字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:匡恆
研究生英文姓名:Kuag, Heng
中文論文名稱:三明治結構應用於船用風機振動研究
英文論文名稱:Study on Sandwich Structures for Vibrations of a Marine Type Wind Turbine
指導教授姓名:宋世平
口試委員中文姓名:教授︰張建仁
業界委員︰張君名
副教授︰宋世平
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學號:4054Q003
請選擇論文為:應用型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:62
中文關鍵詞:三明治結構阻尼振動分析風力發電
英文關鍵字:Sandwich StructureDampingvibration analysiswind power
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏收藏:0
本文探討應用不同減振材料應用於船用風機可行性評估。由於應用綠色能源於船上一直都是非常重要之議題。由於微型風機安裝於船艛上層結構將會造成船體振動。因此評估船用風機應用於船體結構振動將是首要考慮之議題。由於減振器主要組成以複合材料為主,其結構型式為三明治結構,其三明治結構組成包含拘束層與阻尼層,其中拘束層主要增加結構剛性而阻尼層則增加結構阻尼。當應用三明治結構於風機塔柱上,其結構體遭受外力動態負載產生變形,阻尼層中的彈性材料會將其能量耗損轉換成熱能,進一步降低塔柱簡諧振動而產生的動態反應。因此本文利用有限元素法計算結構之自然模態,然後進一步測試不同材料之減振特性如橡膠、玻璃纖維及高分子材質。為了驗證本文數值模式之準確性,分別與實驗及相關參考文獻進行材料模式驗證比較。由數值結果證明,本文提出之三明治減振設計有效抑制風機塔柱遭受外力動態負載產生之響應,進一步驗證雙層結構產生之耦合振動問題,三明治減振特性有效抑制結構耦合產生之動態響應。因此,本研究之結果具有其工程設計參考價值與應用。
In this thesis, we apply the multi-layer sandwich structure to reduce the vibration of the marine type wind turbine. It is always a very important issue that a mechanism producing the sustainable energy is applied to merchant ships. However, a very serious vibration problem exists in the marine type wind turbine. The main problem is that the vibration of the marine type wind turbine will cause the structure vibration for the upper bridge. Therefore, to reduce the vibration is the main aim to be solved for this thesis.
The sandwich structure includes at least two types of material with the passive constrained layer damping (PCLD) and the viscosity damping layer, and properties of PCLD and viscosity damping layer increase the stiffness and damping, respectively. When we apply the sandwich structure on the marine type wind turbine, the structure is subjected to the dynamic loading and deformed. The viscoelastic material demonstrates the conversion of kinetic energy into thermal energy. It, then, reduces the vibration from the wind turbine towers further avoid the radiation noise to the upper bridge. Therefore, in this thesis we used FEM solving the vibration natural modes (VNM), and tested the vibrations of three types of materials, rubber, fiber-reinforced plastic (FRP) and polymer by the harmonic test. In order to verify the numerical accuracy and stability, we compared the analyzed results with numerical solutions of previous literatures. The results are shown that the proposed method reduces vibration efficiently. Hence, the numerical results of this thesis are valuable for its engineering application.
謝誌 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
符號對照表 IX
第一章緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 7
1.4 本文架構 11
第二章 基礎理論 12
2.1 單自由度無阻尼自由振動 12
2.2 單自由度無阻尼強迫振動 13
2.3 多自由度無阻尼系統之振動 15
2.4 多自由度有阻尼強迫振動系統 15
2.5 模態分析 17
2.6 有限元素法 18
第三章 數值計算 21
3.1 實驗設備與驗證 21
3.2 三明治結構基底層及拘束層模擬 22
3.3 高分子材料模試驗證 26
3.4 玻璃纖維材料模式驗證 28
3.5 橡膠三明治結構之動態反應 32
3.6 玻璃纖維三層三明治結構 37
3.7 支撐柱與減振材分析 47
3.8 小結 58
第四章 結論與未來展望 60
4.1 結論與未來展望 60
參考文獻 61

[1] http://www.cwb.gov.tw/V7/climate/climate_info/climate_change/change_3.html http://contest.cpmah.org.tw/~C2017b048/page1-4.html
[2] IEA-OES “Ocean Energy- Opportunity, Present Status and Challenges”, 2006.
[3] Wikipedia-Tidal Power, http://en.wikipedia.org/wiki/Tidal_power
[4] http://ge.tcivs.tc.edu.tw/saveenergy/regenerate.html
[5] http://baike.baidu.com/view/335706.htm
[6] 涂泊樺,顏志偉 (2007)。淺談我國海洋能源之開發前景,物理雙月刊。
[7] Wikipedia-wave power, http://en.wikipedia.org/wiki/Wave_power
[8] http://nuclear.udn.com/magimages/1/PHOTO/1077/1077/1252.jp
[9] https://www.therenewableenergycentre.co.uk/wind-power/
[10] 劉瑞弘,風力機結構負載與共振模態之分析。
[11] E.M. Kerwin, “Damping of Flexural Waves by a Constrained Viscoelastic Layer” Journal Of The Acoustical Society of America, Vol.31, No.7,pp.952-962. 1959
[12] R.A. DiTaranto, “Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite Length Beams” Transactions of The ASME, Journal of Applied Mechanics, Vol.87, pp.881-886. 1965
[13] D.J. Mead and S. Markus, “The Forced Vibration of a Three-Layer Damped Sandwich Beam with Arbitrary Boundary Conditions” Journal of Sound and Vibration, Vol.10, No.2, pp.169-175. 1969
[14] D.K. Rao, “Frequency and Loss Factors of Sandwich Beams under Various Boundary Conditions” Journal Mechanical Engineering Science, Vol.20, No.5, pp.271-282. 1978
[15] C.D. Johnson, “D.A. Kienholzt, “Frequency and Loss Factors of Sandwich Beams under Various Boundary Conditions” AIAA JOURNAL, Vol.20, No9, pp.1284-1290. 1982
[16] Mace, M. "Damping of beam vibrations by means of a thin constrained viscoelastic layer: evaluation of a new theory." Journal of sound and vibration , Vol .172 ,No.5, pp.577-591. 1994
[17] L. Zheng ,Q. Qiu, H. Wan and D. Zhang, “Damping Analysis of Multilayer Passive Constrained Layer Damping on Cylindrical Shell Using Transfer Function Method” ASME Journal of Vibration and Acoustics, Vol.136, 3, 031001,2014.
[18] G.M. Luo, C.H. Kuo, “Application of Bionic Design to FRP T-Joints” ASME Applied Composite Materials Vol.25, 5,983-999,2017.
[19] Divinycell, H Fiberglass supply H. Grade. Divinycellr. Technical Manual Manual- 11.99-1
(此全文20240729後開放外部瀏覽)
電子全文
全文檔開放日期:2024/07/29
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *