字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:陳惠美
研究生英文姓名:Chen, Hui-Mei
中文論文名稱:劍蝦蛋白質鑑定及其潛在活性胜肽之分析
英文論文名稱:Analysis of Proteins and Potential Bioactive Peptides from Spear shrimp (Parapenaeus spp.)
指導教授姓名:張祐維
口試委員中文姓名:業界委員︰楊承熹
教授︰宋文杰
副教授︰陳泰源
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:40542026
請選擇論文為:學術型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:68
中文關鍵詞:劍蝦蛋白質鑑定活性胜肽BIOPEP-UWM
英文關鍵字:spear shrimpprotein identificationbioactive peptidesBIOPEP-UWM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏收藏:0
劍蝦在台灣則是西部沿岸有產,台灣最大產地則是位於基隆,其蝦體色多呈粉紅色,蝦頭具有尖銳的尖刺,劍蝦味道鮮甜肉質軟是常見的料理素材,據文獻指出劍蝦營養豐富具有高蛋白及大量的胺基酸,而實驗證明生鮮蝦肉檢測粗蛋白為22.95%,將其冷凍乾燥後蝦肉粗蛋白可高達80.87%,將凍乾蝦肉粉碎,利用十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) 分析,由電泳圖得知蝦肉蛋白質表現量在分子量324 kDa至10 kDa之間有多條明顯的蛋白帶,將顯著蛋白帶切下進行膠內消化、胜肽萃取以蛋白質體學技術進行蛋白質鑑定,蝦肉中含有肌凝蛋白、肌動蛋白、肌鈣蛋白、卵黃蛋白原等蛋白質。將被鑑定出來的蛋白質以BIOPEP-UWM進行潛在活性胜肽分析和模擬酵素水解。結果顯示劍蝦肉可能具有抗高血壓、降血糖、抗氧化、抗血栓等活性胜肽,其中以降血糖和抗高血壓的機率較高。酵素模擬方面以30種不同酵素進行模擬水解,結果顯示Pepsin 以pH >2 的條件所得的活性肽最多,其次分別為Calpain 2及Stem bromelain,模擬出來的最多的胜肽為二肽基肽酶IV抑製劑 (dipeptidyl peptidase IV inhibitor , DPP IV inhibitor) 此為降血糖胜肽,其次為ACE inhibitor則是抗高血壓胜肽 ,綜合上述模擬結果推論劍蝦肉具有降血糖及抗高血壓之潛力。


Spear shrimp is mainly distributed in India to the Western Pacific coastal area. Spear shrimp is mainly caught on the western coast in Taiwan. The largest producing area is located in Keelung, Taiwan. The shrimp has pink flesh. It has a sharp spike on the head, and the spear shrimp tastes fresh and sweet. It is a common cooking material. According to the literature, the spear shrimp is rich in nutrients with high protein and a large amount of amino acids. The experiment results showed that the crude protein was 22.95%. After lyophilizing, the crude protein of shrimp meat can be as high as 80.87%, and the freeze-dried shrimp meat was crushed and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The SDS-PAGE analysis indicated that the protein expression of shrimp had a number of distinct protein bands between 324 kDa and 10 kDa. The significant protein bands were excised for in-gel digestion and peptide extraction. Protein identification was accomplished by proteomics techniques. Spear shrimp contained proteins such as myosin, actin, troponin, and vitellogenin. The identified proteins were subjected to potential active peptide analysis and simulated enzyme hydrolysis with BIOPEP-UWM database. The results showed shrimp meat may have anti-hypertension, blood sugar lowering, anti-oxidation, anti-thrombosis and other active peptides, among which the probability of lowering blood sugar and anti-hypertension was higher. Simulated hydrolysis of enzymes by 30 different enzymes showed that pepsin had the highest number of active peptides with pH >2, followed by calpain 2 and stem bromelain, and the most abundant peptides were dipeptidyl peptidase IV Inhibitor (DPP IV inhibitor; hypoglycemic peptide), followed by ACE inhibitor which is an antihypertensive peptide. Based on the experimental results, spear shrimp has the potential of lowering blood sugar and antihypertensive activities.
目錄
壹、 前言 1
貳、 文獻回顧 2
一、 劍蝦簡介及經濟價值 2
1. 劍蝦生物特徵與生長環境 2
2. 劍蝦市場趨勢 2
二、 劍蝦成分組成 3
1. 一般成分分析 3
2. 脂肪酸 4
3. 蝦青素 4
4. 胺基酸 4
三、 蝦肉蛋白質 6
1. 肌凝蛋白 (myosin) 6
2. 肌動蛋白 (actin) 6
3. 肌鈣蛋白 (troponin) 6
4. 卵黃蛋白原 (vitellogenin) 6
四、 蛋白質水解物 7
五、 生理活性 7
1. 抗菌活性 7
2. 抗氧化活性 8
3. 抗高血壓活性 8
六、 蛋白質鑑定技術 9
1. 蛋白質分離技術 9
2. 蛋白質分解 10
3. 質譜儀分析與生物資料庫 10
參、 實驗架構 12
肆、 實驗材料與方法 13
伍、 實驗結果 21
一、 一般成分分析 21
二、 劍蝦蛋白質鑑定 21
三、 BIOPEP-UWM 資料庫 22
陸、 結論 24
柒、 參考文獻 25
黃博斌。(2016) 郭魚加工副產物之蛋白質鑑定與酵素水解物之生理活性探討。
碩士論文。國立臺灣海洋大學食品科學系研究所。基隆,臺灣。
張一華。(2014) 哈氏仿對蝦、南美白對蝦和日本沼蝦營養與滋味的比較分析。
碩士論文。上海海洋大學食品科學與工程系研究所。上海,中國。
張裕旺, 陳淑華, & 陳玉如. (2005). 質譜技術於臨床蛋白質體學的應用. 台灣醫學, 637-649.
陳亭屹。(2017) 鯖魚蒸煮液蛋白質鑑定及其潛在活性胜肽之特徵化分析。碩士
論文。國立臺灣海洋大學食品科學系研究所。基隆,臺灣。
王欣。(2017) 酶水解哈氏仿對蝦肌肉蛋白提高鹽味的應用工藝及研究。碩士論
文。浙江海洋大學食品加工與安全系研究所。浙江,中國。
浅川哲弥. (2005). ティラピアミオシンの限定分解による S1 の調製. 北海道教育大学大雪山自然教育研究施設研究報告(39), 17-27.
漁業署。(2017)。漁業統計年報。https://www.fa.gov.tw/cht/PublicationsFishYear/
A.O.A.C., (2003) Official methods of analysis of the association of official's
analytical chemists. 17th Ed. Association of official analytical chemists,
Arlington,Virginia.
Abe, S., & Asakawa, T. (2008). Properties of troponin components form tilapia
dorsal Muscle. Reports of the Taisetsuzan Institute of Science,42, 1-10
Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422, 198.
Ahn, C. B., Kim, J. G., & Je, J. Y. (2014). Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chemistry, 147, 78-83.
Arancibia, M. Y., Alemán, A., Calvo, M. M., López-Caballero, M. E., Montero, P., & Gómez-Guillén, M. C. (2014). Antimicrobial and antioxidant chitosan solutions enriched with active shrimp (Litopenaeus vannamei) waste materials. Food Hydrocolloids, 35, 710-717.
Ascherio, A., Rimm, E. B., Giovannucci, E. L., Spiegelman, D., Meir, S., & Willett, W. C. (1996). Dietary fat and risk of coronary heart disease in men: cohort follow up study in the United States. British Medical Journal, 313, 84-90.
Ayuso, R., Grishina, G., Bardina, L., Carrillo, T., Blanco, C., Ibanez, M. D., Sampson, H. A., & Beyer, K. (2008). Myosin light chain is a novel shrimp allergen, Lit v 3. Journal of Allergy and Clinical Immunology, 122, 795-802.
Bartlett, T. C., Cuthbertson, B. J., Shepard, E. F., Chapman, R. W., Gross, P. S., & Warr, G. W. (2002). Crustins, homologues of an 11.5-kDa antibacterial peptide, from two species of penaeid shrimp, Litopenaeus vannamei and Litopenaeus setiferus. Marine Biotechnology, 4, 278-293.
Binsan, W., Benjakul, S., Visessanguan, W., Roytrakul, S., Tanaka, M., & Kishimura, H. (2008). Antioxidative activity of Mungoong, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei). Food Chemistry, 106, 185-193.
Bougatef, A., Nedjar-Arroume, N., Ravallec-Plé, R., Leroy, Y., Guillochon, D., Barkia, A., & Nasri, M. (2008). Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases. Food Chemistry, 111, 350-356.
Chen, H. M., Muramoto, K., Yamauchi, F., & Nokihara, K. (1996). Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agricultural and Food Chemistry, 44, 2619-2623.
Chiang, W. D., Tsou, M. J., Tsai, Z. Y., & Tsai, T. C. (2006). Angiotensin I-converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor. Food Chemistry, 98, 725-732.
Clauser, K. R., Baker, P., & Burlingame, A. L. (1999). Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Analytical chemistry, 71, 2871-2882.
Coates, D. (2003). The angiotensin converting enzyme (ACE). The international Journal of Biochemistry & Cell Biology, 35, 769-773.
Dabrowski, T., Kolakowski, E., & Karnicka, B. (1969). Chemical composition of shrimp flesh (Parapenaeus spp.) and its nutritive value. Journal of the Fisheries Board of Canada, 26, 2969-2974.
Dall, W., Hill, J., Rothlisberg, P., Sharples, D., Blaxter, J. H., & Southward, A. J. (1990). Advances in Marine Biology (Vol. 27): Academic Press.
Destoumieux, D., Bulet, P., Loew, D., Van Dorsselaer, A., Rodriguez, J., & Bachere, E. (1997). Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). Journal of Biological Chemistry, 272, 28398-28406.
Destoumieux Garzon, D., Saulnier, D., Garnier, J., Jouffrey, C., Bulet, P., & Bachere, E. (2001). Crustacean immunity. Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge. Journal of Biological Chemistry, 276, 47070-47077.
Eri, T., Hiroyuki, s., & Asakawa, T. (2004). Properties of actin from tilapia dorsal muscle 2. Reports of The Taisetsuzan Institute of Science, 38,19-28.
Faithong, N., Benjakul, S., Phatcharat, S., & Binsan, W. (2010). Chemical composition and antioxidative activity of Thai traditional fermented shrimp and krill products. Food Chemistry, 119, 133-140.
Farah, M. A., Bose, S., Lee, J. H., Jung, H. C., & Kim, Y. (2005). Analysis of glycated insulin by MALDI-TOF mass spectrometry. Biochimica et Biophysica Acta (BBA)-General Subjects, 1725, 269-282.
Gross, P., Bartlett, T., Browdy, C., Chapman, R., & Warr, G. (2001). Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacific White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Developmental & Comparative Immunology, 25, 565-577.
Hartmann, R., & Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology, 18, 163-169.
Hattori, M., Yamaji Tsukamoto, K., Kumagai, H., Feng, Y., & Takahashi, K. (1998). Antioxidative activity of soluble elastin peptides. Journal of Agricultural and Food Chemistry, 46, 2167-2170.
Hauton, C., Brockton, V., & Smith, V. (2006). Cloning of a crustin-like, single whey-acidic-domain, antibacterial peptide from the haemocytes of the European lobster, Homarus gammarus, and its response to infection with bacteria. Molecular Immunology, 43, 1490-1496.
Huang, B. B., Lin, H. C., & Chang, Y. W. (2015). Analysis of proteins and potential bioactive peptides from tilapia (Oreochromis spp.) processing co-products using proteomic techniques coupled with BIOPEP database. Journal of Functional Foods, 19, 629-640.
James, P., Quadroni, M., Carafoli, E., & Gonnet, G. (1993). Protein identification by mass profile fingerprinting. Biochemical and Biophysical Research Communications, 195, 58-64.
Jekel, P. A., Weijer, W. J., & Beintema, J. J. (1983). Use of endoproteinase Lys-C from Lysobacter enzymogenes in protein sequence analysis. Analytical Biochemistry, 134, 347-354.
Jyonouchi, H., Sun, S., Iijima, K., & Gross, M. D. (2000). Antitumor activity of astaxanthin and its mode of action. Nutrition and Cancer, 36, 59-65.
Kato, H., Rhue, M. R., & Nishimura, T. (1989). Role of free amino acids and peptides in food taste. In ACS Symposium Series-American Chemical Society (USA)): ACS Publications.
Kawamura, Y., Takane, T., Satake, M., & Sugimoto, T. (1992). Physiologically active peptide motif in proteins: Peptide inhibitors of ACE from the hydrolysates of antarctic krill muscle protein. JARQ (Japan).
Kleekayai, T., Harnedy, P. A., O’Keeffe, M. B., Poyarkov, A. A., CunhaNeves, A., Suntornsuk, W., & FitzGerald, R. J. (2015). Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes. Food Chemistry, 176, 441-447.
Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16, 945-960.
Lahl, W. J. (1994). Enzymatic production of protein hydrolysates for food use. Food Science and Technology International, 48, 68-71.
Lin, L., Lv, S., & Li, B. (2012). Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates. Food Chemistry, 131, 225-230.
Mann, M., Højrup, P., & Roepstorff, P. (1993). Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biological Mass Spectrometry, 22, 338-345.
Michalski, W. P., & Shiell, B. J. (1999). Strategies for analysis of electrophoretically separated proteins and peptides. Analytica Chimica Acta, 383, 27-46.
Miguel, M., Contreras, M., Recio, I., & Aleixandre, A. (2009). ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chemistry, 112, 211-214.
Monteoliva, L., & Albar, J. P. (2004). Differential proteomics: an overview of gel and non-gel based approaches. Briefings in Functional Genomics, 3, 220-239.
Montorzi, M., Falchuk, K. H., & Vallee, B. L. (1994). Xenopus laevis vitellogenin is a zinc protein. Biochemical and Biophysical Research Communications, 200, 1407-1413.
Mozaffarian, D., Rimm, E. B., & Herrington, D. M. (2004). Dietary fats, carbohydrate, and progression of coronary atherosclerosis in postmenopausal women. The American Journal of Clinical Nutrition, 80, 1175-1184.
Murray, B., & FitzGerald, R. (2007). Angiotensin converting enzyme inhibitory peptides derived from food proteins: biochemistry, bioactivity and production. Current Pharmaceutical Design, 13, 773-791.
Naguib, Y. M. (2000). Antioxidant activities of astaxanthin and related carotenoids. Journal of Agricultural and Food Chemistry, 48, 1150-1154.
Olsen, J. V., Ong, S. E., & Mann, M. (2004). Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics, 3, 608-614.
Pollard, T. D., & Cooper, J. A. (1986). Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annual Review of Biochemistry, 55, 987-1035.
Rattanachai, A., Hirono, I., Ohira, T., Takahashi, Y., & Aoki, T. (2004). Cloning of kuruma prawn Marsupenaeus japonicus crustin-like peptide cDNA and analysis of its expression. Fisheries Science, 70, 765-771.
Saberwal, G., & Nagaraj, R. (1994). Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes, 1197, 109-131.
Saito, M., Yoshida, K., Saito, W., Fujiya, A., Ohgami, K., Kitaichi, N., Tsukahara, H., Ishida, S., & Ohno, S. (2012). Astaxanthin increases choroidal blood flow velocity. Graefe's Archive for Clinical and Experimental Ophthalmology, 250, 239-245.
Scheler, C., Lamer, S., Pan, Z., Li, X. P., Salnikow, J., & Jungblut, P. (1998). Peptide mass fingerprint sequence coverage from differently stained proteins on two‐dimensional electrophoresis patterns by matrix assisted laser desorption/ionization‐mass spectrometry (MALDI‐MS). Electrophoresis, 19, 918-927.
Segrest, J. P., De Loof, H., Dohlman, J. G., Brouillette, C. G., & Anantharamaiah, G. (1990). Amphipathic helix motif: classes and properties. Proteins: Structure, Function, and Bioinformatics, 8, 103-117.
Shi, Y., Zhang, G., Liu, Y., Lu, G., Yan, Y., Xie, Y., Xu, J., & Liu, J. (2013). Comparison of muscle nutrient composition between wild and cultured sword prawn (Parapenaeopsis hardwickii). Journal of Fisheries of China, 37, 768-776.
Shimidzu, N., Goto, M., & Miki, W. (1996). Carotenoids as singlet oxygen quenchers in marine organisms. Fisheries Science, 62, 134-137.
Steen, H., & Mann, M. (2004). The ABC's (and XYZ's) of peptide sequencing. Nature Reviews Molecular Cell Biology, 5, 699-711.
Stoss, T. D., Nickell, M. D., Hardin, D., Derby, C. D., & McClintock, T. S. (2004). Inducible transcript expressed by reactive epithelial cells at sites of olfactory sensory neuron proliferation. Journal of Neurobiology, 58, 355-368.
Suetsuna, K. (2000). Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle. Marine Biotechnology, 2, 5-10.
Supungul, P., Klinbunga, S., Pichyangkura, R., Hirono, I., Aoki, T., & Tassanakajon, A. (2004). Antimicrobial peptides discovered in the black tiger shrimp Penaeus monodon using the EST approach. Diseases of Aquatic Organisms, 61, 123-135.
Takeda, S., Yamashita, A., Maeda, K., & Maéda, Y. (2003). Structure of the core domain of human cardiac troponin in the Ca 2+-saturated form. Nature, 424, 35.
Tulp, A., Verwoerd, D., & Neefjes, J. (1999). Electromigration for separations of protein complexes. Journal of Chromatography B: Biomedical Sciences and Applications, 722, 141-151.
Turner, A. J., & Hooper, N. M. (2002). The angiotensin–converting enzyme gene family: genomics and pharmacology. Trends in Pharmacological Sciences, 23, 177-183.
Tzeng, T.-D. (2004). Stock identification of sword prawn Parapenaeopsis hardwickii in the East China Sea and Taiwan Strait inferred by morphometric variation. Fisheries Science, 70, 758-764.
Tzeng, T.-D. (2007). Population structure of the sword prawn (Parapenaeopsis hardwickii)(Decapoda: Penaeidae) in the East China Sea and waters adjacent to Taiwan inferred from the mitochondrial control region. Zoological Studies, 46, 561-568.
Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of Food Science, 77, R11-24.
Utarabhand, P., & Bunlipatanon, P. (1996). Plasma vitellogenin of grouper (Epinephelus malabaricus): isolation and properties. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 115, 101-110.
Vargas Albores, F., Yepiz Plascencia, G., Jiménez Vega, F., & Ávila Villa, A. (2004). Structural and functional differences of Litopenaeus vannamei crustins. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 138, 415-422.
Wallace, R., & Jones, R. (1978). The vertebrate ovary: Comparative Biology and evolution. In): New York, Plenum Press.
Wang, L., Amphlett, G., Lambert, J. M., Blättler, W., & Zhang, W. (2005). Structural characterization of a recombinant monoclonal antibody by electrospray time-of-flight mass spectrometry. Pharmaceutical Research, 22, 1338-1349.
Wang, W., & De Mejia, E. G. (2005). A new frontier in soy bioactive peptides that may prevent age‐related chronic diseases. Comprehensive Reviews in Food Science and Food Safety, 4, 63-78.
Wu, C. (1985). Studies on the shrimp fishery and their fishing ground in Taiwan. Bull. Taiwan. Fisheries Research Institute, 39, 169-197.
Xie, Z., Huang, J., Xu, X., & Jin, Z. (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry, 111, 370-376.
Yong, L. (2007). Current Progress and Advances of Study on Bioactive Peptides. Food and Fermentation Industries, 33, 3.
Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389.

電子全文
全文檔開放日期:2019/08/13
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *