字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:朱建宏
研究生英文姓名:Chu, Jen-Hong
中文論文名稱:點帶石斑(Epinephelus coioides)及龍膽石斑(Epinephelus lanceolatus)仔稚魚飼料脂質與L-肉鹼營養之研究
英文論文名稱:Dietary lipid and L-carnitine nutrition studies for grouper larvae, Epinephelus coioides and Epinephelus lanceolatus
指導教授姓名:沈士新
口試委員中文姓名:教授︰沈士新
教授︰李國誥
教授︰劉秉忠
教授︰陳宏遠
教授︰秦宗顯
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學號:D96330004
請選擇論文與海洋研究相關度:直接相關
請選擇論文為:應用型
畢業年度:105
畢業學年度:104
學期:
語文別:中文
論文頁數:167
中文關鍵詞:點帶石斑龍膽石斑脂質L-肉鹼
英文關鍵字:Epinephelus coioidesEpinephelus lanceolatusLipidL-carnitine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:120
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
本論文主要探討飼料中脂質與L-肉鹼對0.1克重點帶石斑(Epinephelus coioides)及龍膽石斑(Epinephelus lanceolatus)仔稚魚時期成長參數、存活率及體組成的影響。

實驗一:本實驗配製0、5、10、15及20%等不同脂質含量的飼料,經餵食實驗以探討點帶石斑及龍膽石斑仔稚魚脂質需求量及對成長參數;活存率及體脂肪酸組成的影響。實驗結果顯示增重率、肝體比及活存率隨著飼料脂質的添加而上升。當點帶石斑及龍膽石斑仔稚魚餵食不含油脂飼料的處理組,其肌肉中n-3高度不飽和脂肪酸(C20:5,C22:5,C22:6)組成顯著低於其他有添加油脂的處理組,隨著飼料中油脂的添加量增加,其肌肉中的Eicosapentaenoic acid (EPA, C20:5 n-3)及Docosahexaenoic acid (DHA, C22:6 n-3)含量隨之上升。使用增重率與飼料實際脂質含量以斷線迴歸分析得點帶石斑仔稚魚飼料最適脂質含量為95g/kg diet;龍膽石斑仔稚魚飼料最適脂質含量為140g/kg diet。

實驗二:本實驗以魚油,亞麻油,芝麻油,大豆油,橄欖油及牛油等不同脂質來源配製的飼料,探討飼料不同脂肪酸組成對於點帶石斑及龍膽石斑仔稚魚成長參數、活存率及體脂肪酸組成的影響。實驗結果顯示魚油含有豐富的必須脂肪酸,而其他油脂來源則缺乏n-3高度不飽和脂肪酸,因此飼料中n-3高度不飽和脂肪酸可促進石斑魚仔稚魚變態期中魚體成長並維持正常的生理功能。石斑魚為維持正常成長發育重點在於可提供組織發育過程中所必須的高度不飽和脂肪酸,除此之外,脂質亦可提供較高的能量以供應成長所需。

實驗三:本實驗以不同含量脂質(5%及14%)及L-carnitine(0%,0.5%及1%)設計2×3複因子實驗以探討對龍膽石斑仔稚魚時期成長、活存率及體組成與脂肪酸組成的影響。結果顯示餵食14%脂質添加0.5%L-carnitine有助於石斑魚苗的成長,肝臟及肌肉組織中脂質的含量也會隨著飼料中脂質含量增加而增加,隨L-carnitine添加則顯著降低肝臟及肌肉組織中脂質含量,肌肉蛋白質含量則隨L-carnitine的添加而顯著上升。肝臟及肌肉組織中脂肪酸組成顯著受L-carnitine和脂質相互作用所影響,其中又以n-3高度不飽和脂肪酸含量隨脂質添加量增加而上升,隨 L-carnitine添加而下降。

實驗四:實驗以脂質(5%及14%)、L-carnitine (0%及0.5%)及L-lysine (0%及2.83%)設計一2×2×2複因子實驗以探討龍膽石斑仔稚魚成長、活存率及體組織脂肪酸組成之影響。實驗結果顯示脂質及L-carnitine有助於石斑魚仔稚魚的成長,而且也顯著影響肝體比及組織脂肪酸的組成等參數,但L-lysine則無助於仔稚魚的發育成長。L-carnitine與脂質顯著影響肌肉蛋白質與肌肉及肝臟脂質含量。L-lysine顯著降低肌肉脂質含量,以及顯著增加肌肉蛋白質。飼料中脂質與L-carnitine的添加顯著影響肌肉及肝臟中n-3高度不飽和脂肪酸含量,其含量隨著脂質添加量增加而上升,隨L-carnitine加量增加而下降。L-lysine對於組織中n-3 HUFA含量的影響會因餵飼飼料脂質的添加量不同而有顯著的影響。5%脂質及14%脂質處理組中,L-carnitine顯著影響肌肉DHA組成含量,而L-lysine則在14%脂質處理組中顯著降低肌肉DHA組成含量。肝臟中DHA含量隨著飼料中L-carnitine及L-lysine的添加量增加而降低。肝臟中EPA含量隨著飼料中L-carnitine的添加而下降,但不受L-lysine的添加量的影響。

本論文結果顯示, 0.1克重石斑魚仔稚魚可以以人工飼料取代餌料生物,如輪蟲及豐年蝦,微粒飼料含一定含量的脂質及脂肪酸,可以提供在仔稚魚成長過程中組織及神經的發育所需。L-carnitine的添加有助於石斑魚仔稚魚脂肪酸β-氧化力的提升,因此有效的將蛋白質使用在成長上,進而達到蛋白質節約效果。石斑魚仔稚魚利用L-lysine自行轉換成L-carnitine的能力還無法確立。L-lysine轉換成L-carnitine的過程中需要六種元素(Lysine, Methionine, Niacin, Vitamin B6, Vitamin C and Iron)及五種酵素(acyl-CoA, acyl-carnitine, CATⅠ, CATⅡ, CoA)。在本實驗的魚苗正處仔稚魚期,其生長發育還不完整,如在轉換過程中缺乏某一項因素,則L-lysine轉換成L-carnitine的途徑即不完整,因此未來可繼續探討仔稚魚發育期間相關能量代謝酵素的發展。
This study was discriminate two major subject experiments were conducted to grouper larvae (Epinephelus coioides and Epinephelus lanceolatus). The first part experiment was carried out to investigate effects of dietary lipid level and source on the growth, survival and body tissue fatty acid profiled for grouper larvae (E. coioides and E. lanceolatus). Second part experiment was carried out to investigate effects of different lipid, L-carnitine and L-lysine levels on the growth, survival and body tissue fatty acid profiled for grouper larvae (E. lanceolatus).

Experiment1:Two experiments were conducted to determine the effects of dietary lipid levels on the growth, muscle fatty acid profile and survival grouper larvae E. coioides and E. lanceolatus during metamorphosis. The optimum dietary lipid requirement of E. coioides was 95 g lipid /kg diet. For E. lanceolatus, the optimum dietary lipid requirement was 75 g lipid /kg diet. The results showed that dietary lipid significantly influenced the survival and growth of grouper larvae. In experiment diet without lipid supplementation, fatty acid levels were lower than diet with lipid supplementation. Especially n-3 highly unsaturated fatty acids (n-3 HUFA) level in diet without lipid was 5.47% and that was increased when dietary lipid increased. In muscle, fatty acid compositions of grouper larvae were directly reflected by dietary fatty acid composition. Fish fed the diet without lipid showed the lowest n-3 HUFA (C20:5, C22:5, C22:6) contents. Grouper larvae fed lipid supplemented diets, tissue C20:5 and C22:6 increased when dietary lipid level increased. These results suggest that grouper larvae are capable of synthesizing HUFA from dietary lipid and they may have limited or no ability to synthesize HUFA when they fed the dietary without lipid supplementation. Compare with weight gain and survivals were increased with increasing dietary lipid and n-3 HUFA content. The final weight and weight gain of larvae fed the diet without lipid were significantly lower than those of larvae fed other diets, but there were no differences between the 5% to 20% groups. Survival significantly increased with increasing dietary lipid levels from 5% to 15% (P <0.05), and then decreased .The survival of larvae fed the diet without lipid was significantly lower than that of larvae fed other diets.

Experiment 2:This study was conducted with grouper larvae of E. coioides and E. lanceolatus to investigate the effects of different dietary lipid source on growth, survival, tissue fatty acid composition. Six treatment diets were prepared using purified ingredients incorporating fish oil, linseed oil, sesame oil, soybean oil, olive oil and beef tallow. The best growth was recorded for E. coioides larvae given the diet having fish oil(weight gain was 231.81%), followed by the beef tallow diet (35.51%), the linseed oil, soybean oil and olive oil diets (22.03%-19.63%) and the sesame oil diet (12.66%). The survival was 75% to 84%. The fatty acid profile of the muscle was shown to be influenced by dietary fatty acid composition.
E. lanceolatus, the best growth was recorded for larvae given the diet having fish oil (weight gain was 2105.09%), followed by the beef tallow diet (538.71%), the olive oil diet (488.20%), soybean oil diets (353.00%), the sesame oil diet (334.37%) and the linseed oil diet (332.72%). The survivals were 73% to 95%. The fatty acid profile of the muscle was shown to be influenced by dietary fatty acid composition. The results of this laboratory study indicated that a combination of fatty acids is important for growth and survival of this two species.

Experiment 3:A feeding experiment was conducted to study the effects of dietary L-carnitine and lipid levels on the growth, muscle and liver fatty acid profile of E. lanceolatus larvae (initial mean weight 0.136 g). Two levels of supplemental lipid, 5 or 14% were tested in combination with three levels (0, 0.5 and 1%) of L-carnitine. Each diet was randomly assigned to three replicate groups of groupers larvae for 42 days. The fatty acid compositions of grouper larval muscle and liver were influenced by dietary L-carnitine and lipid. The n-3 high unsaturated fatty acids (n-3 HUFA) of muscle and liver of grouper larvae fed diets supplemented with L-carnitine were significantly lower than that of grouper larvae fed diets without L-carnitine. The grouper larvae fed diets containing 14% lipid had the significantly higher weight gain than those fed diets containing 5% lipid. The grouper larvae fed diets containing 5% lipid and without L-carnitine supplementation had the worst weight gain. The grouper larvae fed diets containing 14% lipid and supplemented with 0.5% L-carnitine had the highest weight gain among treatments. The hepatosomatic index (HSI) of grouper larvae increased with dietary lipid increasing, while HSI of grouper larvae decreased with the increasing dietary L-carnitine. Lipid contents of muscle and liver of grouper larvae increased with increasing dietary lipid level, whereas lipid levels of muscle and liver of grouper larvae fed diets supplemented with L-carnitine decreased. The muscle protein content significantly increased with increasing dietary L-carnitine. The survival of grouper larvae fed diet containing 14% lipid was significantly higher than that of grouper larvae fed diets containing 5% lipid. This study revealed the positive effects of dietary L-carnitine supplementation on growth of grouper larvae.

Experiment 4:A study was undertaken to examine the effect of different dietary L-carnitine (0 and 0.5%) and lipid (5 and 14%) supplementation on growth and fatty acid profiles of fish fed either with 0% L-lysine or 2.83% L-lysine. Initial body weight 0.08g grouper larvae (E. lanceolatus) were stocked (24 aquaria, 10 fish aquarium-1) and fed for 42 days. Dietary L-carnitine had a clear effect on growth performance, but dietary lysine supplements had no effect. Clear effects on muscle and liver fatty acid profiles were observed in 0.5% L-carnitine fed fish compared with 0% L-carnitine fed fish. The primary muscle fatty acids affected were docosapentaenoic acid (DPA, 22:5 n-3) and docosahexenoic acid (DHA, 22:6 n-3). The liver fatty acid balance suggested that 22:6 n-3 disappeared (apparently by β-oxidation) more readily than 22:5 n-3. Dietary L-carnitine improve growth, these data support the hypothesis that L-carnitine can enhance the metabolism of long-chain fatty acids to wardsβ-oxidation.
謝辭...............................Ⅰ
中文摘要.............................Ⅱ
英文摘要.............................Ⅳ
目次...............................Ⅵ
圖次...............................Ⅷ
表次...............................Ⅸ
第一章 文獻回顧..........................1
第二章 飼料脂質含量對點帶石斑(Epinephelus coioides)及龍膽石斑(Epinephelus lanceolatus)仔稚魚成長、存活及體脂肪酸組成之影響...............................21
2.1摘要............................ 22
2.2前言............................ 23
2.3材料與方法......................... 25
2.4結果............................ 29
2.5討論............................ 39
第三章 飼料脂質來源對點帶石斑(Epinephelus coioides)及龍膽石斑(Epinephelus lanceolatus)仔稚魚成長、存活及體脂肪酸組成之研究.............................. 42
3.1摘要............................ 43
3.2前言............................ 44
3.3材料與方法......................... 46
3.4結果............................ 48
3.5討論............................ 56
第四章 飼料脂質與L-Carnitine含量對龍膽石斑(Epinephelus lanceolatus)仔稚魚成長、存活及體脂肪酸組成之影響.......58
4.1摘要............................ 59
4.2前言............................ 60
4.3材料與方法......................... 62
4.4結果............................ 65
4.5討論............................ 80
第五章 飼料脂質、L-Carnitine與Lysine含量對龍膽石斑(Epinephelus lanceolatus)仔稚魚成長、存活及體脂肪酸組成之影響.......84
5.1摘要............................ 85
5.2前言............................ 87
5.3材料與方法......................... 89
5.4結果............................ 91
5.5討論........................... 105
第六章 結論..........................108
參考文獻............................110
Ako, H., Kraul, S., Tamaru, C., 1991. Pattern of fatty acid loss in several warm water fish species during early development. In: Larvi‘91-Fish &Crustacean Larviculture Symposium (Lavens, P.,Sorgeloos, P., Jaspers, E., Ollevier, F. eds), 23-25. Special Publication No. 15, European Aquaculture Society, Gent, Belgium.
Alava, V.R, Priolo, F.M.P., Toledo, J.D., Rodriguez, J.C., Quinitio, G.F., Sa-an, A.C., de la Peña, M.R., Caturao, R.C., 2004. Lipid nutrition studies on grouper (Epinephelus coioides) larvae. In: Rimmer, M.A., McBride, S., Williams, K.C. (Eds.), Advances in Grouper Aquaculture, 110. ACIAR Monograph, Canberra, pp. 47-52.
AOAC (Association of Official Analytical Chemists), 1984. Official Methods of Analysis 14th edn., AOAC, Washington, DC.
Appelbaum, S., Van Damme, P., 1998.The feasibility of using exclusively artificial dry feed for the rearing of Israeli Clarias gariepinus (Burchell, 1822) larvae and fry. Journal of Applied Ichthyology 4, 105-110.
Bahurmiz, O. M., Ng, W. K., 2007. Effect of dietary palm oil source on growth, tissue fatty acid composition and nutrient digestibility of red hybrid tilapia, Oreochromis sp., raised from stocking to marketable size. Aquaculture 262, 382-392.
Baldwin, C. C., Johnson, D., 1993. Phylogeny of the Epinephelinae (Teleostei:Serranidae). Bulletin of Marine Science 52, 240-283.
Baragi, V., Lovell, R. T., 1986. Digestive enzyme activities in striped bass from first feeding through larva development. Transactions of the American Fisheries Society 115, 478-484.
Barlow, S., 2000. Fishmeal and fish oil: sustainable feed ingredients for aqua feeds. Global Aquaculture Advocate 4, 85-88.
Baskerville-Bridges, B., Kling, L.J., 2000. Development and evaluation of microparticulate diets for early weaning of Atlantic cod, Gadus morhua, larvae. Aquaculture. Nutrition 6, 171 - 182.
Becker, K., Focken, U., 1993. Effect of feed supplementation with L-camitine on growth metabolism and body composition of carp (Cyprinus carpio L). Aquaculture 129, pp.341.
Becker, K., Schreiber, S., Angoni, C., Blum, R., 1999. Growth performance and feed utilization response of Oreochromis niloticus × Oreochromis aureus hybrids to l-carnitine measured over a full fattening cycle under commercial conditions. Aquaculture 174, 313-322.
Bell, M. V., Dick, J. R., 1991. Molecular species composition of the major diacyl glycerolphospholipids from muscle, liver, retina and brain of cod (Gadus morhua). Lipids 26, 565-573.
Bell, M. V., Henderson, R. J., Pirie, B. J. S., Sargent, J. R., 1985a. Effect of dietary polyunsaturated fatty acid deficiencies on mortality, growth and gill structure in the turbot, Scophthalmus maximus. Journal of Fish Biology 26, 181-191.
Bell, M. V., Henderson, R. J., Pirie, B. J. S., Sargent, J. R., 1985b. Growth, gill structure and fatty acid composition of phospholipids in the turbot (Scophthalmus maximus) in relation to dietary polyunsaturated fatty acid deficiencies. In: C.B. Cowey, A. M. Mackie, J. G. Bell (eds.), Nutrition and Feeding in Fish. Academic Press, San Diego, California, pp. 365-369.
Bell, M. V., Batty, R. S., Dick, J. R., Fretwell, K., Navaarro, J. C., Sargent, J. R., 1995. Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.). Lipids 30, 443-449.
Ben-Atia, I., Fine, M., Tandler, A., Funkenstein, B., Mauric, S., Cavari, B., Gertler, A., 2000. Preparation of recombinant gilthead sea bream (Sparus aurata) growth hormone and its use for stimulation of larvae growth by oral administration. General Comparative Endocrinology 113, 155-164.
Benitez-Santana, T., Masuda, R., Carrillo, E. J., Ganuza, E., Valencia, A., Hernandez-Cruz, C. M., Izquierdo, M. S., 2007. Dierary n-3 HUFA deficiency induces a reduced visual response in gilthead sea bream (Sparus aurata) larvae. Aquaculture 264, 408-417.
Bernhart, F. W., Tomarelli, R. M., 1966. A salt mixture supplying the National Research Council estimates of mineral requirements of the rat. Journal of Nutrition 89, 495-500.
Bessonart, M., Izquierdo, M. S., Salhi, M., Hernandez-Cruz, C. M., Gonzalez, M. M., Fernandez-Palacios, H., 1999. Effect of dietary arachidonic acid levels on growth and survival of gilthead sea bream (Sparus aurata L.) larvae. Aquaculture 179, 265-275.
Bilinski, E., Jonas, E. E., 1970. Effects of coenzyme A and carnitine on fatty acid oxidation by rainbow trout mitochondria. Fisheries Research Board of Canada 27, 857-864.
Bisbal, G.A., Bengtson, D.A., 1991. Effect of dietary (n-3) HUFA enrichment on survival and growth of summer flounder, Paralichthys dentatus, larvae. ln: Larvi’91-Fish &Crustacean Lamiculture Symposium (Lavens, P., Sorgelsos, P., Jaspers, E., Ollevier, F. eds.). European Aquaculture Society, Special publication No. 15, Gent, Belgium. 1991, 56-57.
Bjornsson, B., Tryggvadottir, S. V., 1996. Effects of size on optimal temperature for growth and growth efficiency of immature Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 142, 33-42.
Boonyaratpalin, M., 1997. Nutrient requirements of marine food fish cultured in Southeast Asia. Aquaculture 151, 283-313.
Borum, P. R., 1983. Carnitine. Annual Review of Nutrition 3, 233-259.
Borum, P.R., Broquist, H. P., 1977. Lysine deficiency and carnitine in male and female rats. Journal of Nutrition 107, 1209-1215.
Bremer, J., 1962. Carnitine precursors in the rat. Biochimica et Biophysica Acta 57, 327-35.
Bremer, J., 1961. Biosynthesis of camitine in vivo. Biochimica et Biophysica Acta 48, 622-624.
Bremer, J., 1983. Carnitine-metabolism and functions. Physiological Reviews 63, 1420-1480.
Brevetti, G., Chiariello, M., Ferulano, G., 1988. Increases in walking distance in patients with peripheral vascular disease treated with L-carnitine: a double-blind, cross-over study. Circulation 77, 767-773.
Broquist, H. P., Borum, P. R., 1982. Carnitine biosynthesis. Nutritional implications: Advances in Nutrition Research 4, 181-204.
Broquist, H. P., 1997. Memories of microbes and metabolism. Annual Review of Nutritions 17, 1-18.
Bryson, J. M., Phuyal, J. L., Swan, V., Caterson, I. D., 1999. Leptin has acute effects on glucose and lipid metabolism in both lean and gold thioglucose-obese mice. American Journal of Physiology-Endocrinology and Metabolism 40, E417-E422.
Burtle, G. J., Liu, Q., 1994. Dietary carnitine and lysine affect channel catfish lipid and protein composition. Journal of the World Aquaculture Society 25, 169-174.
Caballero, M.J., Obach, A., Rosenlund, G., Montero, D., Gisvold, M., Izquierdo, M.S., 2002. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214, 253-271.
Cahu, C., Zambonino-Infante, J., 2001. Substitution of live food by formulated diets in marine fish larvae. Aquaculture 200, 161-180.
Cao, Q. R., Ren, S., Park, M. J., Choi, Y. J., Lee, B. J., 2007. Determination of highly soluble L-carnitine in biological samples by reverse phase high performance liquid chromatography with fluorescent derivatization. Archives of Pharmacal Research 30, 1041-1046.
Cavri, B., Funkenstein, B., Chen, T. T., Gonzalez-Villasenor, L. I., Schartl, M., 1993. Effect of growth hormone on the growth rate of the gilthead sea bream (Sparus aurata), and use of different constructs for production of transgenic fish. Aquaculture 111, 189-197.
Carter, C. G., Hauler, R. C., 2000. Fish meal replacement by plant meals in extruded feeds for Atlantic salmon, Salmo salar L. Aquaculture 185, 299-311.
Catacutan, M. R., Pagador, G. E., Teshima, S., 2001. Effect of dietary protein and lipid levels and protein to energy ratios on growth, survival and body composition of the mangrove red snapper, Lutjanus argentimaculatus (Forsskal, 1775). Aquaculture Research 32, 811-818.
Chatzifotis, S., Takeuchi, T., 1997. Effect of supplemental carnitine on body weight loss, proximate and lipid compositions and carnitine content of red sea bream (Pagrus major) during starvation. Aquaculture 158, 129-140.
Chatzifotis, S., Takeuchi, T., Seikai, T., 1995. The effect of dietary L-carnitine on growth performance and lipid composition in red sea bream fingerlings. Fisheries Science 61, 1004-1008.
Chatzifotis, S., Takeuchi, T., Seikai, T., 1996. The effect of dietary carnitine supplementation on growth of red sea bream (Pagrus major) fingerlings at two levels of dietary lysine. Aquaculture 147, 235-248.
Chen, L. C., 1990.Aquaculture in Taiwan. Fishing News Books. pp. 103-107.
Chen, Y., Lin, L., Song, D., 2011. Effects of L-carnitine enriched artemia on fatty acids composition and C/N ratio in first feeding larvae of common carp, Cyprinus carpio. Journal of Northwest Agriculture and Forestry University 39, 1671-9387.
Chou, B. S., Shiau, S. Y., 1999. Both n-6 and n-3 fatty acid are required for maximal growth of juvenile hybrid tilapia. North American Journal of Aquaculture 61, 13-20.
Chu, F. L. E., Ozkizilcik, S., 1995. Lipid and fatty acid composition of striped bass (Morone saxatilis) larvae during development. Comparative Biochemistry and Physiology Part B 4, 665-674.
Chu, J. H., Chen, S. M., Huang , C. H., 2007. Effect of dietary iron concentrations on growth, hematological parameters, and lipid peroxidation of soft-shelled turtles, Pelodiscus sinensis. Aquaculture 269, 532-537.
Collazos, M. E., Ortega, E., Barriga, C., 1994. Effect of temperature on the immune system of a cyprinid fish (Tincatinca, L.). Blood phagocyte function at low temperature. Fish and Shellfish Immunology 4, 231-238.
Company, R., Calduch-Giner, J. A., Pe´rez-Sa´nchez, J., Kaushik, S. J., 1999. Protein sparing effect of dietary lipids in common dentex (Dentex dentex): a comparative study with sea bass (Dicentrarchu labrax). Aquatic Living Resources 12, 23-30.
Conceição, L. E. C., Ozório, R. O. A., Suurd, E. A., Verreth, J. A. J., 1998a. Amino acid profiles and amino acid utilization in larval African catfish (Clarias gariepinus): effects of ontogeny and temperature. Fish Physiology and Biochemistry 19, 43-57.
Conceição, L. E. C., Verreth, J. A. J., Verstegen, M. W. A., Huisman, E. A., 1998b. A preliminary model for dynamic simulation of growth in fish larvae: application to the African catfish (Clarias gariepinus) and turbot (Scophthalmus maximus). Aquaculture 163, 215-235
Copeman, L. A., Parrish, C. C., Brown, J. A., Harel, M., 2002. Effects of docosahexaenoic, eicosapentaenoic, and arachidonic acids on the early growth, survival, lipid composition and pigmentation of yellowtail flounder (Limanda ferruginea): a live food enrichment experiment. Aquaculture 210, 285-304.
Corraze, G., 2001. Lipid nutrition. In: Guillaume, J., Kaushik, S.J., Bergot, P., Métailler, R., editors. Nutrition and Feeding of Fish and Crustaceans. Praxis Publishing, Chichester, UK, pp. 111-130.
Costell, M., O’Conner, J., Miguez, M., 1984. Effects of L-carnitine on urea synthesis following acute ammonia intoxication in mice. Biochemical and Biophysical Research Communication 120, 726-733.
Cowey, C. B., Adron, J. W., Owen, J. M., Roberts, R. J., 1976. The effect of different dietary oils on tissue fatty acids and tissue pathology in turbot Scophthalmus maximus. Comparative Biochemistry and Physiology Part B 53B, 399-403.
Craig, S. R., Gatlin, D. M., 1997. Growth and body composition of juvenile red drum (Sciaenops ocellatus) fed diets containing lecithin and supplemental choline. Aquaculture 151, 259-267.
Craig, S. R., Washburn, B. S., Gatlin, D. M., 1999.Effects of dietary lipids on body composition and liver function in juvenile red drum, Sciaenops ocellatus. Fish Physiology Biochemistry 21, 249-255.
Cunnane, S. C., 2003. Problems with essential fatty acids: time for a new paradigm? Progress in Lipid Research 42, 544-568.
Dabrowski, K., 1986. Ontogenetical aspects of nutritional requirements in fish. Comparative Biochemistry and Physiology part A 85, 639-655.
Dallongeville, J., Hecquet, B., Lebel, P., Edme, J. L., Le Fur, C., Fruchart, J. C., Auwerx, J., Romon, M., 1998. Short term response of circulating leptin to feeding and fasting in man: influence of circadian cycle. International Journal of Obesity 22, 728-733.
Davis, A. T., Hoppel, C. L., 1983. Effect of starvation in the rat on trimethyllysine in peptide linkage. Journal of Nutrition 113, 979-985.
Davis, S. J., Morris, P. C., Baker, R. T. M., 1997. Partial substitution of fish meal and full-fat soya bean meal with wheat gluten and influence of lysine supplementation in diets for rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research 28, 317-328.
Dayanand, C. D., Krishnamurthy, N., Ashakiran, S., Shashidhar, K.N., 2011. Carnitine: A novel health factor-An overview. International Journal of Pharmaceutical and Biochemical Research 2, 79-89.
De Jesus, E. G. T., Toledo, J. D., Simpas, M. S., 1998. Thyroid hormones promote early metamorphosis in grouper (Epinephelus coioides) larvae. General and Comparative Endocrinology 112, 10-16.
De Silva, S. S., Anderson, T. A., 1995. Fish Nutrition in Aquaculture. Chapman & Hall, London.
Demmelmair, H., Sauerwald, T., Koletzko, B., 1997. New insights into lipid and fatty acid metabolism via stable isotopes. European Journal of Pediatrics 156, S70-S74.
Dendrinos, P., Thrope, J.P., 1987. Experiments on the artificial regulation of the amino acid and fatty acid contents of food organisms to meet the assessed nutritional requirements of larval, post-larval and juvenile Dover sole (Solea solea L.). Aquaculture 61, 121-154.
Dias, J., Arzel, J., Corraze, G., Kaushik, S. J., 2001. Effect of dietary L-carnitine supplementation on growth and lipid metabolism in European sea bass (Dicentrarchus labrax). Aquaculture Research 32, 206-215.
Dikel, S., Ünalan, B., Eroldoğan, O. T., Özlüer Hunt, A., 2010. Effects of Dietary L-carnitine supplementation on growth, muscle fatty acid composition and economic profit of rainbow trout (Oncorhynchus mykiss). Turkish Journal of Fisheries and Aquatic Sciences 10, 173-180.
Dobson, G. P., Parkhouse, W.S., Hochachka, P.W., 1987. Regulation of anaerobic ATP-generating pathways in trout fast-twitch skeletal-muscle. American Journal of Physiology 253, R186-R194.
Dong, H., Zeng, L., Duan, D., Zhang, H., Wang, Y., Li, W., Lin, H., 2010. Growth hormone and two forms of insulin-like growth factors I in the giant grouper (Epinephelus lanceolatus): molecular cloning and characterization of tissue distribution. Fish Physiology and Biochemistry 36, 201-212.
Driedzic, W. R., Hochachka, P. W., 1976. Control of energy-metabolism in fish white muscle. American Journal of Physiology 230, 579-582.
Du, Z.Y., Liu, Y.J., Zhen, W.H., Tian, L.X., Liang, G.Y., 2002. The effects of three oil sources and two anti-fat liver factors on the growth, nutrient composition and serum biochemistry indexes of Lateolabrax japonicus. Journal of Fisheries of China 26, 542-550.
Dzikowski, R., Hulata, G., Karplus, I., Harpaz, S., 2001. Effect of temperature and dietary L-carnitine supplementation on reproductive performance of female guppy (Poecilia reticulata). Aquaculture 199, 323-332.
Eder, K., Felgner, J., Becker, K., Kluge, H., 2005. Free and total carnitine concentrations in pig plasma after oral ingestion of various L-carnitine compounds. International Journal for Vitamin and Nutrition Research 75, 3-9.
Espe, M., Lemme, A., Petri, A., El-Mowafi, A., 2007. Assessment of lysine requirement for maximal protein accretion in Atlantic salmon using plant protein diets. Aquaculture 263, 168-178.
Estevez, A., Ishikawa, M., Kanazawa, A., 1997. Effects of arachidonic acid on pigmentation and fatty acid composition of Japanese flounder, Paralichthys olivaceus (Temminck and Schlegel). Aquaculture Research 28, 279-289.
Estevez, A., Kaneko, T., Seikai, T., Tagawa, M., Tanaka, M., 2001. ACTH and MSH production in Japanese flounder (Paralichthys olivaceus) larvae fed arachidonic acid-enriched live prey. Aquaculture 192, 309-319.
Erdal, J. I., Evensen, Ø., Kaurstad, O. K., Lillehaug, A., Solbakken, R., Thorud, K., 1991. Relationship between diet and immune response in Atlantics salmon (Salmo salar L.) after feeding various levels of ascorbic acid and omega-3 fatty acids. Aquaculture 98, 363-379.
Erfanullah, A. K. J., 1998. Effect of dietary carbohydrate-to-lipid ratio on growth and body composition of walking catfish (Clarias batrachus). Aquaculture 161, 159-168.
Falk-Petersen, S., Sargent, J. R., Fox, C., Falk-Petersen, I. B., Haug, T., Kjorsvik, E., 1989. Lipids in Atlantic halibut (Hippoglossus hippoglossus) eggs from planktonic samples in Northern Norway. Marine Biology 101, 553-556.
FAO, 2006. Use of fishery resources as feed inputs to aquaculture development: trends and policy implications. FAO Fisheries Circular No. 1018.FAO, Rome, Italy, pp. 99.
FAO, 2009.The state of world fisheries and aquaculture, 2008. FAO Fisheries and Aquaculture Department. Food and Agriculture Organization of the United Nations, Rome.
Farkas, T., Fodor, E., Kitajka, K., Halver, J. E., 2001. Response of fish membranes to environment temperature. Aquaculture Research 32, 645-655.
Fermin, A.C., Bolivar, M.E.C., 1991. Larval rearing of the Philippine freshwater catfish, Clarias macrocephalus, fed live zooplankton and artificial diet: a preliminary study. Israeli Journal of Aquaculture 43, 87-94.
Fernández-Palacios, H., Izquierdo, M. S., Robaina, L., Valencia, A,Salhi, M., Vergara, J., 1995. Effect of n-3 HUFA level in broodstock diets on egg quality of gilthead sea bream (Sparus aurata L.). Aquaculture 132, 325-337.
Flanagan, J. L., Simmons, P. A., Vehige, J., Willcox, M. D. P., Garrett, Q., 2010. Role of carnitine in disease. Nutrition & Metabolism 7, 30.
Folch, J., Lees, M., Sloane-Stanley, C.H., 1957. A simple method for the isolation and purification of total lipids from animal tissue. The Journal of Biological Chemistry 226, 497-509.
Fraser, A. J., Gamble, J. C., Sargent, J. R., 1988. Changes in lipid content, lipid class composition and fatty acid composition of developing eggs and unfed larvae of cod (Gadus morhua). Marine Biology 99, 307-313.
Froyland, L., Madsen, L., Eckhoff, K. M., Lie, O., Berge, R. K., 1998. Carnitine palmitoyltransferase I, carnitine palmitoyltrans ferase II, and acyl-CoA oxidase activities in Atlantic salmon (Salmo salar). Lipids 33, 923-930.
Fujii, M., Yone, Y., 1976. Effect of dietary linolenic acid and ω3 polyunsaturated fatty acids on growth and feed efficiency. Bulletin of the Japanese Society of Scientific Fisheries 42, 583-588.
Furuita, H., Takeuchi, T., Uematsu, K., 1998. Effects of eicosapentaenoic and docosahexaenoic acids on growth, survival and brain development of larval Japanese flounder (Paralichthys olivaceus). Aquaculture 161, 269-279.
Furuita, H., Takeuchi, T., Watanabe, T., Fujimoto, H., Sekiya, S., Imaizumi, K., 1996. Requirements of larval yellowtail for eicosapentaenoic acid, docosahexaenoic acid, and n-3 highly unsaturated fatty acid. Fisheries Science 62, 372-379.
Gao, C.R., Lei, J.L., 1999. Effects of different lipids on growth, survival and tissue fatty acid composition of juvenile Pagrus auratus. Journal of Fisheries Science of China 6, 55-60.
Gapasin, R. S. J., 1998. Enrichment of live food with essential fatty acid and vitamin C: Effect on milkfish (Chanos chanos) larvae performance. Aquaculture 162, 269-286.
Gaylord, T.G., Gatlin, D.M., 2000a. Effects of dietary carnitine and lipid on growth and body composition of hybrid striped bass (Morone chrysops×M. saxatilis). Fish Physiology and Biochemistry 22, 297-302.
Gaylord, T.G., Gatlin, D.M., 2000b. Dietary lipid level but no L-carnitine affects growth performance of hybrid striped bass (Morone chrysops×M. saxatilis). Aquaculture 190, 237-246.
Giri, S.S., Sahoo, S.K., Sahu, B.B., Sahu, A.K., Mohanty, S.N., Mukhopadhyay, P.K., Ayyappan, S., 2002. Larval survival and growth in Wallago attu (Bloch and Schneider): effects of light, photoperiod and feeding regimes. Aquaculture 213, 151-161.
Glencross, B., Hawkins, W., Curnow, J., 2003. Evaluation of canola oils as alternative lipid resources in diets for juvenile red sea bream, Pagrus auratus. Aquaculture Nutrition 9, 305-315.
Gomes, M.D., Tirapegui, J., 2000. Relation of some nutritional supplements and physical performance. Archivos latinoamericanos de nutrición 50, 317-329.
Gracia Lopez, V., Castello-Orvay, F., 1995. Growth of Epinephelus guaza under different culture conditions. Publication du Centre International de Hautes Etudes Agronomiques Mèditerranèennes (CIHEAM) -Revue Options Mediterraneennes, 149-155.
Greene, D. H. S., Selivonchick, D. P., 1990. Effects of dietary vegetable, animal and marine lipids on muscle lipid and hematology of rainbow trout (Oncorhynchus mykiss). Aquaculture 89, 165-182.
Gropp, J. M., Schumacher, A., Schweigert, F. J., 1994. Recent research in vitamin nutrition with special emphasis to vitamin A, b-carotene and L-carnitine. In Proceedings of the Meeting of the Arkansas Nutrition Conference, pp.124-134. Fayetteville, AR: Arkansas Poultry Federation.
Gulcin, I., 2006. Antioxidant and antiradical activities of L-carnitine. Life Sciences 78, 803-811.
Guthrie, K.M., Rust, M.B., 2000. Acceptability of various microparticulate diets to frst-feeding walleye Stizostedion vitreum larvae Aquaculture Nutrition 6, 153-158.
Guzman, M., 1991. Treatment with anabolic steroids increases the activity of the mitochondrial outer carnitine palmitoyl transferase in rat liver and fast-twitch skeletal muscle. Biochemical Pharmacology 41, 833-835.
Gylfason, G. A., Knútsdóttir, E., Ásgeirsson, B., 2010. Isolation and biochemical characterization of lipid rafts from Atlantic cod (Gadus morhua) intestinal enterocytes. Comparative Biochemistry Physiology Part B 155, 86-95.
Harpaz, S., 2005. L-Carnitine and its attributed function in fish culture and nutrition - a review. Aquaculture 249, 3-21.
Harpaz, S., Becker, K., Blum, R., 1999.The effect of dietary L-carnitine supplementation on cold tolerance and growth of ornamental cichlid fish (Pelvicachromis pulcher) -preliminary results. Journal of Thermal Biology 24, 57-62.
Heemstra, P.C., Randall, J.E., 1993. An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Species Catalogue Vol. 16: Groupers of the World (Family Serranidae, Subfamily Epinephalinae). FAO Fish Synop., vol. 125 (16). FAO, Rome, Italy. pp. 382.
Henderson, R.J., 1996. Fatty acid metabolism in fresh water fish with particular reference to polyunsaturated fatty acids. Archives of Animal Nutrition 49, 5-22.
Henderson, R. J., Sargent, J. R., Hopkins, C. C. E., 1983. Changes in the content and fatty acid composition of lipid in an isolated population of the capelin Mallotus villosus during sexual maturation and spawning. Marine Biology 78, 255-263.
Henderson, R.J., Tocher, D.R., 1987. The Lipid composition and biochemistry of freshwater Fish. Progress in Lipid Research 26, 281-347.
Heo, K., Lin, X., Odle, J., Han, I. K., 2000a. Kinetics of carnitine palmitoyltransferase-I are altered by dietary variables and suggest a metabolic need for supplemental carnitine in young pigs. Journal of Nutrition 130, 2467-2470.
Heo, K.N., Odle, J., Han, I.K., 2000b. Effects of dietary L-carnitine and protein level on plasma carnitine, energy and carnitine balance, and carnitine biosynthesis of 20kg pigs. Asian-Australasian Journal of Animal Science13, 1568-1575.
Heo, K.N., Odle, J., Han, I.K., Cho, W., Seo, S., van Heugten, E., Pilkington, D.H., 2000c. Dietary L-carnitine improves nitrogen utilization in growing pigs fed low energy, fat-containing diets. Journal of Nutrition 130, 1809-1814.
Higgs, D. A., Dosanjh, B. S., Uin, L. M., Himick, B.A., Eales, J. G., 1992. Effects of dietary-lipid and carbohydrate-levels and chronic 3,5,3’-Triiodo-L-Thyronine treatment of growth, appetite, food and protein-utilization and body composition of immature rainbow trout, Oncorhynchus mykiss, at low temperature. Aquaculture 105, 175-190.
Hoffman, L. C., Prinsloo, J. F., Rukan, G., 1997. Partial replacement of fish meal with either soybean meal, brewer’s yeast or tomato meal in the diets of African sharptooth catfish, Clarias gariepinus. Water SA 23, 181-186.
Hoppel, C. L., Davis, A. T., 1986. Inter-tissue relationships in the synthesis and distribution of carnitine. Biochemical Society Transactions 14, 673-674.
Horne, D. W., Tanphaichitr, V., Broquist, H.P., 1971. Role of lysine in carnitine biosynthesis in Neurospora crassa. Journal of Biological Chemistry 246, 4373-4375.
Horne, D. W., Broquist, H. P., 1973. Role of lysine and e-N-trimethyllysine in carnitine biosynthesis. I. Studies in Neurospora crassa. Journal of Biological Chemistry 248, 2170-2175.
Hulse, J. D., Ellis, S. R., Henderson, L. M., 1978. Carnitine biosynthesis. beta-Hydroxylation of trimethyllysine by an alpha-ketoglutarate-dependent mitochondrial dioxygenase. Journal of Biological Chemistry 253, 1654-1659.
Infante, J. P., Huszagh, V. A., 2000. Secondary carnitine deficiency and impaired docosahexaenoic (22:6n-3) acid synthesis: a common denominator in the pathophysiology of diseases of oxidative phosphorylation and beta-oxidation. FEBS Letters 469, 1-5.
Ishizaki, Y., Takeuchi, T., Watanabe, T., Arimoto, M., Shimizu, K., 1998. A preliminary experiment on the effect of Artemia enriched with arachidonic acid on survival and growth of yellowtail. Fisheries Science 64, 295-299.
Ishizaki, Y., Masuda, R., Uematsu, K., Shimizu, K., Arimoto, M., Takeuchi, T., 2001. The effect of dietary docosahexaenoic acid on schooling behavior and brain development in larval yellowtail. Journal of Fish Biology 58, 1691-1703.
Izquierdo, M.S., Arakawa, T., Takeuchi, T., Haroun, R., Watanabe, T., 1992. Effect of n-3 HUFA levels in artemia on growth of larval Japanese flounder (Paralichthy solivaceous). Aquaculture 105, 73-82.
Izquierdo, M.S., Montero, D., Robaina, L., Caballero, M.J., Rosenlund, G., Gines, R., 2005. Alterations in fillet fatty acid profile and flesh quality in gilthead sea bream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture 250, 431-444.
Izquierdo. M.S., Obach, A., Arantzamendi, L., Montero, D., Robaina, L., Rosenlund, G., 2003. Dietary lipid sources for sea bream and sea bass: growth performance, tissue composition and flesh quality. Aquaculture Nutrition 9, 397-407.
Izquierdo, M. S., Socorro, J., Arantzamendi, L., Hernadez-Cruz, C.M., 2000. Recent advances in lipid nutrition in fish larvae. Fish Physiology and Biochemistry 22, 97-107.
Izquierdo, M. S., Watanabe, T., Takeuchi, T., Arakawa, T., Kitajima, C., 1989a. Requirement of larval red sea bream (Pagrus major) for essential fatty acids. Nippon Suisan Gakkaishi 55, 859-867.
Izquierdo, M.S, Watanabe, T., Takeuchi, T., Arakawa, T., Kitajima, C., 1989b. Optimal levels in artemia to meet the EFA requirements of red sea bream (Pagrus major). In: The current status of fish nutrition in aquaculture (Takeda, M. and Watanabe, T. eds.). Japan Translation Center, Ltd., Tokyo, Japan, pp. 221-232.
Jalali Haji-abadi, S. M. A., Soofiani, N. M., Sadeghi, A. A., Chamani, M., Riazi G. H., 2010. Effects of supplemental dietary L-carnitine and ractopamine on the performance of juvenile rainbow trout, Oncorhynchus mykiss. Aquaculture Research 41, 1582-1591.
Janssens, G. P. J., Buyse, J., Seynaeve, M., Decuypere, E., De Wilde, R., 1998. The reduction of heat production in exercising pigeons after L-Carnitine supplementation. Poultry Science 77, 578-584.
Jayaprakas,V., Sambhu, C., 1996. Growth response of white prawn, Penaeus indicus, to dietary L-carnitine. Asian Fisheries Science 9, 209-219.
Jayaprakas, V., Sambhu, C., Sunil Kumar, S., 1996. Effect of dietary L-carnitine on growth and reproductive performance of male (Oreochromis mossambicus). Fishery Technology 33, 84-90.
Ji, H., Bradley, T. M., Tremblay, G. C., 1996. Atlantic salmon (Salmo salar) fed l-carnitine exhibit altered intermediary metabolism and reduced tissue lipid, but no change in growth rate. The Journal of Nutrition 126, 1937-1950.
Ji, W. J., 1999. The influence of different fats sources in feed on the growth rate of juvenile and fatty acid composition of body fat of black sea bream (Sparus macroocephalus). Marine Fisheries Research 20, 69-74.
John, W., Tucker, Jr., 1999. Species Profile Grouper Aquaculture. SRAC Publication No. 721.
Jones, D. A., Kumlu, M., LeVay, L., Fletcher, D. J., 1997. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: A review. Aquaculture 155, 285-295.
Kanazawa, A., 1995. Nutrition of larval fish. In: Lim, C.E., Sessa, D.J. (Eds.), Nutrition and Utilization Technology in Aquaculture. AOAC Press, Champaign, Illinois, pp.50-59.
Kanazawa, A., 1997. Effects of docosahexenoic acid and phospholipids on stress tolerance of fish. Aquaculture 155, 129-134.
Kappes, R. M., Bremer, E., 1998. Response of Bacillus subtilis to high osmolarity: uptake of carnitine, crotonobetaine and gamma-butyrobetaine via the ABC transport system OpuC. Microbiology 144, 83-90.
Keshavanath, P., Renuka, P., 1998. Effect of dietary L-carnitine supplements on growth and body composition of fingerling rohu, Labeo rohita (Hamilton). Aquaculture Nutrition 4, 83-87.
Kiessling, K.H., Kiessling, A., 1993. Selective utilization of fatty acids in rainbow trout (Oncorhynchus mykiss Walbaum) red muscle mitochondria. Canadian Journal Zoology 71, 248-251.
Kikuchi, K., Honda, H., Kiyono, M., 1992. Effect of dietary protein level on growth and body composition of Japanese flounder, Paralichthy solivaceus. Suisanzoshoku 41, 345-351.
Kohno, H., Ordonio-Aguilar, R.S., Ohno, A., Taki, Y., 1997. Why is grouper larval rearing difficult: an approach from the development of the feeding apparatus in early stage larvae of the grouper, Epinephelus coioides. Ichthyological Research 44, 267-274.
Kolditz, C., Borthaire, M., Richard, N., 2008. Liver and muscle metabolic change induced by dietary energy content and genetic selection in rainbow trout (Oncorhynchus mykiss). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 294, R1154-R1164.
Kolkovski, S., Tandler, A., Kissil, G. W., Gertler, A., 1993. The effect of dietary exogenous digestive enzymes on ingestion, assimilation, growth and survival of gilthead sea bream (Sparus aurata, Sparidae, Linneaus) larvae. Fish Physiology and Biochemistry 12, 203-209.
Kolkovski, S., Tandler, A., Izquierdo, M. S., 1997a. Effects of live food and dietary digestive enzymes on the efficiency of microdiets for sea bass (Dicentrarchus labrax) larva. Aquaculture 148, 313-332.
Kolkovski, S., Arieli, A., Tandler, A., 1997b.Visual and chemical cues stimulate microdiet ingestion in sea bream larvae. Aquaculture International 5, 527-536.
Koven, W.M., 1991. The combined effect of dietary n-3 highly unsaturated fatty acids and age, on growth, survival and lipid composition in larval gilthead sea bream (Sparus aurata, Perciformes, Teleostei). PhD Thesis, Hebrew University, Israel.
Koven, W., Barr, Y., Lutzky, S., Ben-Atia, I., Weiss, R., Harel, M., Behrens, P., Tandler, A., 2001a. The effect of dietary arachidonic acid (20:4n-6) on growth, survival and resistance to handling stress in gilthead sea bream, Sparus aurata, larvae. Aquaculture 193, 107-122.
Koven, W. M., Kissil, G. W.,Tandler, A., 1989. Lipid and n-3 requirement of Sparus aurata larvae during starvation and feeding. Aquaculture 79, 185-191.
Koven, W.M., Kollkovski, S., Hadas, E., Gamsiz, K., Tandler, A., 2001b. Advances in the development of microdiets for gilthead sea bream, Sparus aurata: A review. Aquaculture 194, 107-121.
Koven, W., Barr, Y., Lutzky, S., Ben-Atia, I., Weiss, R., Harel, M., Behrens, P., Tandler, A., 2001c.The effect of dietary arachidonic acid (20:4 n-6) on growth, survival and resistance to handling stress in gilthead sea bream, (Sparus aurata) larvae. Aquaculture 193, 107-122.
Kraemer, W.J., Volek, J.S., 2000. L-Carnitine supplementation for the athlete a new perspective. Annals of Nutrition and Metabolism 44, 88-89.
Krajcovicova-Kudlackova, M., Simoncic, R., Bederova, A., Babinska, K., Beder, I., 2000. Correlation of carnitine levels to methionine and lysine intake. Physiological Research 49, 399-401.
Kvale, A., Yufera, M., Nygard, E., Aursland, K., Harboe, T., Hamre, K., 2006. Leaching properties of three different microparticulate diets and preference of the diets in cod (Gadus morhua L.) larvae. Aquaculture 251, 402-415.
Langdon, C., 2003. Microparticle types for delivering nutrients to marine fish larvae. Aquaculture 227, 259-275.
Lauff, M., Hoffer, R., 1984. Proteolytic enzymes in fish development and the importance of enzymes. Aquaculture 37, 335-346.
Lazo, J. P., Dinis, M. T., Holt, G. J., Faulk, C., Arnold, R., 2000. Co-feeding microparticulate diets with algae: toward eliminating the need of zooplankton at first feeding in larval red drum (Sciaenops ocellatus). Aquaculture 188, 339-351.
Lee, M. S., Lee, J. H., Kim, K. D., 2003. Effect of dietary essential fatty acids on growth, body composition and blood chemistry of juvenile starry flounder (Plachthys stellatus). Aquaculture 225, 269-281.
Léger, P., Bengtson, D.A., Simpson, K.L., Sorgeloos, P., 1986. The use and nutritional value of artemia as a food source. Oceanography and Marine Biology Annual Review 24, 521-623.
Leibovitz, B. E., 1998. L-Carnitine: The Energy Nutrition. Keats publishing, Los Angeles, USA.
Li, M. H., Robinson, E. H., 1998. Effects of supplemental lysine and methionine in low protein diets on weight gain and body composition of young channel catfish Ictalurus punctatus. Aquaculture 163, 297-307.
Liao, I. C., Su, H. M., Chang, E. Y., 2001. Techniques in finfish larviculture in Taiwan. Aquaculture 200, 1-31.
Lie, O., 1993. Changes in the fatty acid composition of neutral lipids and glycerolphosphorlipids in developing cod eggs. In: Physiological and Biochemical Aspects of Fish Development (Walther, B. T., Fyhn, H. J. eds), pp. 330-337. University of Bergen, Bergen, Norway.
Lin, H. Z., Liu, Y. J., He, J. G., Zheng, W. H., Tian, L. X., 2007. Alternative vegetable lipid sources in diets for grouper, Epinephelus coioides (Hamilton): effects on growth and muscle and liver fatty acid composition. Aquaculture Research 38, 1605-1611.
Lin, X., Odle, J., 2003. Changes in kinetics of carnitine palmitoyltransferase in liver and skeletal muscle of dogs (Canis familiaris) throughout growth and development. Journal of Nutrition 133, 1113-1119.
Lin, Y. H., Shiau, S. Y., 2003. Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses. Aquaculture 225, 243-250.
Lin, Y.H., Shiau, S.Y., 2007. Effects of dietary blend of fish oil with corn oil on growth and non-specific immune responses of grouper, Epinephelus malabaricus. Aquaculture Nutrition 13, 137-144.
Lohninger, A., Kaiser, E., Legenstein, E., Staniek, H., 1987. Carnitine, metabolism and function. In: Kaiser, E., Lohninger, A.(Eds.), Carnitine-Its Role in Lung and Heart Disorders. Karger Press, Basel, pp.1-25.
Lovatelli, A., 2008. Capture-based aquaculture global overview. FAO Fisheries and Aquaculture Department, Rome, Italy. pp. 230.
Lubzens, E., Tandler, A., Minkoff, G., 1989. Rotifers as food in aquaculture. Hydrobiology 187, 187-400.
Luo Z., Liu, Y.J., Mai, K.S., Tian, L.X., Liu, D.H., Tan, X.Y., 2004. Optimal dietary protein requirement of grouper Epinephelus coioides juveniles fed isoenergetic diets in floating net cages. Aquaculture Nutrition10, 247-252.
Luo, Z., Liu, Y. J., Mai, K. S., Tian, L. X., Liu, D. H., Tan, X. Y., Lin, H. Z., 2005. Effect of dietary lipid level on growth performance, feed utilization and body composition of grouper Epinephelus coioides juveniles fed isonitrogenous diets in floating net cages. Aquaculture International 13, 257-269.
Ma, J.J., Xu, Z.R., Shao, Q.J., Xu, J.Z., Hung, S.S.O., Hu, W.L., Zhuo, L.Y., 2008. Effect of dietary supplemental L-carnitine on growth performance, body composition and antioxidant status in juvenile black sea bream, Sparus macrocephalus. Aquaculture Nutrition 14, 464-471
Masuda, R., Takeuchi, T., Tsukamoto, T., Ishizaki, Y., Kanematsu, M., Imaizumi, K., 1998. Critical involvement of dietary docohexaenoic acid in the ontogeny of schooling behavior in the yellowtail. Journal of Fish Biology 53, 471-484.
Masuda, R., Ziemann, D. A., Ostrowski, A. C., 2001. Patchiness formation and development of schooling behavior in pacific threadfin Polydactylus sexfilis reared with different dietary highly unsaturated fatty acid contents. Journal of the World Aquaculture Society 32, 309-316.
McLean, E., Donaldson, E.M., Teskeredzic, E., Souza, L.M., 1993. Growth enhancement following dietary delivery of recombinant porcine somatotropin to diploid and triploid of coho salmon (Oncorhynchus kisutch). Fish Physiology Biochemistry 11, 363-369.
Medale, F., Boujard, T., Vallee, F., Blanc, D., Mambrini, M., Roem, A., Kaushik, S.J., 1998. Voluntary feed intake, nitrogen and phosphorus losses in rainbow trout (Oncorhynchus mykiss) fed increasing dietary levels of soy protein concentrate. Aquatic Living Resources 11, 239-246.
Miao, S., Tang, H. C., 2002. Bioeconomic analysis of improving management productivity regarding grouper Epinephelus malabaricus farming in Taiwan. Aquaculture 211, 151-169.
Millamena, O.M., 2002. Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides. Aquaculture 204, 75-84.
Milligan, C. L., Girard, S. S., 1993. Lactate metabolism in rainbow trout. Journal of Experimental Biology 180, 175-193.
Mommsen, T. P., Hochachka, P. W., 1988. The purine nucleotide cycle as two temporally separated metabolic units- a study on trout muscle. Metabolism-Clinical and Experimental 37, 552-556.
Montero, D., Kalinowski, T., Obach, A., Robaina, L., Tort, L., Caballero, M.J., Izquierdo, M. S., 2003. Vegetable lipid sources for gilthead sea bream (Sparus aurata): effects on fish health. Aquaculture 225, 353-370.
Montero, D., Robaina, L., Caballero, M. J., Gines, R., Izquierdo, M. S., 2005. Growth, feed utilization and flesh quality of European sea bass (Dicentrarchus labrax) fed diets containing vegetable oils: A time-course study on the effect of a re-feeding period with a 100% fish oil diet. Aquaculture 248, 121-134.
Mourente, G., Dick, J. R., Bell, J. G., Tocher, D. R., 2005. Effect of partial substitution of dietary fish oil by vegetable oils on desaturation and b-oxidation of [1-14C]18:3n-3 (LNA) and [1-14C]20:5n-3 (EPA) in hepatocytes and enterocytes of European sea bass (Dicentratchus labrax L.). Aquaculture 248, 173-186.
Mourente, G., Odriozola, J. M., 1990a. Effect of broodstock diets on lipid classes and their fatty acid composition in eggs of gilthead sea bream (Sparus aurafa L.). Fish Physiology Biochemistry 8, 93-101.
Mourente, G., Odriozola, J.M., 1990b. Effect of broodstock diets on total lipids and fatty acid composition of larvae of gilthead sea bream (Sparus aurata L.). Fish Physiology Biochemistry 8, 103-110.
Munilla-Moran, R., Stark, J. R., Barbour, A., 1990. The role of exogenous enzymes on the digestion of the cultured turbot larvae, Scophthalmus maximus L. Aquaculture 88, 337-350.
Nagasawa, K., Cruz-Lacierda, E. R., 2004. Diseases of cultured groupers- Introduction. In: Diseases of Cultured Groupers, edited by Nagasawa, K. and E. R. Cruz-Lacierda, Southeast Asian Fisheries Development Center, Aquaculture Department, Government of Japan Trust Fund, 1-2.
Nakamura, M.T., Nara, T.Y., 2004. Structure, function, and dietary regulation of delta-6, delta-5, and delta-9 desaturases. Annual Review of Nutrition 24, 345-376.
Navarro, J. C., Amat, F., Sargent, J. R., 1992. Fatty acid composition of coastal and inland Artemia sp. population from Spain. Aquaculture 102, 219-230.
Niu, J., Liu, Y. J., Tian, L.X., Mai, K.S., Zhou, Q. C., Yang, H. J., Ye, C. X., 2007. Maize oil can replace fish oil in the diet of grouper post-larvae (Epinephelus Coioides) without adversely affecting growth or fatty acid composition. American Journal of Agricultural and Biological Science 2, 81-87.
NRC (National Research Council), 1981. Nutrient Requirement of Cold water Fish. National Academy Press, Washington D.C. pp.63.
NRC (National Research Council), 1993. Nutrient Requirement of Fish. National Academy Press, Washington D.C. pp.114.
Ohtsuka, Y., Griffith, O., 1991. L-carnitine protection in ammonia intoxication. Biochemical Pharmacology 41, 833-835.
Ordonio-Aguilar, R., Kohno, H., Ohno, A., Moteki, M., Taki, Y., 1995. Development of grouper, Epinephelus coioides, larvae during changeover of energy sources. Journal of Tokyo University of Fisheries 82, 103-108.
Ottolenghi, F., Silvestri, C., Giordano, P., Lovatelli, A., New, M.B., 2004. The fattening of eels, groupers, tunas and yellowtails. In Captured-based Aquaculture. FAO, Rome. pp 308.
Owen, J. M., Adron, J. W., Sargent, J. R., Cowey, C. B., 1972. Studies on the nutrition of marine flat fish. The effect of dietary fatty acids on the tissue fatty acids of the plaice Pleuronectes platessa. Marine Biology13, 160-166.
Ozório, R.O.A., Booms, G.H.R., Huisman, E.A., Verreth, J.A.J., 2002. Changes in amino acid composition in the tissues of African catfish (Clarias gariepinus) as a consequence of dietary L-carnitine supplements. Journal of Applied Ichthyology 18, 140-147.
Ozório, R. O. A., Verreth, J. A. J., Aragão, C. R., Vermeulen, C. J., Schrama, J. W., Verstegen, M.W.A., 2001a. Dietary carnitine combined with dietary fat level altered plasma metabolite indices and decreased whole-body fatty acid composition of African catfish (Clarias gariepinus). Doctor thesis, Fish Culture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, the Netherlands.
Ozório, R. O. A., Van Eekeren, T. H. B., Huisman, E. A., Verreth, J. A. J., 2001b. Effects of dietary carnitine and protein energy: nonprotein energy ratios on growth, ammonia excretion and respiratory quotient in African catfish, Clarias gariepinus (Burchell) juveniles. Aquaculture Research 32, 406-414.
Ozório, R. O. A., Uktoseja, J. L. A., Huisman, E. A., Verreth, J. A. J., 2001c. Changes in fatty acid concentrations in tissues of African catfish Clarias gariepinus (Burchell), as a consequence of dietary carnitine, fat and lysine supplementation. British Journal of Nutrition 86, 623- 636.
Ozório, R. O. A., Van Ginneken, V. J. T., Bessa, R. J. B., Verstegen, M. W. A., Verreth, J. A. J., Huisman, E. A., 2010. Effect of exercise on L-carnitine and lipid metabolism in African catfish (Clarias gariepinus) fed different dietary L-carnitine and lipid levels. British Journal of Nutrition 103, 1139-1150.
Ozório, R. O. A., Van Ginneken, V., Van den Thillart, G.,Verstegen, M., Verreth, J., 2005. Dietary L-carnitine maintains energy and delays fatigue of exercised African catfish fed high fat diets. Scientia Agricola 62, 208-213.
Ozório, R. O. A., Verreth, J. A. J., Aragao, C. R., Vermeulen, C. J., Schrama, J. W., Verstegen, M. W. A., Huisman, E. A., 2003. Dietary carnitine supplements increased lipid metabolism and decreased protein oxidation in African catfish (Clarias gariepinus) juveniles fed high fat levels. Journal of Aquaculture in the Tropics 18, 225-238.
Paik, W.K., Kim, S., 1971. Protein methylation. Science 174, 114-119.
Paik, W.K., Kim, S.,1975. Protein methylation: chemical, enzymological, and biological significance. Advances in Enzymology & Related Areas of Molecular Biology 42, 227-286.
Panjwani, U., Thakur, L., Anand, J. P., 2007. Effect of L-carnitine supplementation on endurance exercise in normobaric/normoxic and hypobaric/hypoxic condition. Wilderness & Environmental Medicine 18, 169-176.
Peluso, C., Barbarisi, A., Savica, V., Reda, E., Nicolai, R., Benatti, P., Calvani, M., 2000. Carnitine: An osmolyte that plays a metabolic role. Journal of Cell Biochemistry 80, 1-10.
Peng, S., Chen, L., Qin, J.G., Hou, J., Yu, N., Long, Z., Ye, J., Sun, X., 2008. Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemical composition in juvenile black sea bream, Acanthopagrus schlegeli. Aquaculture 276, 154-161.
Planas, M., Ferreiro, M.J., Fernandez-Reiriz, M.J., Labarta, U., 1989. Evolucidn de la composicidn bioquimicay actividades enzimhticas enhuevos de rodaballo (Scophthalmus marimus L.) durante la embriog Cnesis. In: Acuicultura Intermareal (Yhfera, M. ed.), pp. 215-227. Inst. Cien.mar. Andalucia, Cidiz, Spain.
Planas, M., Garrido, J. L., Labarta, U., Ferreiro, M. J., Fernandez-Reiriz, M. J., Munilla, R., 1993. Changes of fatty acid composition during development in turbot (Scophthalmus maximus) eggs and larvae. In: Physioloical and Biochemical Aspects of Fish Development (Walther,B.T., Fyhn, H.J. eds), pp. 323-329. University of Bergen, Bergen, Norway.
Pierre, S., 2004. Study of the aquacole production techniques of grouper in Taiwan. Summer program by National Science Council of Taiwan, University of South Toulon.
Pierre, S., Gaillard, S., Prévot-ďalviseRE’, N., Aubert, J., Rostaing-capaillono, O., Leung-tack, D., Grillasca, J.P., 2008. Grouper aquaculture: Asian success and Mediterranean trials. Aquatic Conservation Marine and Freshwater Ecosystems 18, 297-308.
Post, G., 1987. Textbook of Fish Health. TFH, Neptune City, New Jersey, pp. 288.
Power, D. M., Llewellyn, L., Faustino, M., Nowell, M. A., Björnsson, B. Th., Einarsdottir, I. E., Canario, A. V. M., Sweeny, G. E., 2001. Thyroid hormones in growth and development of fish. Comparative Biochemistry Physiology Part C 130, 447-459.
Pudadera, B., Hamid, H. L. H. A., Yusof, H. R. H. M., 1999. Grouper culture development in Brunei Darussalam. Report of the APEC/NACA Cooperative Grouper Aquaculture Workshop, Hat Yai, Bangkok, Thailand, 53-56.
Puello-Cruz, A. C., Sangha, R. S., Jones, D. A., LeVay, L., 2002. Trypsin enzyme activity during larval development of Litopenaeus vannamei (Boone) fed on live feeds. Aquaculture Research 33, 333-338.
Rabie, M. H., Szilagyi, M., 1998. Effects of L-carnitine supplementation of diets differing in energy levels on performance, abdominal fat content, and yield and composition of edible meat of broilers. British Journal of Nutrition 80, 391-400.
Rainuzzo, J. R., Farestveit, R., Jorgensen, L., 1993. Fatty acid and amino acid composition during embryonic and larval development in plaice (Pleuronectes platessa). In: Physiological and Biochemical Aspects of Fish Development (Walther, B.T., Fyhn H.J. eds), pp. 290-295. University of Bergen, Bergen, Norway.
Rainuzzo, J. R., Reitan, K. I., Jorgensen, L., 1991. Fatty acid and lipid utilization in the yolk-sac stage of marine fish larvae. In: Larvi'91-Fish &Crustacean Larviculture Symposium (Lavens, P., Sorgeloos, P., Jaspers, E., Ollevier, F. eds), pp. 26-29. Special Publication No. 15, European Aquaculture Society, Ghent, Belgium.
Rainuzzo, J.R., Reitan, K.I., Olsen, Y., 1997. The significance of lipids at early stages of marine fish: a review. Aquaculture 155, 103-115.
Ramos, J., Thrush, M., Navas, J.M., Zanuy, S.,Carrillo, M., Bromage, N., 1993. Efecto del enriqucimiento lipidico de dietas artificiales sobre el crecimiento, fecundidad y calidad de puesta de la lubina (Dicentrarchus labrax). Actasdel IV Congreso Nacional de Aquiculture, 13-18.
Rasmussen, B. B., Wolfe, R. R., 1999. Regulation of fatty acid oxidation in skeletal muscle. Annual Review of Nutrition 19, 463-484.
Raso, S., Anderson, T.A., 2003. Effects of dietary fish oil replacement on growth and carcass proximate composition of juvenile barramundi, Lates calcarifer. Aquaculture Research 34, 813-819.
Rathore, R. M., Liaset, B., Hevrøy, E.M., El-Mowafi, A., Espe, M., 2010. Lysine limitation alters the storage pattern of protein, lipid and glycogen in on-growing Atlantic salmon. Aquaculture Research 41, e751-e759.
Rebouche, C.J., 1991. Ascorbic and carnitine biosynthesis. American Journal of Clinical Nutrition 54, 1147S-1152S.
Rebouche, C. J., Engel, A. G., 1980. Tissue distribution of carnitine biosynthetic enzymes in man. Biochimica et Biophysica Acta 630, 22-29.
Rebouche, C.J., Seim, H., 1998. Carnitine metabolism and its regulation in microorganisms and mammals. Annual Review of Nutrition 18, 39-61.
Regost, C., Arzel, J., Robin, J., Rosenlund, G., Kaushik, S.J., 2003a. Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot ( Psetta maxima). Growth performance, flesh fatty acid profile, and lipid metabolism. Aquaculture 217, 465-482.
Regost, C., Arzel, J., Cardinal, M., Rosenlund, G., Kaushik, S.J., 2003b. Total replacement of fish oil by soybean or linseed oil with a return to fish oil in turbot (Psetta maxima) . Flesh quality properties. Aquaculture 220, 737-747.
Reinecke, M., BjÖrn, T.B., Walton, W.D., Stephen, D.M., Isabel, N., Deborah, M., Joaquim, G., 2005. Growth hormone and insulin-like growth factors in fish: where we are and where to go. General and Comparative Endocrinology 142, 20-24.
Reitan, H. I., Rainuzzo, J. R., Oie, G., Olsen, Y., 1997. A review of nutritional effects of algae in marine fish larvae. Aquaculture 155, 207-221.
Richard, N., Mourente, G., Kaushik, S.,Corraze, G., 2006. Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European sea bass, Dicentrarchus Labrax L. Aquaculture 261, 1077-1087.
Rimmer, M. A., 2000. Review of grouper hatchery technology. SPC Live Reef Fish Information Bulletin 7, 14-19.
Rimmer, M. A., 2004. Advances in grouper aquaculture-Introduction. In: Advances in Grouper Aquaculture, edited by Rimmer, M. A., S. McBride and K. C. Williams, ACIAR Monograph, Australian Centre for International Agriculture Research, Canberra, Australia, 1-5.
Rimmer, M.A., Williams, K.C., Phillips, M.J., 1998. Proceedings of the Grouper Aquaculture Workshop held in Bangkok, Thailand.
Rincker, M. J., Carter, S. D., Real, D. E., Nelssen, J. L., Tokach, M. D., Goodband, R. D., Dritz, S. S., Senne, B. W., Fent, R. W., Pettey, L. A., Owen, K. Q., 2003. Effects of increasing dietary l-carnitine on growth performance of weanling pigs. Journal of Animal Science 81, 2259-2269.
Roberts, R. J., Bullock, A. M., 1989. Nutritional pathology. In:Halver, J.E. Fish Nutrition. Academic Press, San Diego. pp. 423-473.
Robin, J.H., Vincent, B., 2003. Microparticulate diets as first food for gilthead sea bream larvae (Sparus aurata): Study of fatty acid incorporation. Aquaculture 225, 463-474.
Rodehutscord, M., 1995. Effects of supplemental dietary L-carnitine on the growth and body composition of rainbow trout (Oncorhynchus mykiss) fed high-fat diets. Journal of Animal Physiology and Animal Nutrition 73, 276-279.
Rodehutscord, M., Becker, A., Pack, M., Pfeffer, E., 1997. Response of rainbow trout (Oncorhynchus mykiss) to supplements of individual essential amino acids in a semi-purified diet, including an estimate of the maintenance requirement for essential amino acids. Journal of Nutrition 127, 1166-1175.
Rodnick, K. J., Williams, S. R., 1999. Effects of body size on biochemical characteristics of trabecular cardiac muscle and plasma of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A 122, 407-413.
Rodriguez, C., Pérez, J. A., Izquierdo, M. S., Mora, J., Lorenzo, A., Fernández-Palacios, H., 1994. Essential fatty acid requirements of larval gilthead sea bream (Sparus aurata). Aquaculture Research 25, 295-304.
Sachan, D. L., Mynatt, R. L., 1993. Wheat gluten-based diet retarded ethanol-metabolism by altering alcohol dehydrogenase and not carnitine status in adult-rats. Journal of the American College of Nutrition 12, 170-175.
Sachan, D. S., Hongu, N., 2000. Increases in VO2 max and metabolic markers of fat oxidation by caffeine, carnitine, and choline supplementation in rats. Journal of Nutritional Biochemistry 11, 521-526.
Sachan, D. S., Hoppel, C. L., 1980. Carnitine biosynthesis. Hydroxylation of N6-trimethyllysine to 3-hydroxy-N6-trimethyl-lysine. Biochemical Journal 188, 529-534.
Sadovy, Y., 2000. Regional survey for fry/fingerling supply and current practices for grouper mariculture: evaluating current status and long-term prospects for grouper mariculture in South East Asia. Final report to the Collaboration APEC grouper research and development network, Department of Ecology and Biodiversity, The University of Hong Kong, Hong Kong, China.
Sadovy, Y., Eklund, A. M., 1999. Synopsis of biological data on the nassau grouper, Epinephelus striatus (Bloch, 1792), and the jewfish, E. itajara (Lichtenstein, 1822). NOAA Technical Report NMFS 146.
Salhi, M., Izquierdo, M.S., Hernadez-Cruz, C. M., Gonzalez, M., Fernandez-Palacios, H., 1994. Effect of lipid and n-3 HUFA levels in micro diets on growth, survival and fatty acid composition of larval gilthead sea bream (Sparus aurata). Aquaculture 124, 275-282.
Sampath, H., Ntambi, J. M., 2005. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annual Review Nutrition 25, 317-340.
Santulli, A., D’Amelio, V., 1986. Effects of supplemental dietary carnitine on the growth and lipid metabolism of hatchery reared sea bass (Dicentrarchus labrax L.). Aquaculture 59, 177-186.
Santulli, A., Modica, A., Curatolo, A., D’Amelio, V., 1988. Carnitine administration to sea bass (Dicentrarchus labrax L.) during feeding on a fat diet: modification of plasma lipid levels and lipoprotein pattern. Aquaculture 68, 345-351.
Santulli, A., Puccia, E., D’Amelio, V., 1990. Preliminary study on the effect of short-term carnitine treatment on nucleic acids and protein metabolism in sea bass (Dicentrarchus labrax L.) fry. Aquaculture 87, 85-89.
Sargent, J.R. 1995. Origins and functions of lipids in fish eggs: nutritional implications, p. 353-372. In Bromage, N.R., Roberts, R.R. (Eds.), Broodstock Management and Egg and Larval Quality, Blackwell, Oxford.
Sargent, J.R., Bell, J.G., Bell, M.V., Henderson, R.J., Tocher, D.R. 1995. Requirement criteria for essential fatty acid. Journal of Applied Ichthyology 11, 183-189.
Sargent, J.R., Bell, J.G., Bell, M.V., Henderson, R.J., Tocher, D.R. 1993a. The metabolism of phospho lipids and polyunsaturated fatty acids in fish, v: 43, pp. 103-124. In Lahlou, B.,Vitiello, P. (Eds.), Aquaculture: Fundamental and Applied Research, Coastal and Estuarine Studies. American Geophysical Union, Washington DC.
Sargent, J.R., Bell, M.V., Tocher, D.R. 1993b. Docosahexaenoic acid and the development of brain and retina in marine fish. pp.139-149. In Drevon, C.A., Baksaas, I., Krokan, H.E. (Eds.), Omega-3 Fatty Acids: Metabolism and Biological Effects. Birkhäuser Verlag Basel, Switzerland.
Sargent, J. R., Bell, J. G., Bell, M. V., Henderson, R. J., Tocher, D. R., 1995. Dietary origins and functions of long-chain (n-3) polyunsaturated fatty acids in marine fish. Journal of Marine Biotechnology 3, 26-28.
Sargent, J.R., Bell, G., McEvoy, L., Tocher, D., Estevez, A., 1999a. Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177, 191-199.
Sargent, J. R., Henderson, R. J., Tocher, D. R., 1989. In“Fish Nutrition,” 2nd ed. (Halver, J. E. ed.), Academic Press, New York. pp. 153.
Sargent, J. R., McEvoy, L. A., Bell, J. G., 1997. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155, 117-127.
Sargent, J.R., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., Tocher, D., 1999b. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179, 217-229.
Sargent, J. R., Tocher, D. R., Bell, J. G., 2002. The Lipid. In Fish Nutrition, 3rd Edition, Halver, J. E., Hardy, R. W. eds. San Diego, CA: Academic Press. pp. 181-257.
Scaife, J. R., Onibi, G. E., Murray, I., Fletcher, T. C., Houlihan, D.F., 2000. Influence of α-tocopherol acetate on the short-and long-term storage properties of fillets from Atlantic salmon Salmo salar fed a high lipid diet. Aquaculture Nutrition 6, 65-71.
Schauer, P. S., Simpson, K. L., 1985. Bioaccumulation and bioconversion of dietary labeled fatty acids in artemia and winter flounder (Pseudopleuronectes americanus). Canadian Journal of Fisheries and Aquatic Sciences 42, 1430-1438.
Schlechtriem, C., Bresler, V., Fishelson, L., Rosenfeld, M., Becker K., 2004. Protective effects of dietary L-carnitine on tilapia hybrids (Oreochromis niloticus × Oreochromis aureus)reared under intensive pond-culture conditions. Aquaculture Nutrition 10, 55-63.
Schmitz, G., Ecker, J., 2008. The opposing effects of n-3 and n-6 fatty acids. Progress in Lipid Research 47, 147-155.
Selcuk, Z., Tiril, S. U., Alagil, F., Belen, V., Salman, M., Cenesiz, S.,Muglali, O.H., Yagci, F.B., 2010. Effects of dietary L-carnitine and chromium picolinate supplementations on performance and some serum parameters in rainbow trout (Oncorhynchus mykiss). Aquaculture International 18, 213-221.
Seki, H., Tani, Y., Arita, M., 2009. Omega-3 PUFA derived anti-inflammatory lipid mediator resolving E1. Prostaglandins and Other Lipid Mediators 89, 126-130.
Shapawi, R., Mustafa, S., Ng, W. K., 2008. Effects of dietary fish oil replacement with vegetable oils on growth and tissue fatty acid composition of humpback grouper, Cromileptes altivelis (Valenciennes). Aquaculture Research 39, 315-323.
Siddhuraju, P., Becker, K., 2001. Preliminary nutritional evaluation of mucuna seed meal (Mucuna pruriensvar. utilis) in common carp (Cyprinus carpio L.): an assessment by growth performance and feed utilization. Aquaculture 196, 105-123.
Sim, S.Y., Kongkeo, H., Rimmer, M., 2005. Brief overview of recent grouper breeding developments in Thailand. Aquaculture Asia Magazine July-September, 24-29.
Souffleux, G.,1994. Benefit of using Rossovet carnitine for horses in preparation for amateur carriage-racing. Pratique Vétérinaire Équine 26, 241-248.
Spriet, L., Perry, C., Talanian, J., 2008. Legal pre-event nutritional supplements to assist energy metabolism. Essays in Biochemistry 44, 27-44.
Steffens, W. 1989. Principles of Fish Nutrition. Ellis Horwood, Chichester, England, pp. 384.
Stein, R., Englard, S., 1982. Properties of rat 6-N-trimethyl-L-lysine hydroxylases: similarities among the kidney, liver, heart, and skeletal muscle activities. Archives of Biochemistry and Biophysics 217, 324-331.
Storebakken, T., 2002. Atlantic salmon, Salmo salar. In: Webster, C.D., Lim, C.E. (Eds.), Nutrient Requirements and Feeding of Finfish for Aquaculture. CABI Publishing, New York, pp.79-102.
Stubhaug, I., Lie, Ø., Torstensen, B. E., 2007. Fatty acid productive value and β-oxidation capacity in Atlantic salmon (Salmon salar L.) tissues fed on different lipid sources along the whole growth period. Aquaculture Nutrition 13, 145-155.
Su, H.M., 1999. Grouper Aquaculture in Chinese Taipei. In Report of the APEC/NACA Cooperative Grouper Aquaculture Workshop, Hat Yai, Thailand, 7-9 April 1999; Collaborative APEC Grouper Research and Development Network. Network of Aquaculture Centers in Asia-Pacific, pp.127-130.
Su, H.M., Su, M.S. Liao, I.C., 1997. Preliminary results of providing various combinations of live foods to grouper (Epinephelus coioides) larvae. Hydrobiologia 358, 301-304.
Suwirya, K., Giri, N.A., 2005. Feed development and application for juvenile grouper. Aquaculture Asia Magazine January-March, 34-35.
Szlaminska, M., Przybyl, A., 1986. Feeding carp (Cyprinus carpio L.) larvae with an artificial dry food, living zooplankton and mixed food. Aquaculture 54, 77-82.
Tacon, A. G. J., 1996. Lipid nutritional pathology in farmed fish. Archives of Animal Nutrition 49, 33-39.
Tacon, G.J., Dominy, W.G., 1999. Overview of world aquaculture and aqua feed production. In Book of abstracts. World of Aquaculture, 26 April-2 May 1999, Sidney, Australia. World Aquaculture Society, Baton Rouge, LA, pp. 853.
Takeuchi, T., Masuda, R., Ishizaki, T., Watanabe, M., Kanematsu, K., Imaizumi, K., Tsukamoto, K., 1996. Determination of the requirement of larval striped jack for eicosapentaenoic acid and docosahexaenoic acid using enriched artemia nauplii. Fisheries Science 62, 760-765.
Takeuchi, T., Toyota, M., Satoh, S., 1990. Requirement of juvenile red sea bream, Pagrus major for eicosapentaenoic and docosahexaenoic acids. Nippon Suisan Gakkaishi 56, 1263-1269.
Tanphaichitr, V., Broquist, H. P., 1973. Role of lysine and e-N-trimethyllysine in carnitine biosynthesis. II. Studies in the rat. Journal of Biological Chemistry 248, 2176-2181.
Tanphaichitr, V., Horne, D. W., Broquist, H. P., 1971. Lysine, a precursor of carnitine in the rat. Journal of Biological Chemistry 24, 6364-6366.
Teisson, O., 1995. Elevage du mérou á Taiwan. Rapport de stage de fin ďétude D.E.S.T.A. Institut des Sciences et Techniques de la Mer. Université de Montpellier II.
Teshima, S., Ishikawa, M., Koshio, S., 2000. Nutritional assessment and feed intake of microparticulate diets in crustacean and fish. Aquaculture Research 31, 691-702.
Tocher, D. R., 1995. Glycerophospholipid metabolism. In Biochemistry and Molecular Biology of Fishes, Volume 4: Metabolic and Adaptation Biochemistry, Hochachka, P. W., Mommsen, T. P. eds. Amsterdam, the Netherlands: Elsevier Press. pp. 119-157.
Tocher, D.R., 2003. Metabolism and functions of lipids and fatty acids in teleost Fish. Reviews in Fisheries Science 11, 107-184.
Tocher, D. R., 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research 41, 717-732.
Tocher, D.R., Harvie, D.G., 1988. Fatty acid compositions of the major phosphoglycerides from fish neural tissues: (n-3) and (n-6) polyunsaturated fatty acids in rainbow trout (Salmo gairdneri) and cod (Gadus morhua) brains and retinas. Fish Physiology and Biochemistry 5, 229-239.
Tocher, D. R., Sargent, J. R., 1984. Analysis of lipids and fatty acids in ripe roes of some northwest European marine fish. Lipids 19, 492-499.
Tocher, D. R., Fraser, A. J., Sargent, J. R., Gamble, J. C., 1985a. Fatty acid composition of phospholipids and neutral lipids during embryonic and early larval development in Atlantic herring (Clupea harengus, L.). Lipids 20, 69-74.
Tocher, D. R., Fraser, A. J., Sargent, J. R., Gamble, J. C., 1985b. Lipid class composition during embryonic and early larval development in Atlantic herring (Clupea harengus, L.). Lipids 20, 84-89.
Tocher, D. R., Zheng, X., Schlechtriem, C., Hastings, N., Dick, J. R., Teale, A. J., 2006. Highly unsaturated fatty acid synthesis in marine fish: cloning, functional characterization, and nutritional regulation of fatty acyl delta 6 desaturase of Atlantic cod (Gadus morhua L.). Lipids 41, 1003-1016.
Torreele, E., Van Der Sluiszen, A., Verreth, J., 1993. The effect of dietary l-carnitine on the growth performance in fingerlings of the African catfish (Clarias gariepinus) in relation to dietary lipid. British Journal of Nutrition 69, 289- 299.
Tuan, L.A., Williams, K.C., 2007. Optimum dietary protein and lipid specifications for juvenile malabar grouper (Epinephelus malabaricus). Aquaculture 267, 129-138.
Tucker, J. W. Jr., 1999. Species profile: grouper aquaculture. Southern Regional Aquaculture Center (SRAC), Publication No. 721.Fort Pierce, Florida, USA, Division of Marine Science Harbor Branch Oceanographic Institution.
Tucker, J.W. Jr., Lellis, W.A., Vermeer, G.K., Roberts, D.E., Woodward, P.N., 1997. The effects of experimental starter diets with different levels of soybean or menhaden oil on red drum (Sciaenops ocellatus). Aquaculture 149, 323-339.
Turner, N., Bruce, C. R., Beale, S. M., 2007. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Diabetes 56, 2085-2092.
Twibell, R. G., Brown, P. B., 2000. Effects of dietary carnitine on growth rates and body composition of hybrid striped bass (Morone saxatilis male×M. chrysops female). Aquaculture 187, 153-161.
Usman, Rachmansyah, Laining, A., Ahmad, T., Williams, K.C., 2005. Optimum dietary protein and lipid specifications for grow-out of humpback grouper Cromileptes altivelis (Valenciennes). Aquaculture Research 36, 1285-1292.
Van Kempen, T. A. T. G., Odle, J., 1995. Carnitine affects octanoate oxidation to carbon dioxide and dicarboxylic acids in colostrum-deprived piglets: In vivo analysis of mechanisms involved based on CoA- and carnitine-ester profiles. Journal of Nutrition 125, 238-250.
Vergara, J.M., Robaina, I., Izquierdo, M., de La Higuera, M., 1996. Protein sparing effect of lipids in diets for fingerlings of gilthead sea bream. Fisheries Science 62, 624-628.
Verheul, A., Rombouts, F. M., Beumer, R. R., Abee, T., 1995. An ATP-dependent L-carnitine transporter in Listeria monocytogenes Scott-A is involved in osmoprotection. Journal of Bacteriology 177, 3205-3212.
Villeneuve, L., Gisbert, E., Le Delliou, H., Cahu, C. L., Zambonino Infante, J. L., 2005. Dietary levels of all-trans retinal affect retinoid nuclear receptor expression and skeletal development in European sea bass larvae. British Journal of Nutrition 93, 1-12.
Wanakowat, J., Boonyaratpalin, M., Watanabe, T., 1993. Essential fatty acid requirement of juvenile sea bass. In:Fish Nutrition in Practice, INRA, Paris, 807-817.
Wang, C., Xie. S., Zheng, K., Zhu, X., Lei, W., Yang, Y., Liu, J., 2005. Effects of live food and formulated diets on survival, growth and protein content of first-feeding larvae of Plelteobagrus fulvidraco. Journal of Applied Ichthyology 21, 210-214.
Wang, J. I., Song, Z. D., Li, P. Y., Li, H. D., Li, B. S., Liu, X. D., Miao, S. Y., Zhang, L. M., 2010. The effect of fat content of formula feed on the growth of grouper Epinephelus awoara at low temperature. Transactions of Oceanology and Limnology 1, 7-14.
Wang, Y., Heigenhauser, G. J. F., Wood, C. M., 1994. Integrated responses to exhaustive exercise and recovery in rainbow trout white muscle: Acid base, phosphogen, carbohydrate, lipid, ammonia, fluid volume and electrolyte metabolism. Journal of Experimental Biology 195, 227-259.
Watanabe, T. 1982. Lipid nutrition in fish. Comparative Biochemistry and Physiology Part B 73, 3-15.
Watanabe, T., 1993. Importance of docosahexaenoic acid in marine fish larvae. Journal of the World Aquaculture Society 24, 152-161.
Watanabe, T., Kiron, V., 1994. Prospects in larval fish dietetics. Aquaculture 124, 223-251.
Watanabe, T., Kiron, V., 1995. Red sea bream (Pagrus major). In: Bromage, N. R. and Roberts, R. J. (eds.), Broodstock Management and Egg and Larval Quality. Blackwell, Oxford, 398-413.
Watanabe, T., Koizumi, T., Suzuki, H., Satoh, S., Takeuchi, T., Yoshida, N., Kitada, T., Tsukashima, Y., 1985. Improvement of quality of red sea bream eggs by feeding broodstock on a diet containing cuttlefish meal on a raw krill shortly before spawning. Bulletin of the Japanese Society Scientific Fisheries 51, 1511-1521.
Watanabe, T., Takeuchi, T., Saito, M., Nishimura, K., 1984. Effect of low protein-high calorie or essential fatty acid deficient diet on reproduction of rainbow trout. Bulletin of the Japanese Society Scientific Fisheries 50, 1207-1215.
Watanabe, W. O., Ellis, S. C., Chaves, J., 2001. Effects of dietary lipid and energy to protein ration on growth and feed utilization of juvenile mutton snapper (Lutjanus analis) fed isonitrogenous diets at two temperatures. Journal of the World Aquaculture Society 32, 30-40.
Webster, C. D., Lovell, R. T., 1990. Quality evaluation of four sources of brine shrimp Artemia spp. Journal of the World Aquaculture Society 21, 180-185.
Williams, A., Begg, G., Pears, R., Garrett, R., Larson, H., Griffiths, S., Lloyd, J., 2004a. Groupers. Key Species: A Description of Key Species Groups in the Northern Planning Area. National Oceans Office, Hobart, Australia, 147-155.
Williams, K. C., Barlow, C. G., Rodgers, L., 2002. Efficacy of crystalline and protein-bound amino acids for amino acid enrichment of diets for barramundi Asian sea bass (Lates calcarifer Bloch). Aquaculture Research 32, 415-429.
Williams, K. C., Barlow, C. G., Rodgers, L. Hockings, I., Agcopra, C., Ruscoe, I., 2003. Asian sea bass, Lates calcarifer perform well when fed pelleted diets high in protein and lipid. Aquaculture 225, 191-206.
Williams, K. C., Irvin, S., Barclay, M., 2004b. Polka dot grouper Cromileptes altivelis fingerlings require high protein and moderate lipid diets for optimal growth and nutrient retention. Aquaculture Nutrition 10, 125-134.
Wilson, R. P., 2002. Amino acids and proteins. In: Halver, J. E., Hardy, R. W. (Eds.), Fish Nutrition, (third edition) Academic Press, San Diego, CA, pp. 143-179.
Wolf, G., Berger, C. R., 1961. Studies on the biosynthesis and turnover of carnitine. Archives Biochemistry Biophysics 92, 360-365.
Wu, F. C., Ting, Y. Y., Chen, H. Y., 2002. Docosahexaenoic acid is superior to eicosapantaenoic acid as the essential fatty acid for growth of grouper, Epinephelus malabaricus. The American Society for Nutritional Sciences 132, 72-79.
Munsiri, P., Lovell, R. T., 1993. Comparison of satiate and restricted feeding of channel catfish with diets of varying protein quantity in production ponds. Journal of the World Aquaculture Society 24, 459-465.
Wynn, J. P., Ratledge, C., 2000. Evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18: 3 to 20: 3 elongase. Microbiology 146, 2325-2331.
Yang, S. D., Liu, F. G., Liou, C. H., 2011. Assessment of dietary lysine requirement for silver perch (Bidyanus bidyanus) juveniles. Aquaculture 312, 102-108.
Yang, S. D., Wen, Y. C., Liou, C. H., Liu, F. G., 2009. Influence of dietary L-carnitine on growth, biological traits and meat quality in tilapia. Aquaculture Research 40, 1374-1382.
Yap, W.G. 2002. Role of mariculture in securing food supply and reducing poverty in the Philippines. In World Aquaculture 2002 International Aquaculture Conference and Exposition. World Aquaculture Society, Beijing, China. pp. 864.
Yu´fera M., Kolkovski S., Ferna´ndez-Dı´az C., Dabrowski K., 2002. Free amino acid leaching from a protein-walled microencapsulated diet for fish larvae. Aquaculture 214, 273-287.
Yu´fera, M., Ferna´ndez-Dı´az, C., Pascual, E., Sarasquete, M.C., Moyano, F.J., Dı´az, M., Alarco´n, F.J., Garcı´a-Gallego, M., Parra, G., 2000. Towards an inert diet for first-feeding gilthead seabream (Sparus aurata L.)larvae. Aquaculture Nutrition 6, 143-152.
Zambonino Infante, J. L., Cahu, C. L., 1994a. Development and response to a diet change of some digestive enzymes in sea bass (Dicentrachus labrax) larvae. Fish Physiology and Biochemistry 12, 399-408.
Zambonino Infante, J. L., Cahu, C. L., 1994b. Influence of diet on pepsin and some pancreatic enzymes in sea bass (Dicentrachus labrax) larvae. Comparative Biochemistry and Physiology Part A 109, 209-212.
ZamboninoInfante, J. L., Cahu, C. L., 1999. High dietary lipid levels enhance digestive tract maturation and improve Dicentrarchus labrax larval development. Journal of Nutrition 129, 1195-1200.
Zeyner, A., Harmeyer, J., 1999. Metabolic functions of L-carnitine and its effects as feed additive in horses. A review. Archives of Animal Nutrition 52, 115-138.
Zhang, D.M., Yoshimatsu, T., Furuse, M., 2006. The presence of endogenous L-carnitine in live foods used for larviculture. Aquaculture 255, 272-278.
Zhou, L. H., Hu, J. C., Chen, X. H., 1995. The most suitable content of fat in the artificial diets to culture Epinephelus awoara. Journal of Xiamen Fisheries College 17, 13-16.
Zhou, Q. C., Wu, Z. H., Chi, S.Y., Yang, Q. H., 2007. Dietary lysine requirement of juvenile cobia (Rachycentron canadum). Aquaculture 273, 634-640.

王慶奎,陳成勛,邢克智,白東清,趙尊鵬,2010。餌料中蛋白質、糖類、脂類對點帶石斑 (Epinephelus malabaricus)生長的影響。飼料工業,第31卷,第14期,7-10。
李建德,2008。飼料中不同油脂來源和含量及投餵頻率對藍身大石斑成長與體組成之影響。國立臺灣海洋大學水產養殖學系碩士學位論文。
謝偉良,2005。添加肉鹼改進石斑魚對脂質及植物性蛋白質利用之研究。國立臺灣海洋大學水產養殖學系碩士學位論文。
吳豐成,2002。瑪拉巴石斑稚魚之必需脂肪酸營養及其對免疫反應
之影響。國立中山大學海洋生物研究所博士論文。
(此全文限內部瀏覽)
電子全文
全文檔開放日期:不公開
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *