字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:李家瑋
研究生英文姓名:Lee, Jia-Wei
中文論文名稱:克氏代數值之邊界積分方程搭配柯西型核函數的一些工程應用
英文論文名稱:Application of the Clifford algebra valued boundary integral equations with Cauchy-type kernels to some engineering problems
指導教授姓名:洪宏基
陳正宗
口試委員中文姓名:教授︰楊德良
教授︰洪宏基
教授︰黃燦輝
業界委員︰鄧崇任
教授︰郭世榮
教授︰陳正宗
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學號:29952008
請選擇論文與海洋研究相關度:間接相關
請選擇論文為:學術型
畢業年度:105
畢業學年度:104
學期:
語文別:英文
論文頁數:97
中文關鍵詞:複變數邊界積分方程克氏代數克氏代數值邊界積分方程柯西型核函數
英文關鍵字:complex variable boundary integral equation,Clifford algebraClifford algebra valued boundary integral equationCauchy-type kernels
相關次數:
  • 推薦推薦:0
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏收藏:0
基於傳統柯西(Cauchy)積分公式的傳統複變數邊界積分方程求解二維問題是非常合適且強而有力,尤其當未知函數是一個複數值的全純函數。換句話說,此未知函數需滿足柯西-黎曼(Cauchy-Riemann)方程式。然而大部分的實際工程問題是三維問題且不一定滿足柯西-黎曼方程式,因此本論文有兩個目標,其中一個是延伸傳統複變數邊界積分方程求解未知函數為非複數值全純函數的二維問題。另一個則是推導出即使在三維空間仍保有一些複變數特性的廣義邊界積分方程。對於延伸傳統複變數邊界積分方程,本文使用Borel-Pompeiu公式來導得廣義複變數邊界積分方程,以這種方式扭轉問題能以兩個剪應力場為狀態函數來直接求解,此外扭轉剛度也可一併求得。由於複變函數受限於僅適用於二維的問題,本文引入克氏(Clifford)代數與克氏(Clifford)分析來取代複變數處理三維問題,克氏代數可以看成複變數或者是四元數的延伸,且克氏分析也可稱之為超複變分析。本文利用了克氏代數值的斯托克斯(Stokes)定理推導出含柯西(Cauchy)型核函數的克氏代數值邊界積分方程,如此一來,一些含多個未知場量的三維問題可以直接被求解。最後本文則考慮一些電磁波散射問題來檢驗克氏代數值邊界積分方程的正確性。
The conventional complex variable boundary integral equation (CVBIE) based on the conventional Cauchy integral formula is powerful and suitable to solve two-dimensional problems. In particular, the unknown function is a complex-valued holomorphic function. In other words, the unknown function satisfies the Cauchy-Riemann equations. However, the most part of practical engineering problems are three-dimensional problems and do not necessarily satisfies Cauchy-Riemann equations. Therefore, there are two targets in this dissertation. One is to extend the conventional CVBIE to solve two-dimensional problems for which the unknown function is not a complex-valued holomorphic function. The other is to extend to three-dimensions and derive an extended BIE still preserving some properties of complex variables in the three-dimensional state. For the extension of the conventional CVBIE, we employ the Borel-Pompeiu formula to derive the generalized CVBIE. In this way, the torsion problems can be solved in the state of two shear stress fields directly. In addition, the torsional rigidity can also be determined simultaneously. Since the theory of complex variables has a limitation that is only suitable for 2-dimensional problems, we introduce Clifford algebra and Clifford analysis to replace complex variables to deal with 3-dimensional problems. Clifford algebra can be seen as an extension of complex or quaternionic algebras. Clifford analysis is also known as hypercomplex analysis. We apply the Clifford algebra valued Stokes' theorem to derive Clifford algebra valued BIEs with Cauchy-type kernels. In this way, some three-dimensional problem with multiple unknown fields may be solved straightforward. Finally, several electromagnetic scattering problems are considered to check the validity of the derived Clifford algebra valued BIEs.
Contents I
Table captions IV
Figure captions V
Abstract VII
摘要 VIII

Chapter1 Introduction ………………………………………………………….. 1
1.1 Motivation and Literature reviews ………………...………………….. 1
1.2 Organization of the present dissertation …..………………………...... 4
Chapter 2 Generalized complex variable boundary integral equation for stress fields and torsional rigidity of torsion problems…………...... 6
Summary ………………………………………………………………….. 6
2.1 Problem statement ........................................…………………………. 7
2.2 Derivation of the general Cauchy integral formula ..........……………. 9
2.3 Application of general Cauchy integral formula for a torsion bar containing an inclusion .........................................................…............ 11
2.4 Discretization of the complex variable boundary integral equations and matching of boundary conditions ...................................…............ 12
2.5 Numerical examples and discussions .................................................... 18
2.5.1 A circular bar containing an eccentric inclusion ..............………… 18
2.5.2 A circular bar containing an eccentric hole ...................................... 19
2.5.3 A solid torsion bar ………………...............………………………. 19
2.6 Conclusions ……….............…………………………………………... 20
Chapter 3 Boundary integral equations in the Clifford algebra …….....……... 30
Summary ………………………………………………………………….. 30
3.1 Real-valued boundary integral equation in ………………………
30
3.2 Complex variables boundary integral equation in ….......………….
32
3.2.1 Complex differential operators ...............………………………….. 32
3.2.2 Generalized complex variables boundary integral equation in ..
33
3.3 Clifford algebra valued boundary integral equations in ………..
35
3.3.1 Clifford algebra in …...............………………………..
36
3.3.2 Dirac-type operators and Cauchy-type kernels in …….........…
38
3.3.3 Clifford algebra valued boundary integral equation in …..........
39
3.3.3.1 Clifford algebra valued boundary integral equation for the Laplace and the Dirac equations ................................................. 39
3.3.3.2 Clifford algebra valued boundary integral equation for the Helmholtz and the k-Dirac equations .......................................... 41
3.4 Conclusions …………………………………………………………… 42
Chapter 4 Application of the Clifford-valued boundary integral equation to electromagnetic scattering problems .................................................. 46
Summary ………………………………………………………………….. 46
4.1 Problem statement of electromagnetic scattering ..…………………… 46
4.2 Clifford analysis and Clifford algebra valued BIE for electromagnetic scattering problems ………................................……. 48
4.2.1 Clifford analysis for Maxwell's equations …….........…..................... 48
4.2.2 Clifford analysis for the boundary conditions .........................……... 49
4.2.3 Clifford algebra valued boundary integral equation for nonhomogeneous k-Dirac equation ................................................... 50
4.3 Illustrative examples .........……………………………………………. 51
Case 1: An interior problem with a plane wave solution ....……………... 51
Case 2: An exterior problem with a dipole source ….........………....…... 52
Case 3: A concentric spheres with the specified boundary condition …... 53
4.4 Conclusions …………………………………………………………… 54
Chapter 5 Conclusions and future researches …………………………………. 68
5.1 Conclusions …………………………………………………………… 68
5.2 Future researches ……………………………………………………... 69
Appendix A …………………………………………………………………………. 70
Appendix B …………………………………………………………………………. 82
Appendix C …………………………………………………………………………. 83
Appendix D …………………………………………………………………………. 85
References …………………………………………………………………………... 87
作者簡歷 ……………………………………………................................................ 92
[1] Barone MR, Caulk DA. Optimal arrangement of holes in a two-dimensional heat conductor by a special boundary integral method. Int J Num Meth Engng 1982; 18: 675-685.
[2] Cheng HW, Greengard L. On the numerical evaluation of electrostatic field in dense random dispersions of cylinders. J Comput Phys 1997; 136: 629-639.
[3] Caulk DA. Analysis of elastic torsion in a bar with circular holes by a special boundary integral method. J Appl Mech Trans ASME 1983; 50: 101-108.
[4] Chen JT, Hong H-K, Chyuan SW. Boundary element analysis and design in seepage problems using dual integral formulations. Finite Elem Anal Des 1994; 17(1): 1-20.
[5] Hutchinson JR. An alternative BEM formulation applied to membrane vibrations. In: Brebbia CA, Maier G, editors. Boundary Elements VII, Berlin: Springer-Verlag; 1985.
[6] Chen KH, Chen JT, Chou CR, Yueh CY, Dual boundary element analysis of oblique incident wave passing a thin submerged breakwater. Eng Anal Bound Elem 2002; 26: 917-928.
[7] Chen JT, Chen KH. Dual integral formulation for determining the acoustic modes of a two-dimensional cavity with a degenerate boundary. Eng Anal Bound Elem 1998; 21(2): 105-116.
[8] García-Castillo LE, Gómez-Revuelto I, Sáez de Adana F, Salazar-Palma M. A finite element method for the analysis of radiation and scattering of electromagnetic waves on complex environments. Comput Meth Appl Mech Eng 2005; 194: 637-655.
[9] Chen JT, Chen PY, Chen CT. Surface motion of multiple alluvial valleys for incident plane SH-waves by using a semi-analytical approach. Soil Dyn Earthq Eng 2008; 28: 58-72.
[10] Mills RD. Computing internal viscous flow problems for the circle by integral methods. J Fluid Mech 1977; 73: 609-624.
[11] Hutchinson JR. Vibration of plates. In: Brebbia CA, editors. Boundary Elements X, Berlin: Springer-Verlag; 1988.
[12] Brebbia CA. Boundary Element Methods. Berlin: Springer-Verlag; 1981.
[13] Chen JT, Hong H-K. Boundary Element Method. Taipei: New World Press; 1992. [in Chinese].
[14] Muskhelishvil NI. Some basic problems of the mathematical theory of elasticity. New York: Springer; 1953.
[15] Muskhelishvil NI. Singular Integral Equations. (Translated by Radok JRM) New York: Dover; 1992.
[16] Hromadka II TV. Linking the complex variable boundary element method to the analytic function method. Numer Heat Transf 1984; 7: 235-240.
[17] Whitley RJ, Hromadka II TV. Complex logarithms, Cauchy principal values, and the complex variable boundary element method. Appl Math Modell 1994; 18: 423-428.
[18] Whitley RJ, Hromadaka II TV. Theoretical developments in the complex variable boundary element method. Eng Anal Bound Elem 2006; 30: 1020-1024.
[19] Chou SI, Shamas-Ahmadi M. Complex variable boundary element method for torsion of hollow shafts. Nucl Eng Des 1992; 136: 255-263.
[20] Linkov AM. Boundary Integral Equations in Elasticity Theory. Dordrecht: Springer; 2002.
[21] Gu L, Huang MK. A complex variable boundary element method for solving plane and plate problems of elasticity. Eng Anal Bound Elem 1991; 8(6): 266-272.
[22] Kolhe R, Ye W, Hui CY, Mukherjee S. Complex variable functions for usual and hypersingular integral equations for potential problems with applications to corners and cracks. Comput Mech 1996; 17: 279-286.
[23] Chen JT, Chen YW. Dual boundary element analysis using complex variables for potential problems with or without a degenerate boundary, Eng Anal Bound Elem 2000; 24(1): 671-684.
[24] Di Paola M, Pirrotta A, Santoro R. Line element-less method (LEM) for beam torsion solution (truly no-mesh method). Acta Mech 2008; 195: 349-363.
[25] Barone G, Pirrotta A. CVBEM application to a novel potential function providing stress field and twist rotation at once. J. Eng. Mech.-ASCE 2013; 139: 1290-1293.
[26] Hromadka II TV, Guymon LG. Complex polynomial approximation of the Laplace equation. J Hydraul Eng 1984; 110: 329-339.
[27] Pirrotta A. Complex potential function in elasticity theory: shear and torsion solution through line integrals. Acta Mech 2012; 223(6): 1251-1259.
[28] Barone G, Pirrotta A. CVBEM for solving De Saint-Venant solid under shear forces. Eng Anal Bound Elem 2013; 37: 197-204.
[29] Pompeiu D. Sur une classe de fonctions d’une variable complexe et sur certaines équations intégrales. Rendiconti del Circolo Matematico di Palermo 1913; 35: 277-281.
[30] Begehr H. Boundary value problems in complex analysis I. Boletín de la Asociación Mathemática Venezolana 2005; 12: 65-85.
[31] Hamilton WR. On quaternions; or on a new system of imaginaries in algebra. Philos Mag 1844; 25: 10-13.
[32] Fueter R. Die Funktionentheorie der Differentialgleichungen ∆u = 0 und ∆∆u = 0 mit vier reellen Variablen. Comment Math Helv 1935; 7: 307-330.
[33] Fueter R. Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen. Comment Math Helv 1935; 8: 371-378.
[34] Haefeli H. Hyperkomplexe Differentiale. Comment Math Helv 1947; 20: 382-420.
[35] Deavours CA. The quaternion calculus. Amer Math Monthly 1973; 80: 995-1008.
[36] Clifford WK, Applications of Grassmann's extensive algebra. Amer J Math 1978; 1: 350-358.
[37] Hestenes D. Oersted medal lecture 2002: reforming the mathematical language of physics. Am J Phys 2003; 71,(2): 104-121.
[38] Macdonald A. Linear and Geometric Algebra. CreateSpace Independent Publishing Platform; 2011.
[39] Hestenes D, Sobczyk G. Clifford Algebra to Geometric Calculus. Holland: Reidel Dordrecht; 1987.
[40] Ablamowicz R, Sobczyk G. Lectures on Clifford (Geometric) Algebras and Applications. New York: Springer Science+Business Media; 2004.
[41] Chappell JM, Drake SP, Seidel CL, Gunn LJ, Iqbal A, Allison A, Abbott D. Geometric algebra for electrical and electronic engineers. Proc IEEE 2014; 102(9): 1340-1363.
[42] Sudbery A. Quaternionic analysis. Math Proc Camb Philos Soc 1979; 85: 199-225.
[43] Gürlebeck K, Sprössig W. Quaternionic Analysis and Elliptic Boundary Value Problems. Basel: Birkh¨auser Verlag AG; 1990.
[44] Gürlebeck K, Sprössig W. Quaternionic and Clifford Calculus for Physicists and Engineers, New York: John Wiley; 1997.
[45] Gilbert J, Murray MAM. Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge Univ Press; 1991.
[46] Ryan J. Basic Clifford analysis. Cubo Mathématiques Educacional 2000; 2: 226-256.
[47] Lounesto P. Clifford Algebras and Spinors. Cambridge, England: Cambridge University Press; 2001.
[48] Delanghe R. Clifford Analysis: History and Perspective. Comput Methods Funct Theory 2001; 1: 107-153.
[49] Liu LW, Hong H-K. A Clifford algebra formulation of Navier-Cauchy equation. Procedia Eng 2014; 79: 184-188.
[50] Liu LW, Hong H-K. A new method for three-dimensional problems of anisotropic elasticity. The 39th National Conference on Theoretical and Applied Mechanics, Taipei, Taiwan, November 20-21, 2015.
[51] Lin KF. Boundary integral equation in Clifford analysis, Department of Civil Engineering, National Taiwan University, Taipei, Taiwan, 2008.
[52] Hong H-K, Liu LW. Complex boundary integral equations extended to three-dimensional problems using Clifford analyses. The 4th Asia-Pacific International Conference on Computational Methods in Engineering, Kyoto, Japan, 2012.
[53] Hong H-K, Liu LW. Clifford valued boundary integral equations. The 2nd TWSIAM Annual Meeting, National Dong Hwa University, Hualien, Taiwan, 2014.
[54] Liu LW, Hong H-K. Applications of quaternion-valued boundary element method in the magnetostatic problems. The 38th National Conference on Theoretical and Applied Mechanics, Keelung, Taiwan, ROC, November 21-22, 2014
[55] Liu LW, Hong H-K. Solving three-dimensional elasticity by Clifford valued boundary integral equations. Engineering Mechanics Institute International Conference, Hong-Kong, 7-9 January 2015.
[56] Gerus OF, Shapiro M. On a Cauchy-type integral related to the Helmholtz operator in the plane. Bol. Soc. Mat. Mexicana 2004; 10(1): 63-82.
[57] Vu Thi Ngoc Ha, Begehr H. Integral representations in quaternionic analysis related to the helmholtz operator. Complex Var 2003; 48(12): 1005-1021.
[58] Chantaveerod A, Seagar AD, Angkaew T. Calculation of electromagnetic field with integral equation based on Clifford algebra. PIERS Proceedings, August 27-30, Prague, Czech Republic, 2007; 62-71.
[59] Chantaveerod A, Angkaew T. Numerical computation of electromagnetic far-field from near-field using integral equation based on Clifford algebra. Proceedings of Asia-Pacific Microwave Conference 2007.
[60] Chantaveerod A, Seagar AD. Iterative solutions for electromagnetic fields at perfectly feflective and transmissive interfaces using Clifford algebra and the multidimensional Cauchy integral. IEEE Trans. Antennas Propag 2009; 57(11): 3489-3499.
[61] Chen JT, Lee YT. Torsional rigidity of a circular bar with multiple circular inclusions using the null-field integral approach. Comput Mech 2009; 44: 221-232.
[62] Tang RJ. Torsion theory of the crack cylinder. Shanghai: Shanghai Jiao Tong University Publisher; 1996. [in Chinese]
[63] Chen JT, Shen WC, Chen PY. Analysis of circular torsion bar with circular holes using null-field approach. CMES-Comp Model Eng Sci 2006; 12(2): 109-119.
[64] Timoshenko S, Goodier JN. Theory of Elasticity (Third Edition). New York: McGraw Hill; 1970.
[65] Aleynikov SM, Stromov AV. Comparison of complex methods for numerical solutions of boundary problems of the Laplace equation. Eng Anal Bound Elem 2004; 28: 615-622.
[66] Reismann H, Pawlik PS. Elasticity Theory and Applications. New York: Wiley; 1980.
[67] Balanis CA. Antenna Theory Analysis and Design. New York: Wiley; 1997.
[68] Chen G, Zhou J. Boundary Element Methods. New York: Academic Press; 1992.
[69] Kisu, H. and Kawahara, T. Boundary element analysis system based on a formulation with relative quantity. Boundary Elements X (Eds. Brebbia, C.A.) 1988; Springer-Verlag: 111-121.
[70] Weeks JR. The Shape Of Space: How To Visualize Surfaces and Three-dimensional Manifolds. New York: Marcel Dekker; 1985.
[71] Chen JT, Kuo SR, Chen WC, Liu LW. On the free terms of the dual BEM for the two and three-dimensional Laplace problems. J Mar Sci Technol-Taiwan 2000; 8: 8-15.
電子全文
全文檔開放日期:2016/01/20
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *