字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:何信隆
研究生英文姓名:Hsin-Lung Ho
中文論文名稱:綠色混凝土應用再生材料之研究
英文論文名稱:Application of Recycled Materials in Green Concrete
指導教授姓名:黃然
陳永逸
口試委員中文姓名:教授︰徐輝明
教授︰趙紹錚
教授︰葉為忠
教授︰紀茂傑
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學號:D96550002
請選擇論文與海洋研究相關度:無相關
請選擇論文為:學術型
畢業年度:107
畢業學年度:106
學期:
語文別:中文
論文頁數:88
中文關鍵詞:再生粒料無機型膠結材料抗壓強度壓汞孔隙試驗
英文關鍵字:recycled aggregatesinorganic bindercompressive strength,MIP
相關次數:
  • 推薦推薦:0
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏收藏:0
摘要

本研究綠色混凝土主要分成兩部分:(1)以飛灰,爐石粉或PVA溶液包裹再生細粒料(FRCA),並用裹漿FRCA替代25%的機製砂,製作混凝土試體,經由新拌性質、硬固性質試驗及微觀觀察,評估裹漿厚度與裹漿材料對再生細粒料混凝土性質的影響; (2)綠色透水混凝土,其膠結材料包括水淬高爐石粉(BFS)、混燒飛灰(CFFA)及卜特蘭水泥,粒料則由特定級配粒料組成,本研究的主要目的為評估混燒飛灰混摻水淬高爐爐石粉製成無機膠結材料製成透水混凝土之性能。採用固定粒徑粗粒料,設計3種孔隙填充率70%、80%與90%,並固定水膠比0.35與不同混摻比例,製作綠色透水混凝土試體。
試驗結果顯示(1)以飛灰和PVA裹漿試混凝土工作性會提高,以爐石粉裹漿會些微下降;但在抗壓強度及劈裂強度,以爐石裹漿再生細粒料混凝土試體,較飛灰和PVA裹漿試體高,且裹漿厚度越高,其效果愈明顯;掃描電子顯微鏡照片和壓汞孔隙試驗結果亦證實爐石粉裹漿的的試體有較佳性質;(2) CFFA和BFS混合使用可完全替代水泥具有凝結硬固特性。28天的養護後,不同孔隙填充率試體的抗壓強度約達到對照組水泥試體90%。BFS與CFFA為7比3,孔隙填充率為 90%時,本研究配製的無機膠結料透水混凝土有良好的工程性能與透水性。


關鍵詞:再生粒料,無機膠結材料,抗壓強度,壓汞孔隙試驗

Abstract

This study is divided into two parts (1)coated fine recycled concrete aggregates (FRCA) with fly ash, slag powder, or polyvinyl alcohol (PVA) were produced and substituted 25% fine aggregate of concrete. Properties of fresh concrete and hardened concrete with various coating materials and coating thicknesses were evaluated; (2) green pervious concretes with water-quenched blast-furnace slag (BFS) and co-fired fly ash (CFFA) from circulating fluidized bed combustion (CFBC) as non-cement inorganic binder were studied. Specific particle size of coarse aggregate was selected and filled percentages of voids by cement paste were desiginated as 70%, 80%, and 90%. A constant water-binder ratio of 0.35 and various conbinations of BFS and CFFA were in the non-cemnt concrete mixtures.
Test results indicate that (1) application of coated FRCAs with fly ash or PVA increases concreteworkability. Specimens with slag coating FRCAs even though having smallest slump would obtain higheststrength and best durability among other specimens. And the coating thickness has positive effect on the properties. The MIP results and SEM micrographs were also verified the aforementioned results; (2)concrete mixtures with 100% Portland cement replaced by CFFA and BFS would hydrate, set and harden. The 28-day compressive strengths of specimens with different FPVs are about 90% strength of the control specimen. The inorganic binder pervious concrete specimens with BFS/CFFA=7/3 and 90 % FPV illustrate fair engineering properties and permeability.


Keywords: recycled aggregates, inorganic binder, compressive strength , MIP
目次
摘要 I
Abstract II
目次 III
圖次 V
表次 VII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法及流程 3
第二章 文獻回顧 6
2.1 綠色混凝土 6
2.2 透水混凝土 7
2.3 裹漿再生粒料之應用 9
2.3.1 再生粒料性質 9
2.3.2 再生粒料含漿量 15
2.3.3 膠結材料包裹對界面過渡區之影響 15
2.3.4 PVA包裹對界面過渡區之影響 16
2.3.5 礦物摻料種類 17
2.3.6 卜作嵐反應 17
2.4 無機膠結材料之應用 17
2.4.1 降低CO2的排放量 17
2.4.2 達成節能減碳之效 19
2.4.3 達到保水、透水之效用 19
2.4.4 水淬高爐石粉生成與成分 20
2.4.5 無機膠結材料之化學反應 20
第三章 試驗計畫 23
3.1 裹漿再生粒料混凝土 23
3.1.1 試驗材料 24
3.1.2 配比設計 30
3.1.3 試驗方法 31
3.2 無機膠結材料透水混凝土 39
3.2.1 試驗材料 39
3.2.2 配比設計 41
3.2.3 試驗方法 42
第四章 試驗結果與討論 46
4.1 裹漿再生粒料混凝土試驗結果與討論 46
4.1.1 坍度 46
4.1.2 抗壓強度 47
4.1.3 劈裂強度 49
4.1.4 四極式電阻 50
4.1.5 吸水率 52
4.1.6 初始表面吸水率 54
4.1.7 壓汞孔隙 56
4.1.8 電子顯微鏡(SEM) 59
4.2 無機膠結材料透水混凝土試驗結果與討論 64
4.2.1 pH值 64
4.2.2 單位重 65
4.2.3 抗壓強度 66
4.2.4 劈裂強度 68
4.2.5 吸水率 69
4.2.6 抗化學性 71
4.2.7 透水性 73
4.2.8 壓汞孔隙 73
4.2.9 電子顯微鏡 75
4.2.10 X光繞射儀 77
第五章 結論與建議 79
5.1 裹漿再生粒料混凝土 79
5.2 無機膠結材料透水混凝土 80
5.3 建議 80
參考文獻 82

參考文獻
1. 內政部建築研究所 再生綠建材 (2005)。
2. 許家祥,「廢棄混凝土裹漿技術及其應用於瀝青混凝土績效之研究」,台灣科技大大學,營建工程系,碩士學位論文,(2009)。
3. 林季慧,「粒料裹漿對混凝土工程性質影響之研究」,台灣科技大學營建工程系,碩士論文,(2007)。
4. 郭順傑,「裹漿材料種類對廢棄混凝土再生粒料性質及瀝青鋪面績效影響之研究」,台灣科技大學,營建工程系,碩士論文,(2009)。
5. 方銜尉,爐石粉細度與膠結材組合對混凝土性質影響之研究,(2008)。
6. 吳仁忠,循環式流化床燃燒灰與粉煤底灰應用於回填料特性之研究, 材料工
程研究所.國立台灣海洋大學(2008)。
7. 沈得縣、李承効、吳佳銘,「再生粒料裹漿技術及其應用於水泥乳化瀝青混凝土鋪面績效之研究」,中國土木水利工程學刊,第二十三卷,第二期, (2011)。
8. 黃兆龍,梁景強,高爐石混凝土之探討,台灣科技大學(2006)。
9. Reuse and Management Measures in Construction Waste, Construction and Planning Agency, Ministry of the Interior, Taiwan; (2010).
10. R.B. Cheng, Application of renewable resources in construction engineering, Concr.Technol. 3 .25-32(2009).
11. F.Pacheco-Torgal, J.A. Labrincha, “The future of construction materials research and the seventh UN Millennium Development Goal: A few insights“, Construction and Building Materials, Vol. 40, p.729-737, (2013).
12. ASTM C125, “Standard Terminology Relating to Concrete and Concrete Aggregates”, Annual book of ASTM Standards, (2013).
13. ACI Committee 116R, ”Cement and Concrete Terminology”, American Concrete Institute, Farmington Hills, MI, (1990).
14. R. J. Flatt, N. Roussel, C. R. Cheeseman, “Concrete: An eco material that needs to be improved”, Journal of the European Ceramic Society, Vol. 32, No. 11, p.2787-2798, (2012).
15. V. S. Ramachandran and James J. Beaudoin, “Handbook of analytical techniques in concrete science and technology, Principles, techniques and applications”, (2001).
16. M. J. Shannag, “High strength concrete containing natural pozzolan and silica fume”, Cement and Concrete Composites, Vol. 22, p. 399-406, (2000).
17. M. J. Shannag, “High-performance cementitious grouts for structural protective”, Cement and Concrete Research, Vol. 32, p. 803-808, (2002).
18. M. Agung,Putra Handana, Rahmi Karolina, Eko Syahputra and Zulfikar, Pervious concrete as one of the technology to overcome the puddle,Civil Engineering Department, Universitas Sumatera Utara (USU) Jl. Perpustakaan, Kampus USU Medan 20155 Indonesiae
19. ASTM C 1701 / ASTM C1701M-09 standard Test Method for Infiltration Rate of In Place Pervious Concrete ASTM.org
20. M.Martín-Morales,G.M.Cuenca-Moyano,I.Valverde-Espinosa,I.alverde-Palacios, Effect of recycled aggregate on physical-mechanical properties and durability of vibro-compacted dry-mixed concrete hollow blocks, Constr. Build. Mater. 145 p.303-310 (2017).
21. D. Gao, L. Zhang, M. Nokken, Mechanical behavior of recycled coarse aggregate concrete reinforced with steel fibers under direct shear, Cem. Concr. Comp. 79 p.1-8 (2017).
22. Y. Xie, D.J. Corr, F. Jin, H. Zhou, S.P. Shah, Experimental study of the interfacial transition zone (ITZ) of model rock-filled concrete (RFC), Cem. Concr. Compos. 55. P.223-231 (2015).
23. W. Li, J. Xiao, Z. Sun, S. Kawashima, S.P. Shah, Interfacial transition zones in recycled aggregate concrete with different mixing approaches, Constr. Build. Mater. 35. 1045-1055 (2012).
24. H. Zhang, Y. Zhao, T. Meng, S.P. Shah, The modification effects of a nano-silica slurry on microstructure, strength, and strain development of recycled aggregate concrete applied in an enlarged structural test, Constr. Build. Mater. 95 p.721-735 (2015).
25. M.I. Sanchez de Rojas, F. Marin, J. Rivera, M. Frias, Morphology and properties in blended cements with ceramic wastes as a pozzolanic material, J. Am. Ceram. Soc. 89 p.3701-3705 (2006).
26. E.J. da Silva, M.L. Marques, F.G. Velasco, C.F. Junior, F.M. Luzardo, M.M. Tashima, A new treatment for coconut fibers to improve the properties of cement-based composites – Combined effect of natural latex/pozzolanic materials, Sustain. Mater. Tech. 12 p.44-51 (2017).
27. M. Ardanuy, J. Claramunt, R.D. Toledo Filho, Cellulosic fiber reinforced cementbased composites: a review of recent research, Constr. Build. Mater. 79 p.115-128 (2015).
28. R.M. Gutiérrez, L.N. Díaz, S. Delvasto, Effect of pozzolans on the performance of fiber-reinforced mortars, Cem. Concr. Compos. 27 p.593-598 (2005).
29. C.C. Fan, R. Huang, H. Hwang, S.J. Chao, Properties of concrete incorporating fine recycled aggregates from crushed concrete wastes, Constr. Build. Mater. 112 p.708-715 (2016).
30. C.C. Fan, R. Huang, H. Hwang, S.J. Chao, The effects of different fine recycled concrete aggregates on the properties of mortar, Mater. 8 p.2658-2672 (2015).
31. D. Pedro, J. de Brito, L. Evangelista, Influence of the use of recycled concrete aggregates from different sources on structural concrete, Constr. Build. Mater. 71 p.141-151 (2014).
32. M. Behera, S.K. Bhattacharyya, A.K. Minocha, R. Deoliya, S. Maiti, Recycled aggregate from C&D waste & its use in concrete-A breakthrough toward sustainability in construction sector: a review, Constr. Build. Mater. 68 p.501-516 (2014).
33. W.F. Santos, M. Quattrone, V.M. John, S.C. Angulo, Roughness, wettability and water absorption of water repellent treated recycled aggregates, Constr. Build. Mater. 146, p.502-513 (2017).
34. N.K. Bui, T. Satomi, H. Takahashi, Improvement of mechanical properties of recycled aggregate concrete basing on a new combination method between recycled aggregate and natural aggregate, Constr. Build. Mater. 148 p.376-385 (2017).
35. C.S. Poon, Z.H. Shui, L. Lam, H. Fok, S.C. Kou, Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete, Cem. Concr. Res. 34 p.31-36 (2004).
36. T.C. Hansen, H. Narud, Strength of recycled concrete made from crushed concrete coarse aggregate, Concr. Int., 5 p.79-83 (1983).
37. K.K. Sagoe-Crentsil, T. Brown, A.H. Taylor, Performance of concrete made with commercially produced coarse recycled concrete aggregate, Cem. Concr. Res., 31, p.707-712 (2001).
38. S. Chen, The study on the recycling of the architectural industry waste, National Taiwan University of Science and Technology, Master Thesis, (1996).
39. S.S. Kuo, Use of recycled concrete made with Florida limestone aggregate for a base course in flexible pavement, Summary of Final Report, BC409, Florida Department of Transportation, Oct. (2001).
40. (J. Xiao, J. Li, C. Zhang, Mechanical properties of recycled aggregate concrete under uniaxial loading, Cem. Concr. Res. 35 p.1187-1194 (2005).
41. Cheng-Chih Fan,”The Effects of Different Fine Recycled Concrete Aggregates
on the Properties of Mortar”Materials,(2015).
42. K.H. Yang, H.S. Chung, A. Ashour, Influence of type and replacement level of recycled aggregates on concrete properties, ACI Mater. J. 105p. 289-296 (2008).
43. K. Rahal, Mechanical properties of concrete with recycled coarse aggregate, Build. Environ. 42p. 407-415 (2007).
44. M. Etxeberria, E. Vázquez, A. Marí, M. Barra, Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete, Cem. Concr. Compos. 37p. 735-742 (2015).
45. K. Eguchi, K. Teranishi, A. Nakagome, H. Kishimoto, K. Shinozaki, M. Narikawa, Application of recycled coarse aggregate by mixture to concrete construction, Constr. Build. Mater. 21 p.1542-1551 (2007).
46. L. Evangelista, J. de Brito, Mechanical behaviour of concrete made with fine recycled concrete aggregates, Cem. Concr. Compos. 29 p.397-401 (2007).
47. J. S. RYU, Improvement on strength and impermeability of recycled concrete made from crushed concrete coarse aggregate, Journal of Materials Scince Letters, 21, p.1565 – 1567(2002)
48. B.D.Barnes S.Diamond, and W.L.Dolch, “The Contact Zone Between Portland Cement Paste and Glass ‘Aggregate’ Surfaces”, Cement and Concrete Research,Vol.8, p.233-244, (1978)。
49. B.M. Vinay Kumar, H. Ananthan, K.V.A. Balaji, Experimental studies on cement stabilized masonry blocks prepared from brick powder, fine recycled concrete aggregate and pozzolanic materials, J. Build. Eng. 10 p.80-88 (2017).
50. J. Sim, C. Park, Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate, Waste Manage. 31p. 2352-2360 (2011).
51. S. Nishbayashi, K. Yamura. “Mechanical properties and durability of concrete from recycled coarse aggregate prepared by crushing concrete”. In: Yoshio K, editor. Proceedings of the second international rilem symposium on demolition
and reuse of concrete and masonry. Japan. P.652-659. (1998)。
52. S. Nagataki, A. Gokce., T. Saeki. Effects of recycled aggregate characteristics on the performance parameters of recycled aggregate concrete. In: Malhotra V, editor. Proceedings of the 5th canmet/ACI international conference on durability
of concrete. Barcelona. P.53-72. (2000)。
53. T.C. Hasen, H. Narud. Strength of recycled concrete made from crushed concrete coarse aggregate. Concrete International.;5(01):P.79-83. (1983)。
54. R.S. Ravindrarajah , C.T. Tam. Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research;37(130):p.29-38. (1985)。
55. MS. de Juan, PA. Gutiérrez. Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Construction and Building
Materials.;23(2):p.872-877. (2009)。
56. H. Wan, L. Yang, Z. Shui, Modificatin of ITZ structure and properties of regenerated concrete, J. Wuhan Univ. Technol.-Mater. Sci. Ed. 21 p.128-132 (2006).
57. European Parliamentary Research Service (EPRS). Towards a circular economy-Waste management in the EU. Science and Technology Options Assessment, PE p. 581.913, (2017).
58. S.H Li, H. Altan,. Environmental impacts of building structures in Taiwan, Procedia Eng., 21, p.291-297 (2011).
59. K.L. Lin, K.W. Lo,M..J. Hung, C.L. Hwang,T.W. Cheng,; Y.M. Chang, T.P.Huynh, Hydration characteristics of recycling reduction slag and waste sludge by co-sintered treatment produced as eco-cement, Environ. Prog. Sustainable Energy, 36, p.1466-1473 (2017).
60. C. Shi, R.L. Day, Some factors affecting early hydration of alkali-slag cements, Cem. Concr. Res., 26, p.439-447 (1996).
61. Y.H. Wu, R. Huang, C.J. Tsai, W.T. Lin, Recycling of sustainable co-firing fly ashes as alkali activator for GGBS in blended Cements, Materials, 8, p.784-798 (2015).
62. Y.H. Wu, R .Huang, C.J .Tsai, W.T. Lin, Utilizing resides of CFB co-combustion of coal, sludge and TDF as alkali activator in eco-binder, Constr. Build. Mater., 80, p.69-75 (2015).
63. S.H. Lee, G.S.Kim, Self-Cementitious Hydration of Circulating Fluidized Bed Combustion Fly Ash, J. Korean Ceram. Soc., 54, p.128-136 (2017).
64. B. Kim, M .Prezzi, R. Salgado, Geotechnical properties of fly and bottom ash mixtures for use in highway embankments, J. Geotech. Geoenviron., 131, p.914-924 (2005).
65. Z. Wang, Y. Song, Adsorption properties of CFBC ash–cement pastes as compared with PCC fly ash–cement pastes, Int. J. Coal. Sci. Technol., 3, p.62-67 (2016).
66. D. Gazdič, M .Fridrichová,; K. Kulísek, L. Vehovská, The Potential Use of the FBC Ash for the Preparation of Blended Cements, Procedia Eng., 180, p.1298-1305 (2017).
67. J. San-José, I. Vegas, I. Arribas,. I. Marcos, The performance of steel-making slag concretes in the hardened state, Mater. Des., 60, p.612-619 (2014).
68. G. Lu, Y. Yan, S. Cornwell, M. Whitehouse, G. Riley, Impact of co-firing coal and biomass on flame characteristics and stability, Fuel, 87, p.1133-1140 (2008).
69. A. Pettersson, M. Zevenhoven, B.M. Steenari, L.E .Åmand, Application of chemical fractionation methods for characterisation of biofuels, waste derived fuels and CFB co-combustion fly ashes, Fuel, 87, p.3183-3193 (2008).
70. X. Chen, M.K. Zhou, P.L. Cong,; X. Li, Geosynthetics in Civil and Environmental Engineering, ed. By G. Li, Y. Chen, X. Tang, Springer, Berlin, Heidelberg, p. 398, 9783540693130 (2008).
71. T.B. Randrup, E.G. Mcpherson, L.R. Costello, A review of tree root conflicts with sidewalks, curbs, and roads, Urban Ecosyst. 5, p.209-225 (2001).
72. M. Scholz, V. Uzomah, Rapid decision support tool based on novel ecosystem service variables for retrofitting of permeable pavement systems in the presence of trees, Sci. Tot. Environ., p.458–460, p.486-498 (2013).
73. F. Ascione, Energy conservation and renewable technologies for buildings to face the impact of the climate change and minimize the use of cooling, Sol. Energy, 154,p. 34-100 (2017).
74. K.R. Reddy, T. Xie,; S. Dastgheibi, Removal of heavy metals from urban stormwater runoff using different filter materials, J. Environ. Chem. Eng., 2, p.282-292 (2013).
75. M.A. Paule-Mercado, J.S. Ventura, S.A. Memon,D. Jahng, J.H .Kang, C.H. Lee, Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff, Sci. Total Environ., 550, p.1171-1181 (2016).
76. V. Hwang, A. Masters, M. Arocho, S. Hwang, Fly ash-amended pervious concrete pavement followed by bamboo bioretention basin with Dracaena sanderiana for urban stormwater runoff control, Constr. Build. Mater., 132, p.161-169 (2017).
77. I. Barišić, M. Galić, I.N. Grubeš, Pervious concrete mix optimization for sustainable pavement solution, IOP Conf. Ser.: Earth Environ. Sci., 90, 012091 (2017).
78. D.P.M. Tripathi, S.M.A .Hussain, P. Madhav, An Experimental Study on Pervious Concrete (Mix-ratio, Strength and Porous Properties), Int. J. Eng. Res. Tech., 6, p.100-103 (2017).
79. A.K. Chandrappa,K.P. Biligiri, Pervious concrete as a sustainable pavement material – Research findings and future prospects: A state-of-the-art review, Constr. Build. Mater., 111, p.262-274 (2016).
80. Public Construction Commission, Executive Yuan, pervious concrete in Chapter 02794 of the Outline Specifications for Public Construction in Taiwan, (2013).
81. ACI committee 522, pervious concrete. Report no. 522R-10. American Concrete Institute, Detroit, USA, (2010).
82. M. Chi and R. Huang, Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete,Cement & Concrete Composites,45: p. 148-156 (2014).
83. M. Criado, A.F. Jiménez, I. Sobrados, A. Palomo, and J. Sanz, Effect of relative humidity on the reaction products of alkali activated fly ash,Journal of the European Ceramic Society.32: p. 2799-2807 (2012).
84. S. Hu, X. Guan, and Q. Ding, Research on optimizing components of microfine high-performance composite cementitious materials,Cement and Concrete Research,32: p. 1871-1875 (2002).
85. D. Li, Z. Xu, Z. Luo, Z. Pan, and C. Lin, The activation and hydration of glassy cementitious materials,Cement and Concrete Research .32: p.1145-1152. (2002).
86. J.J. Chang, W. Yeih , T.J. Chung, R. Huang,Properties of pervious concrete made with electric arc furnace slag andalkali-activated slag cement, Construction and Building Materials 109 p.34–40 (2016).
87. W. Yeih ,Study on Alkali Activated slag Concrete Mixing Design and Its Influence (III), Executive Yuan National Science Committee Project Research Report(2005).
88. ASTM C109 / C109M-13, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, , www.astm.org. (2013).
89. ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, PA, , www.astm.org (2013).
90. BS 1881-208:1996. Testing concrete. Recommendations for the determination of the initial surface absorption of concrete. BSI: London, UK, (1996).
(此全文20230802後開放外部瀏覽)
電子全文
全文檔開放日期:2023/08/02
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *