字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:羅娸毓
研究生英文姓名:Lo, Chi-Yu
中文論文名稱:團膳菜餚溫度管理實證研究-以新北市學校團膳供應商為例
英文論文名稱:An Empirical Case Study on Temperature and Time Management of School Meal Providers in New Taipei City
指導教授姓名:張正明
口試委員中文姓名:副教授︰張正明
助理教授︰莊培梃
業界委員︰蔡慧君
助理教授︰林昱文
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10832049
請選擇論文為:應用型
畢業年度:111
畢業學年度:110
學期:
語文別:中文
論文頁數:43
中文關鍵詞:學校午餐降溫速率溫度時間管理微生物預測模型危險溫度帶
英文關鍵字:School mealCooling rateTemperature time managementPredictive microbiology modelTemperature danger zone
相關次數:
  • 推薦推薦:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏收藏:0
學校午餐通常是由團膳業者當日製作並運送到校,而在餐盒食品的控管上,經常忽略加熱後溫度及時間的管理。過去,關於學校午餐所引發的食品中毒案件,其病因物質經常為仙人掌桿菌,造成仙人掌桿菌之危害主要是由加熱後時間溫度控管不當所造成。本研究透過實地調查並使用連續式溫度計記錄團膳菜餚從起鍋後之溫度時間歷程,探討各類型菜餚在不同時間下之溫度時間變化、溫度管理策略及病原菌累積風險,並且討論當前學校午餐實際情況與相關規範之合理性。

菜餚之溫度時間歷程可分為「起鍋時」、「配膳時」、「上車時」、「下車時」及「開蓋時」。結果顯示在所有時間段中,降溫速率由快到慢之時間段排序為「起鍋後配膳前」、「下車後開蓋前」、「配膳後上保溫車前」及「上車後下車前」。菜餚起鍋時表面溫度為 80.7℃ 至 93.7℃;起鍋到配膳時菜餚溫度降低 12.9℃ 至 35.1℃;配膳到上車時菜餚溫度降低 1.6℃ 至 6.1℃;上車到下車時菜餚溫度降低 2.9℃ 至 5.4℃;下車到開蓋時菜餚溫度降低 1.6℃ 至 5.0℃。而在選擇保溫策略方面採用「起鍋後儘早配膳」、「配膳時使用雙層餐蓋」、「配膳完後儘早上保溫車」及「到校後菜餚於保溫車上暫存不下車」等可達到最佳的保溫效果。本研究將溫度、時間及降溫速率條件參數代入微生物預測模型,結果顯示在「平均條件」的情況下,無仙人掌桿菌滋生之風險,但在最壞的情況下仙人掌桿菌風險可能增加 1 至 15 倍。所有菜餚仙人掌桿菌累績風險排名由高至低為油炸類、蒸煮類、飯類、燉煮類、拌炒類、烘烤類、麵類及湯類。

綜合上述結果,可將仙人掌桿菌預測風險排名,作為團膳菜單設計或生產排程之參考依據,以減少生產高風險菜餚或調整菜餚之生產排程。本研究針對業者、管理者、法規或指引提出合適之管理建議,並且以「上午9點時菜餚表面溫度維持在 60℃ 以上」的前提下,建立各菜餚在 9 點後至用餐前之安全參考溫度。
School meal providers who prepare and deliver school lunches on the same day which make it vital for managing time and temperature and is often neglected, after cooking till serving. This is further supported by the fact that Bacillus cereus the primary caustic agent causing food poisoning incidence in school. This study is aimed to analyze time-temperature history of different dishes after cooking till serving, temperature management strategies, and estimate pathogenic bacteria risks among these dishes. Finally, develop a better school lunch practice guidance for food safety control purposes.
The time-temperature history of school meal can be divided into "after cooking", "packing", "loading", "unloading", and "serving". Throughout the process, temperature dropping rate is ranked, from fast to slow, as "after cooking till packing", “after unloading till serving”, “after packing till loading”, and “after loading till unloading”. The surface temperature of the school meal is 80.7℃ to 93.7℃ after cooking; the temperature of the school meal reduces 12.9℃ to 35.1℃ when meals are packed; the temperature of the school meal reduces 1.6℃ to 6.1℃ when meals are loaded; the temperature of the school meal reduces 2.9℃ to 5.4℃when meals are unloaded; the temperature of the school meal reduces 1.6℃ to 5.0℃when meal are opened. Therefore, the better temperature management practice is suggested: “pack meal as soon as possible after cooking”, “use double covers when packing”, “load meal to vehicle as soon as possible after packing” and “stay in the insulated truck as long as possible after reaching school”. In this study, time, temperature and cooling rate are used as the parameters of the PMP predictive model. Results show that there is no risk of Bacillus cereus growth in school meal under the averaging condition. However, under worst case scenario, the risk of Bacillus cereus in school meal may increase 1 to 15 times. Bacillus cereus risk ranking for all school meal from high to low are “fried food”, “steamed food”, “rice”, “stewed food”, “stir-fried food”, “baked food”, “noodles” and “soup”.
According to the results, the Bacillus cereus risk ranking can be used as a reference for the school meal menus designing or production scheduling and to reduce the production of high-risk meal or adjust the production schedule. This study proposes appropriate management suggestions for the industry, managers, regulations or guidelines, and establishes the safe reference temperature of each meal after 9:00 a.m. and before serving under the premise that "the surface temperature of the meal is kept above 60°C at 9:00 a.m.".
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
壹、前言 1
1. 研究背景與動機 1
貳、文獻整理 2
1. 學校團膳 2
2. 菜單設計 3
3. 法律指引 3
4. 食品安全管制系統 4
5. 危險溫度帶 5
6. 食品中毒案件 6
6.1 仙人掌桿菌 8
7. 食品的溫度時間歷程監控 9
8. 團膳業之相關研究 10
9. 微生物預測模型 10
9.1 微生預測模型的介紹 10
9.2 微生物預測模型的相關研究 11
參、研究目的與架構 13
1. 研究目的 13
2. 研究架構 14
肆、研究材料與方法 15
1. 研究材料 15
2. 實驗器材 15
3. 研究方法 16
3.1 現場調查與數據監測 16
3.2 菜餚類型及時間段區分 18
3.3 團膳菜餚溫度管理策略分析 18
3.4 團膳菜餚之微生物風險分析 19
3.5 統計分析 22
伍、結果與討論 23
1. 團膳菜餚溫度時間數據監測 24
1.1 團膳菜餚溫度時間結果分析 24
1.2 菜餚散熱結果分析 29
2. 菜餚保溫策略分析 31
2.1 保溫策略 31
2.2 桶餐蓋層數之保溫效果分析 32
2.3 保溫室之保溫效果分析 33
3. 菜餚的微生物生長預測 34
陸、結論與建議 37
1. 結論 37
2. 建議 38
柒、參考文獻 39




江振陸 (2001)。高雄市國民中小學學校午餐民營化之研究。義守大學管理研究所碩士論文。
江詠薇 (2012)。臺灣冷藏宅配溫度監測實證與其對食品安全影響之探討。國立臺灣海洋大學碩士論文。基隆。
宋樹憲 (1998)。微生物預測模式在冷藏米製糕點架售期管理之應用。東海大學碩士論文。台中。
李季筑 (2019)。宅配業與連鎖餐飲業冷鏈物流配送溫度管理實證研究。國立臺灣海洋大學碩士論文。基隆。
李義川 (2007)。團體膳食規劃與實務。五南圖書出版股份有限公司。臺北。
杜欣怡 (2011)。冷凍食品物流配送實證研究:溫度管理、多溫層配送策略與品質推估。國立臺灣海洋大學碩士論文。基隆。
汪復進 & 楊文育 (2020)。HACCP理論與實務。新文京開發出版股份有限公司。新北市。
林宗儀、彭瑞森、劉德銓、林冠宇、林蘭砡、鄭維智、許朝凱 & 潘志寬 (2017)。國內餐盒食品相關產業管理模式調查概況。食品藥物研究年報,8,218-224。
林宣 (2012)。冷凍冷藏設備溫度波動對於食品安全與品質風險之探討。國立臺灣海洋大學碩士論文。基隆。
食力 (2020)。從團膳監廚到自立廚房,新北市打造校園午餐高規格。取自: https://www.foodnext.net/news/newssafe/paper/5593472275
教育部 (2020)。學校午餐食物內容及營養基準 (109年12月28日修訂)。取自:https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=545&pid=731
教育部 (2020)。學校外訂盒 (桶) 餐採購契約 (範本) (109年11月13日修訂)。取自:https://4b1q.coa.gov.tw/index.php?id=2506189&titleEx=Y
教育部 (2021)。學校衛生管理法 (110年1月13日修訂)。
教育部國民及學前教育署 (2019)。學校午餐品質提升作為及未來精進措施。取自:https://www.ey.gov.tw/Index
教育部國民及學前教育署 (2021)。高級中等以下學校午餐及校園食品管理工作手冊 (110年4月28修訂)。取自:https://sacs.k12ea.gov.tw/
陳懿 (2022)。應用生產限制理論與食品安全管制系統建立最大安全生產量核算公式-以新北市供學校午餐之團膳業者為例。國立臺灣海洋大學碩士論文。基隆。
黃韶顏 & 倪維亞 (2010)。團體膳食製備。華香園出版社。臺北。
臺北市教育局 (2015)。臺北市學校午餐標準作業流程。取自:https://www.doe.gov.taipei/News_Content.aspx?n=E63B513DC1A79E54&sms=69B4E6B26379EE4E&s=B8969C39384C59A9
衛生福利部食品藥物管理署 (2014)。食品良好衛生規範準則。取自:https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0040122
衛生福利部食品藥物管理署 (2015)。餐飲業食材危害分析參考手冊。取自:https://www.fda.gov.tw/TC/publicationsContent.aspx?id=55
衛生福利部食品藥物管理署 (2018)。食品安全管制系統準則。取自:https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0040116
衛生福利部食品藥物管理署 (2019)。食品安全衛生管理法。取自:https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=l0040001
衛生福利部食品藥物管理署 (2020)。食品製造業者實施食品安全管制系統指引。取自:https://consumer.fda.gov.tw//Law/Detail.aspx?nodeID=518&lawid=789
衛生福利部食品藥物管理署 (2020)。108 年食品中毒發生與防治年報。取自:https://www.fda.gov.tw/tc/publicationsContent.aspx?id=135
衛生福利部食品藥物管理署 (2021)。109 年食品中毒發生與防治年報。取自:https://www.fda.gov.tw/tc/publicationsContent.aspx?id=142
鄭世鳳 (2015)。學校團膳供餐系統品溫監測及醃漬蘿蔔食材發酵期間微生物品質變化之研究。國立中興大學碩士論文。台中。
食力 (2021)。聖心女中142人腹瀉謎底 :仙人掌桿菌超標9倍、供應商裁罰30萬元。取自:https://www.foodnext.net/news/newsnow/paper/5357647490
Agata, N., Ohta, M., & Yokoyama, K. (2002). Production of Bacillus cereus emetic toxin (cereulide) in various foods. International Journal of Food Microbiology, 73(1), 23-27.
Akabanda, F., Hlortsi, E. H., & Owusu-Kwarteng, J. (2017). Food safety knowledge, attitudes and practices of institutional food-handlers in Ghana. BioMed Central Public Health, 17(1), 1-9.
Ali, A. I., & Immanuel, G. (2017). Assessment of hygienic practices and microbiological quality of food in an institutional food service establishment. Journal of Food Processing and Technology, 8(8), 1-9.
Bottone, E. J. (2010). Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, 23(2), 382-398.
Bou-Mitri, C., Mahmoud, D., El Gerges, N., & Abou Jaoude, M. (2018). Food safety knowledge, attitudes and practices of food handlers in lebanese hospitals: A cross-sectional study. Food Control, 94, 78-84.
Chin, J., (2000). Control of communicable diseases manual. American Public Health Association. USA.
Duan, Z., Hansen, T. H., Hansen, T. B., Dalgaard, P., & Knøchel, S. (2016). Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment. International Journal of Food Microbiology, 230, 45-57.
Ebert, M. (2018). Hygiene principles to avoid contamination/cross-contamination in the kitchen and during food processing. Staphylococcus aureus. (pp. 217-234). Academic Press. USA.
Egan, M. B., Raats, M. M., Grubb, S. M., Eves, A., Lumbers, M. L., Dean, M. S., & Adams, M. R. (2007). A review of food safety and food hygiene training studies in the commercial sector. Food Control, 18(10), 1180-1190.
Food Safety and Inspection Service. (2011). Cooking for groups: a volunteer’s guide to food safety. Retrieved from https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/cooking-groups.
Food Safety and Inspection Service. (2017). "Danger Zone" (40 °F - 140 °F). Retrieved from https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/danger-zone-40f-140f
FSPCA. (2016). FSPCA preventive controls for human food participant manual. Retrieved from https://www.ifsh.iit.edu/fspca/fspca-preventive-controls-human-food
Godwin, S. L., Chen, F. C., & Stone, R. (2012). Avoiding the food “Danger Zone” when it is hot outsid. Retrieved from https://www.tnstate.edu.
Granum, P. E., & Lund, T. (1997). Bacillus cereus and its food poisoning toxins. Federation of European Microbiological Societies (FEMS) Microbiology Letters, 157(2), 223-228.
Griffiths, M. W., & Schraft, H. (2017). Bacillus cereus food poisoning. In Foodborne Diseases. (pp. 395-405). Academic Press. USA.
Hoornstra, E., Northolt, M. D., Notermans, S., & Barendsz, A. W. (2001). The use of quantitative risk assessment in HACCP. Food Control, 12(4), 229-234.
Horn, B., Olsen, L., Hasell, S., & Cook, R. (2015).Standardization D and Z values for cooking raw meat. Final report. Ministry for Primary Industries (MPI) Technical Paper No: 2016/05.
Hu, Z., & Sun, D. W. (2000). CFD simulation of heat and moisture transfer for predicting cooling rate and weight loss of cooked ham during air-blast chilling process. Journal of Food Engineering, 46(3), 189-197.
Huang, L. (2014). IPMP 2013-a comprehensive data analysis tool for predictive microbiology. International Journal of Food Microbiology, 171, 100-107.
Juneja, V. K., Golden, C. E., Mishra, A., Harrison, M. A., Mohr, T., & Silverman, M. (2019). Predictive model for growth of Bacillus cereus during cooling of cooked rice. International Journal of Food Microbiology, 290, 49-58.
Kotiranta, A., Lounatmaa, K., & Haapasalo, M. (2000). Epidemiology and pathogenesis of Bacillus cereus infections.Microbes and Infection, 2(2), 189-198.
Lee, Y. J., Jung, B. S., Kim, K. T., & Paik, H. D. (2015). Predictive model for the growth kinetics of Staphylococcus aureus in raw pork developed using Integrated Pathogen Modeling Program (IPMP) 2013. Meat Science, 107, 20-25.
Li, H., Xie, G., & Edmondson, A. S. (2008). Review of secondary mathematical models of predictive microbiology. Journal of Food Products Marketing, 14(2), 57-74.
Membré, J. M., Leporq, B., Vialette, M., Mettler, E., Perrier, L., Thuault, D., & Zwietering, M. (2005). Temperature effect on bacterial growth rate: quantitative microbiology approach including cardinal values and variability estimates to perform growth simulations on/in food. International Journal of Food Microbiology, 100(1-3), 179-186.
Morgan, K. (2004) School meals and sustainable food vhain: the role of creative public procurement. The 2004 caroline walker trust lecture, Royal Society, UK.
Morgan, K. (2004). School Meals and Sustainable Food Chains. The Caroline Walker Lecture, Royal Society, London.
Panisello, P. J., Quantick, P. C., & Knowles, M. J. (1999). Towards the implementation of HACCP: results of a UK regional survey. Food Control, 10(2), 87-98.
Raab, V., Petersen, B., & Kreyenschmidt, J. (2011). Temperature monitoring in meat supply chains. British Food Journal, 113, 1267-1289.
Rosset, P., Cornu, M., Noël, V., Morelli, E., & Poumeyrol, G. (2004). Time–temperature profiles of chilled ready-to-eat foods in school catering and probabilistic analysis of Listeria monocytogenes growth. International Journal of Food Microbiology, 96(1), 49-59.
Rusul, G., & Yaacob, N. H. (1995). Prevalence of Bacillus cereus in selected foods and detection of enterotoxin using TECRA-VIA and BCET-RPLA. International Journal of Food Microbiology, 25(2), 131-139.
Sandra, A., Afsah-Hejri, L., Tunung, R., Tuan Zainazor, T. C., Tang, J. Y. H., Ghazali, F. M., Nishibuchi, M & Son, R. (2012). Bacillus cereus and Bacillus thuringiensis in ready-to-eat cooked rice in Malaysia. International Food Research Journal, 19(3), 829-836.
Soleimaninanadegani, M. (2013). Evaluation of critical level in Bacillus cereus growth curve in milk products with different conditions based on experimental data and ComBase Predictive Models. Microbiology, 4(9), 2-13.
Sudershan, R. V., Naveen Kumar, R., Kashinath, L., Bhaskar, V., & Polasa, K. (2012). Microbiological hazard identification and exposure assessment of poultry products sold in various localities of hyderabad, India. Scientific World Journal, doi:10.1100/2012/736040.
Walker, E., Pritchard, C., & Forsythe, S. (2003). Hazard analysis critical control point and prerequisite programme implementation in small and medium size food businesses. Food Control, 14(3), 169-174.
Wallace, C. A., Holyoak, L., Powell, S. C., & Dykes, F. C. (2014). HACCP-the difficulty with hazard analysis. Food Control, 35(1), 233-240.
Whiting, R. C. & Buchanan, R. L. (1993). A classification of models for predictive microbiology. Food Microbiology, 10, 175-177.
電子全文
全文檔開放日期:2022/08/11
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *