, J., Mercier, J., Gouzi, F., & Hayot, M. (2016). Involvement of the FoxO1/MuRF1/Atrogin-1 signaling pathway in the oxidative stress-induced atrophy of cultured chronic obstructive pulmonary disease myotubes. Public library of science one, 11(8), e0160092.
Pu, J., & Liu, P. (2012). Fatty acids stimulate glucose uptake by the PI3K/AMPK/Akt and PI3K/ERK1/2 pathways. Protein Phosphorylation Hum Health, 129(10.5772), 52456.
Purushotham, A., Schug, T. T., Xu, Q., Surapureddi, S., Guo, X., & Li, X. (2009). Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell metabolism, 9(4), 327-338.
Qinna, N. A., & Badwan, A. A. (2015). Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug design, development and therapy, 9, 2515.
Rai, A. K., Jaiswal, N., Maurya, C. K., Sharma, A., Ahmad, I., Ahmad, S., ... & Tamrakar, A. K. (2019). Fructose-induced AGEs-RAGE signaling in skeletal muscle contributes to impairment of glucose homeostasis. The journal of nutritional biochemistry, 71, 35-44.
Ramasamy, R., Yan, S. F., & Schmidt, A. M. (2012). The diverse ligand repertoire of the receptor for advanced glycation endproducts and pathways to the complications of diabetes. Vascular pharmacology, 57(5-6), 160-167.
Rodacki, C. L., Rodacki, A. L., Pereira, G., Naliwaiko, K., Coelho, I., Pequito, D., & Fernandes, L. C. (2012). Fish-oil supplementation enhances the effects of strength training in elderly women. The american journal of clinical nutrition, 95(2), 428-436.
Sasaki, T., Nakata, R., Inoue, H., Shimizu, M., Inoue, J., & Sato, R. (2014). Role of AMPK and PPARγ1 in exercise-induced lipoprotein lipase in skeletal muscle. American journal of physiology-endocrinology and metabolism, 306(9), E1085-E1092.
Schiaffino, S., & Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1-AKT/PKB pathway: insights from genetic models. Skeletal muscle, 1(1), 1-14.
Sishi, B., Loos, B., Ellis, B., Smith, W., du Toit, E. F., & Engelbrecht, A. M. (2011). Diet‐induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Experimental physiology, 96(2), 179-193.
Smith, G. I., Atherton, P., Reeds, D. N., Mohammed, B. S., Rankin, D., Rennie, M. J., & Mittendorfer, B. (2011). Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. The American journal of clinical nutrition, 93(2), 402-412.
Sorimachi, H., Imajoh-Ohmi, S., Emori, Y., Kawasaki, H., Ohno, S., Minami, Y., & Suzuki, K. (1989). Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m-and μ-types: specific expression of the mRNA in skeletal muscle. Journal of biological chemistry, 264(33), 20106-20111.
Taltavull, N., Miralles-Pérez, B., Nogués, M. R., Ramos-Romero, S., Méndez, L., Medina, I., Torres, J., & Romeu, M. (2020). Effects of Fish Oil and Grape Seed Extract Combination on Hepatic Endogenous Antioxidants and Bioactive Lipids in Diet-Induced Early Stages of Insulin Resistance in Rats. Marine drugs, 18(6), 318.
Tanida, I., Ueno, T., & Kominami, E. (2008). LC3 and Autophagy. Autophagosome and phagosome, 445, 77-88.
Tanji, N., Markowitz, G. S., Fu, C., Kislinger, T., Taguchi, A., Pischetsrieder, M. & D'AGATI, V. D. (2000). Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease. Journal of the american society of nephrology, 11(9), 1656-1666.
Thoma, A., & Lightfoot, A. P. (2018). NF-kB and inflammatory cytokine signalling: role in skeletal muscle atrophy. Muscle atrophy, 267-279.
Tokgöz, Z., Bohnsack, R. N., & Haas, A. L. (2006). Pleiotropic effects of ATP· Mg2+ binding in the catalytic cycle of ubiquitin-activating enzyme. Journal of biological chemistry, 281(21), 14729-14737.
Veronese, N., Pizzol, D., Demurtas, J., Soysal, P., Smith, L., Sieber, C., & Maggi, S. (2019). Association between sarcopenia and diabetes: a systematic review and meta-analysis of observational studies. European geriatric medicine, 10(5), 685-696.
Visser, M., Pahor, M., Taaffe, D. R., Goodpaster, B. H., Simonsick, E. M., Newman, A. B., & Harris, T. B. (2002). Relationship of interleukin-6 and tumor necrosis factor-α with muscle mass and muscle strength in elderly men and women: the Health ABC Study. The journals of gerontology series A: biological sciences and medical sciences, 57(5), M326-M332.
Wackerhage, H. (2017). Sarcopenia: causes and treatments. German journal of sports medicine, 68(7-8), 178-183.
Wang, X., & Terpstra, E. J. (2013). Ubiquitin receptors and protein quality control. Journal of molecular and cellular cardiology, 55, 73-84.
Weiss, D. J. (1982). Improving measurement quality and efficiency with adaptive testing. Applied psychological measurement, 6(4), 473-492.
Witard, O. C., Wardle, S. L., Macnaughton, L. S., Hodgson, A. B., & Tipton, K. D. (2016). Protein considerations for optimising skeletal muscle mass in healthy young and older adults. Nutrients, 8(4), 181.
Wolfe, R. R. (2006). The underappreciated role of muscle in health and disease. The american journal of clinical nutrition, 84(3), 475-482.
Xie, J., Méndez, J. D., Méndez-Valenzuela, V., & Aguilar-Hernández, M. M. (2013). Cellular signalling of the receptor for advanced glycation end products (RAGE). Cellular signalling, 25(11), 2185-2197.
Xu, J., Wang, Y., Wang, Z., Guo, L., & Li, X. (2020). Fucoidan mitigated diabetic nephropathy through the downregulation of PKC and modulation of NF‐κB signaling pathway:in vitro and in vivo investigations. Phytotherapy research, 2020, 1-12.
Yin, L., Chen, X., Li, N., Jia, W., Wang, N., Hou, B., & Du, G. (2021). Puerarin ameliorates skeletal muscle wasting and fiber type transformation in STZ-induced type 1 diabetic rats. Biomedicine & pharmacotherapy, 133, 110977.
Yoon, M. S. (2017). mTOR as a key regulator in maintaining skeletal muscle mass. Frontiers in physiology, 8, 788.
Zafar, M., & Naqvi, S. N. U. H. (2010). Effects of STZ-Induced diabetes on the relative weights of kidney, liver and pancreas in albino rats: a comparative study. International journal of morphology, 28(1).
Zayed, E. A., AinShoka, A. A., El Shazly, K. A., & Abd El Latif, H. A. (2018). Improvement of insulin resistance via increase of GLUT4 and PPARγ in metabolic syndrome‐ induced rats treated with Omega‐3 fatty acid or L‐carnitine. Journal of biochemical and molecular toxicology, 32(11), e22218.
Zhang, Y., He, L., Chen, X., Shentu, P., Xu, Y., & Jiao, J. (2022). Omega-3 polyunsaturated fatty acids promote SNAREs mediated GLUT4 vesicle docking and fusion. The journal of nutritional biochemistry, 101, 108912.
Zou, T., Kang Y., Wang B., Avila J., You J., Zhu M., & Du M. (2019). Raspberry supplementation reduces lipid accumulation and improves insulin sensitivity in skeletal muscle of mice fed a high-fat diet. Journal of functional foods, 63, 103572.

(此全文20250728後開放外部瀏覽)
電子全文
全文檔開放日期:2025/07/28
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *