字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:嚴國維
研究生英文姓名:Yen, Kuo-Wei
中文論文名稱:氣候變遷對中西太平洋正鰹資源及漁獲潛能影響之評估
英文論文名稱:Evaluate the influence of climate change on skipjack tuna (Katsuwonus pelamis) stock and its catch potential in the Western and Central Pacific Ocean
指導教授姓名:呂學榮
口試委員中文姓名:教授︰孫志陸
業界委員︰吳龍靜
教授︰李明安
教授︰吳朝榮
教授︰黃向文
業界委員︰劉燈城
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學號:29931002
請選擇論文與海洋研究相關度:直接相關
請選擇論文為:學術型
畢業年度:105
畢業學年度:104
學期:
語文別:中文
論文頁數:71
中文關鍵詞:氣候變遷聖嬰現象中西太平洋正鰹漁獲潛能初級生產力棲地適合度
英文關鍵字:climate changeEl NiñoWCPOskipjack tunacatch potentialprimary productivityhabitat suitability
相關次數:
  • 推薦推薦:2
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:81
  • 收藏收藏:0
氣候變遷正持續影響著人民的生活,現行的調適策略仍不足以控制未來的環境變化,若能及早發現氣候變遷的影響及變動趨勢,衝擊程度將可望降低。中西太平洋正鰹是世界上重要的經濟性資源,供應全球人口動物性蛋白質之需求,也助益了許多相關產銷產業並提供豐沛的就業機會。因此降低中西太平洋正鰹資源受氣候變遷的衝擊至關重要,而瞭解氣候變遷如何影響中西太平洋正鰹以及如何評估中西太平洋正鰹的漁獲潛能就成為重要的議題。過去研究已掌握短期極端氣候事件對中西太平洋海洋生態系統的運作及生產力供應造成的影響,本研究以過往經驗的漁獲資料與海洋環境數據,並透過經驗正交函數、泛線性及泛加成模型深入探討中西太平洋正鰹與總初級生產力、不同類型聖嬰現象及海洋環境棲地適合度的關係,並將經驗轉換成可作為評估工具的相關模型,再透過氣候情境模擬數據評估中西太平洋正鰹的漁獲潛能。研究結果具體說明如下:
一、 初級生產力的變動對正鰹產卵期、稚魚後期等重要生活史階段會造成影響,並導致資源加入量與初級生產力變動出現顯著的時間延遲關係。
二、 中太平洋與東太平洋聖嬰現象對正鰹的豐度及棲地適合度都存在負面的影響。若以兩者相比,中太平洋聖嬰現象對正鰹的影響比東太平洋聖嬰現象強烈,但這兩種聖嬰現象獨立的發生,對資源的影響都遠不及兩種聖嬰現象同時出現。
三、 在暖化程度最低到最高的氣候情境下,觀察中西太平洋正鰹漁獲潛能可以發現,漁獲潛能的趨勢將由持平轉向微幅上升的趨勢,但隨著暖化程度加劇,此潛能的年間振盪將更劇烈。
四、 相較於暖化程度較輕的情境,當暖化的狀況持續加劇下,正鰹漁業資源面對聖嬰現象之脆弱度將提高,漁獲潛能亦將隨之降低。
五、 未來的漁獲潛能與初級生產力的正向關係有空間上的差別,因此,在未來初級生產力可能不足以配合漁獲潛能的轉移。
為確保中西太平洋正鰹資源永續經營,氣候變遷及全球暖化的趨勢是該漁業資源管理必須持續關注的問題。
Climate changing has been affecting human’s daily life for a certain period. Present responses to climatic impacts are yet to stop systems from global changing. It is suggested that, with appropriate preventions to climate change in early stage, the degree of climatic variations induced impacts could be relieved. The skipjack tuna stock in the Western and Central Pacific Ocean (WCPO) is a vital economic resources, which is one of main protein sources for human, and also promotes the development of associated industries, as well as plenty employments. Thus, it is significant to mitigate and minimize the impacts of climate change on skipjack. In order to achieve this, it is essential to understand how climate change affects the resources. Previous studies have revealed profound impacts of extreme events on the functioning and primary productivity of marine ecosystems in the WCPO. This study aimed to investigate the relationships among various factors, including the abundance of skipjack tuna, primary productivity, different types of El Niño events and habitat suitability. Fisheries and environmental data of certain period and Representative concentration pathways emission scenario database were adopted to assess the catch potential of skipjack in the WCPO. Key findings from the study are the following:
1. In the important stage of life history, the changes of primary productivity will affect skipjack stock and causing time delay relationships between stock recruitment and primary productivity.
2. In terms of the consequences of different types of El Niño events, Central-Pacific El Niño events can play a more influential role than do Eastern-Pacific El Niño events, and relatively higher vulnerability values were found to be associated with the simultaneous occurrence of the two types of El Niño.
3. Form lowest to highest greenhouse gas emission scenario, there could be a stable to relatively a small increase in the catch potential in WCPO. However, the annual oscillations of catch potential would be observed as more intense attributing to global warming.
4. In a moderate global warming scenario, with the intensified El Niño events, the vulnerability of the skipjack resources will increase, and the catch potential will decrease.
5. Positive correlation between catch potential and primary productivity varied in space; therefore, the primary productivity may be insufficient to meet the transfer of catch potential in the future.
It is advised that the impacts of global climate variations, particularly El Niño events, on skipjack tuna should be continuously taken into consideration in the fisheries management to ensure the sustainable exploitation of skipjack resources in the WPCO.
謝辭 I
摘要 II
Abstract III
目次 IV
圖目次 V
表目次 VI
本文代號中英文檢索 VII
第1章 緒論 1
第2章 初級生產力變動及其影響 5
第1節 前言 5
第2節 材料方法 7
1. 研究區域與資料來源 7
2. 初級生產力模型 7
3. 初級生產力的趨勢分析 7
4. 初級生產力與加入量的時間序列分析 8
第3節 結果 9
1. 中西太平洋初級生產力特性 9
2. 初級生產力與正鰹資源加入量的關係 9
第4節 討論 11
第3章 聖嬰現象及其影響 20
第1節 前言 20
第2節 材料方法 22
1. 研究區域與資料來源 22
2. 棲地適合度分析 22
3. 資源動態推估 23
4. 聖嬰型態的分類 24
5. 聖嬰與資源相關性分析 24
第3節 結果 25
1. 棲地適合度分析 25
2. 資源相對豐度 25
3. 聖嬰現象的分類 25
4. 正鰹與聖嬰現象 26
第4節 討論 27
第4章 正鰹漁獲潛能預測 38
第1節 前言 38
第2節 材料方法 40
1. 研究區域 40
2. 漁業資料 40
3. 環境資料 40
4. 努力量與漁獲率模型建立 41
5. 漁獲潛能分析 41
第3節 結果 42
1. 環境的變動 42
2. 模型的建構及輸出 42
3. 中西太平洋正鰹的漁獲潛能 43
第4節 討論 44
第5章 綜合討論與結論 56
參考文獻 65
Anderson, C.N.K., C.H. Hsieh, S.A. Sandin, R. Hewitt, A. Hollowed, J. Beddington, R.M. May, G. Sugihara (2008). Why fishing magnifies fluctuations in fish abundance. Nature 452, 835-839.
Antle, J., M. Apps, R. Beamish, (2001). Ecosystems and their goods and services. Cambridge University Press, Cambridge, pp. pp. 237–340.
Ashok, K., S.K. Behera, S.A. Rao, H.Y. Weng, T. Yamagata (2007). El Nino Modoki and its possible teleconnection. Journal of Geophysical Research-Oceans 112, 27.
Basilone, G., A. Bonanno, B. Patti, S. Mazzola, M. Barra, A. Cuttitta, R. McBride (2013). Spawning site selection by European anchovy (Engraulis encrasicolus) in relation to oceanographic conditions in the Strait of Sicily. Fisheries Oceanography 22, 309-323.
Behrenfeld, M.J., P.G. Falkowski (1997). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography 42, 1-20.
Behrenfeld, M.J., J.T. Randerson, C.R. McClain, G.C. Feldman, S.O. Los, C.J. Tucker, P.G. Falkowski, C.B. Field, R. Frouin, W.E. Esaias, D.D. Kolber, N.H. Pollack (2001). Biospheric primary production during an ENSO transition. Science 291, 2594-2597.
Bigelow, K.A., C.H. Boggs, X. He (1999). Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery. Fisheries Oceanography 8, 178-198.
Blackburn, M. (1965). Oceanography and the ecology of tunas. Oceanography and marine biology : an annual review 3, 299-322.
Cahuin, S.M., L.A. Cubillos, R. Escribano (2015). Synchronous patterns of fluctuations in two stocks of anchovy Engraulis ringens Jenyns, 1842 in the Humboldt Current System. Journal of Applied Ichthyology 31, 45-50.
Campbell, J., D. Antoine, R. Armstrong, K. Arrigo, W. Balch, R. Barber, M. Behrenfeld, R. Bidigare, J. Bishop, M.E. Carr, W. Esaias, P. Falkowski, N. Hoepffner, R. Iverson, D. Kiefer, S. Lohrenz, J. Marra, A. Morel, J. Ryan, V. Vedernikov, K. Waters, C. Yentsch, J. Yoder (2002). Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Global Biogeochemical Cycles 16, 1-15.
Chassot, E., F. Mélin, O. Le Pape, D. Gascuel (2007). Bottom-up control regulates fisheries production at the scale of eco-regions in European seas. Marine Ecology Progress Series 343, 45-55.
Chavez, F.P., M. Messie, J.T. Pennington (2011). Marine Primary Production in Relation to Climate Variability and Change. Annual Review of Marine Science 3, 227-260.
Chen, X.J., G. Li, B. Feng, S.Q. Tian (2009). Habitat suitability index of Chub mackerel (Scomber japonicus) from July to September in the East China Sea. Journal of Oceanography 65, 93-102.
Chen, X.J., S.Q. Tian, Y. Chen, B.L. Liu (2010). A modeling approach to identify optimal habitat and suitable fishing grounds for neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Fishery Bulletin 108, 1-14.
Cheung, W.W., R. Watson, D. Pauly (2013). Signature of ocean warming in global fisheries catch. Nature 497, 365–368.
Cheung, W.W.L., T.L. Frölicher, R.G. Asch, M.C. Jones, M.L. Pinsky, G. Reygondeau, K.B. Rodgers, R.R. Rykaczewski, J.L. Sarmiento, C. Stock, J.R. Watson (2016a). Building confidence in projections of the responses of living marine resources to climate change. Ices Journal of Marine Science 73, 1-14.
Cheung, W.W.L., M.C. Jones, G. Reygondeau, C.A. Stock, V.W.Y. Lam, T.L. Frolicher (2016b). Structural uncertainty in projecting global fisheries catches under climate change. Ecological Modelling 325, 57-66.
Chiodi, A.M., D.E. Harrison (2013). El Nino Impacts on Seasonal U.S. Atmospheric Circulation, Temperature, and Precipitation Anomalies: The OLR-Event Perspective. Journal of Climate 26, 822-837.
Condie, S.A., J.V. Mansbridge, M.L. Cahill (2011). Contrasting local retention and cross-shore transports of the East Australian Current and the Leeuwin Current and their relative influences on the life histories of small pelagic fishes. Deep-Sea Research Part Ii-Topical Studies in Oceanography 58, 606-615.
Couto, A.B., N.J. Holbrook, A.M. Maharaj (2013). Unravelling Eastern Pacific and Central Pacific ENSO Contributions in South Pacific Chlorophyll-a Variability through Remote Sensing. Remote Sensing 5, 4067-4087.
Dueri, S., L. Bopp, O. Maury (2014). Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution. Global Change Biology 20, 742-753.
Dufour, F., H. Arrizabalaga, X. Irigoien, J. Santiago (2010). Climate impacts on albacore and bluefin tunas migrations phenology and spatial distribution. Progress in Oceanography 86, 283-290.
FAO, (2012). The State of the World Fisheries and Aquaculture 2012. FAO Fisheries and Aquaculture Department, Rome, Italy.
Feng, J., P. Liu, W. Chen, X. Wang (2015). Contrasting Madden-Julian Oscillation activity during various stages of EP and CP El Ninos. Atmospheric Science Letters 16, 32-37.
Frank, K.T., B. Petrie, N.L. Shackell (2007). The ups and downs of trophic control in continental shelf ecosystems. Trends in Ecology & Evolution 22, 236-242.
Fromentin, J.-M., A. Fonteneau (2001). Fishing effects and life history traits: a case study comparing tropical versus temperate tunas. Fisheries Research 53, 133-150.
Fu, W., J. Randerson, J. Moore (2015). Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in CMIP5 models. Biogeosciences Discussions 12, 12851–12897.
Gasser, T., C. Guivarch, K. Tachiiri, C.D. Jones, P. Ciais (2015). Negative emissions physically needed to keep global warming below 2°C. Nature Communications 6, 1-7.
Gruber, N. (2011). Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 369, 1980-1996.
Hastie, T.J., R.J. Tibshirani, (1990). Generalized additive models. CRC Press, London, United Kingdom.
Havice, E. (2013). Rights-based management in the Western and Central Pacific Ocean tuna fishery: economic and environmental change under the Vessel Day Scheme. Marine Policy 42, 259-267.
Helleseth, T. (1976). Some results about the cross-correlation function between two maximal linear sequences. Discrete Mathematics 16, 209-232.
Hollowed, A.B., B. Planque, H. Loeng (2013). Potential movement of fish and shellfish stocks from the sub-Arctic to the Arctic Ocean. Fisheries Oceanography 22, 355-370.
Hunsicker, M.E., L. Ciannelli, K.M. Bailey, S. Zador, L.C. Stige (2013). Climate and Demography Dictate the Strength of Predator-Prey Overlap in a Subarctic Marine Ecosystem. Plos One 8, 1-10.
Jacinto, M.R., A.J.G. Songcuan, G. Von Yip, M.D. Santos (2015). Development and application of the fisheries vulnerability assessment tool (Fish Vool) to tuna and sardine sectors in the Philippines. Fisheries Research 161, 174-181.
Jin, S., X. Yan, H. Zhang, W. Fan (2015). Weight-length relationships and Fulton's condition factors of skipjack tuna (Katsuwonus pelamis) in the western and central Pacific Ocean. Peerj 3, 1-11.
Kao, H.Y., J.Y. Yu (2009). Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. Journal of Climate 22, 615-632.
Klemas, V. (2012). Remote sensing of environmental indicators of potential fish aggregation: An overview. Baltica 25, 99-112.
Kolody, D., S. Hoyle (2015). Evaluation of tag mixing assumptions in western Pacific Ocean skipjack tuna stock assessment models. Fisheries Research 163, 127-140.
Kug, J.S., J. Choi, S.I. An, F.F. Jin, A.T. Wittenberg (2010). Warm Pool and Cold Tongue El Nino Events as Simulated by the GFDL 2.1 Coupled GCM. Journal of Climate 23, 1226-1239.
Kumar, P.S., N.G. Pillai, U. Manjusha (2014). El Nino Southern Oscillation (ENSO) impact on tuna fisheries in Indian Ocean (vol 3, 591, 2014). Springerplus 3, 1.
Laurs, R.M., P.C. Fiedler, D.R. Montgomery (1984). Albacore tuna catch distributions relative to environmental features observed from satellites. Deep-Sea Research Part a-Oceanographic Research Papers 31, 1085-1099.
Lazzari, P., C. Solidoro, V. Ibello, S. Salon, A. Teruzzi, K. Beranger, S. Colella, A. Crise (2012). Seasonal and inter-annual variability of plankton chlorophyll and primary production in the Mediterranean Sea: a modelling approach. Biogeosciences 9, 217-233.
Lehodey, P. (2001). The pelagic ecosystem of the tropical Pacific Ocean: dynamic spatial modelling and biological consequences of ENSO. Progress in Oceanography 49, 439-468.
Lehodey, P., J.M. Andre, M. Bertignac, J. Hampton, A. Stoens, C. Menkes, L. Memery, N. Grima (1998). Predicting skipjack tuna forage distributions in the equatorial Pacific using a coupled dynamical bio-geochemical model. Fisheries Oceanography 7, 317-325.
Lehodey, P., M. Bertignac, J. Hampton, A. Lewis, J. Picaut (1997). El Niño Southern Oscillation and tuna in the western Pacific. Nature 389, 715-718.
Lehodey, P., I. Senina, B. Calmettes, J. Hampton, S. Nicol (2013). Modelling the impact of climate change on Pacific skipjack tuna population and fisheries. Climatic Change 119, 95-109.
Lehodey, P., I. Senina, J. Sibert, L. Bopp, B. Calmettes, J. Hampton, R. Murtugudde (2010). Preliminary forecasts of Pacific bigeye tuna population trends under the A2 IPCC scenario. Progress in Oceanography 86, 302-315.
Li, G., X. Chen, L. Lei, W. Guan (2014). Distribution of hotspots of chub mackerel based on remote-sensing data in coastal waters of China. International Journal of Remote Sensing 35, 4399-4421.
Liao, C.-P., H.-W. Huang (2016). The cooperation strategies of fisheries between Taiwanese purse seiners and Pacific Island Countries. Marine Policy 66, 67-74.
Lima, M., D.E. Naya (2011). Large-scale climatic variability affects the dynamics of tropical skipjack tuna in the Western Pacific Ocean. Ecography 34, 597-605.
Loukos, H., P. Monfray, L. Bopp, P. Lehodey (2003). Potential changes in skipjack tuna (Katsuwonus pelamis) habitat from a global warming scenario: modelling approach and preliminary results. Fisheries Oceanography 12, 474-482.
Lu, H.J., S.C. Kao, C.H. Cheng (2008). Relationships between CPUE fluctuation of southern bluefin tuna and ocean temperature variability in the Central Indian Ocean. Fisheries Science 74, 1222-1228.
Lynch, P.D., K.W. Shertzer, R.J. Latour (2012). Performance of methods used to estimate indices of abundance for highly migratory species. Fisheries Research 125–126, 27-39.
Ménard, F., F. Marsac, E. Bellier, B. Cazelles (2007). Climatic oscillations and tuna catch rates in the Indian Ocean: a wavelet approach to time series analysis. Fisheries Oceanography 16, 95-104.
Mackinson, S., G. Daskalov, J.J. Heymans, S. Neira, H. Arancibia, M. Zetina-Rejon, H. Jiang, H.Q. Cheng, M. Coll, F. Arreguin-Sanchez, K. Keeble, L. Shannon (2009). Which forcing factors fit? Using ecosystem models to investigate the relative influence of fishing and changes in primary productivity on the dynamics of marine ecosystems. Ecological Modelling 220, 2972-2987.
Marti, O., P. Braconnot, J.L. Dufresne, J. Bellier, R. Benshila, S. Bony, P. Brockmann, P. Cadule, A. Caubel, F. Codron, N. de Noblet, S. Denvil, L. Fairhead, T. Fichefet, M.A. Foujols, P. Friedlingstein, H. Goosse, J.Y. Grandpeix, E. Guilyardi, F. Hourdin, A. Idelkadi, M. Kageyama, G. Krinner, C. Levy, G. Madec, J. Mignot, I. Musat, D. Swingedouw, C. Talandier (2010). Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Climate Dynamics 34, 1-26.
Matear, R.J., M.A. Chamberlain, C. Sun, M. Feng (2015). Climate change projection for the western tropical Pacific Ocean using a high-resolution ocean model: Implications for tuna fisheries. Deep Sea Research Part II: Topical Studies in Oceanography 113, 22-46.
Maul, G., F. Williams, M. Roffer, F. Sousa (1984). Remotely sensed oceanographic patterns and variability of bluefin tuna catch in the Gulf of Mexico. Oceanologica acta 7, 469-479.
Maunder, M.N., A.E. Punt (2004). Standardizing catch and effort data: a review of recent approaches. Fisheries Research 70, 141-159.
Maunder, M.N., A.E. Punt (2013). A review of integrated analysis in fisheries stock assessment. Fisheries Research 142, 61-74.
McCluskey, S.M., R.L. Lewison (2008). Quantifying fishing effort: a synthesis of current methods and their applications. Fish and Fisheries 9, 188-200.
McCullagh, P., J.A. Nelder, (1989). Generalized Linear Models, Second Edition. Chapman and Hall(CRC Press), London, United Kingdom.
Mcowen, C.J., W.W. Cheung, R.R. Rykaczewski, R.A. Watson, L.J. Wood (2015). Is fisheries production within Large Marine Ecosystems determined by bottom‐up or top‐down forcing? Fish and Fisheries 16, 623-632.
Meinshausen, M., S.J. Smith, K. Calvin, J.S. Daniel, M.L.T. Kainuma, J.F. Lamarque, K. Matsumoto, S.A. Montzka, S.C.B. Raper, K. Riahi, A. Thomson, G.J.M. Velders, D.P.P. van Vuuren (2011). The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213-241.
Milutinovic, S., L. Bertino (2011). Assessment and propagation of uncertainties in input terms through an ocean-color-based model of primary productivity. Remote Sensing of Environment 115, 1906-1917.
Morato, T., S.D. Hoyle, V. Allain, S.J. Nicol (2010). Seamounts are hotspots of pelagic biodiversity in the open ocean. Proceedings of the National Academy of Sciences of the United States of America 107, 9707-9711.
Morel, A., J.F. Berthon (1989). Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnology and Oceanography 34, 1545-1562.
Mugo, R., S.-I. Saitoh, A. Nihira, T. Kuroyama (2010). Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective. Fisheries Oceanography 19, 382-396.
Munday, P.L., J.M. Leis, J.M. Lough, C.B. Paris, M.J. Kingsford, M.L. Berumen, J. Lambrechts (2009). Climate change and coral reef connectivity. Coral Reefs 28, 379-395.
Newell, R., J. Field, C. Griffiths (1982). Energy balance and significance of microorganisms in a kelp bed community. Marine Ecology Progress Series 8, 103-113.
Nishikawa, Y., M. Honma, S. Ueyanagi, S. kikkawa (1985). Average Distribution of larvae of oceanic species of scombroid fishes, 1956-1982. Far Seas Fisheries Research Laboratory, 1-99.
Nixon, S., C. Oviatt, J. Frithsen, B. Sullivan (1986). Nutrients and the productivity of estuarine and coastal marine ecosystems. Journal of the Limnological Society of Southern Africa 12, 43-71.
Park, J.Y., J.S. Kug, J. Park, S.W. Yeh, C.J. Jang (2011). Variability of chlorophyll associated with El Nino-Southern Oscillation and its possible biological feedback in the equatorial Pacific. Journal of Geophysical Research-Oceans 116, 1-16.
Radenac, M.-H., M. Messié, F. Léger, C. Bosc (2013). A very oligotrophic zone observed from space in the equatorial Pacific warm pool. Remote Sensing of Environment 134, 224-233.
Raleigh, R.F., P.C. Nelson, (1985). Habitat suitability index models and instream flow suitability curves: pink salmon. US Fish and Wildlife Service.
Rice, J., S. Harley, N. Davies, J. Hampton (2014). Stock assessment of skipjack tuna in the western and central Pacific Ocean. WCPFC, Majuro, Republic of the Marshall Islands, 6-14.
Ryan, J.P., P.S. Polito, P.G. Strutton, F.P. Chavez (2002). Unusual large-scale phytoplankton blooms in the equatorial Pacific. Progress in Oceanography 55, 263-285.
Ryan, J.P., I. Ueki, Y. Chao, H.C. Zhang, P.S. Polito, F.P. Chavez (2006). Western Pacific modulation of large phytoplankton blooms in the central and eastern equatorial Pacific. Journal of Geophysical Research-Biogeosciences 111, 1-14.
Salinger, M.J. (2013). A brief introduction to the issue of climate and marine fisheries. Climatic Change 119, 23-35.
Sandifer, P.A., A.E. Sutton-Grier (2014). Connecting stressors, ocean ecosystem services, and human health. Natural Resources Forum 38, 157-167.
Scheffer, M., S. Carpenter, J.A. Foley, C. Folke, B. Walker (2001). Catastrophic shifts in ecosystems. Nature 413, 591-596.
Schick, R.S., J. Goldstein, M.E. Lutcavage (2004). Bluefin tuna (Thunnus thynnus) distribution in relation to sea surface temperature fronts in the Gulf of Maine (1994-96). Fisheries Oceanography 13, 225-238.
Senina, I., J. Sibert, P. Lehodey (2008). Parameter estimation for basin-scale ecosystem-linked population models of large pelagic predators: Application to skipjack tuna. Progress in Oceanography 78, 319-335.
Shearer, K.A., J.W. Hayes, I.G. Jowett, D.A. Olsen (2015). Habitat suitability curves for benthic macroinvertebrates from a small New Zealand river. New Zealand Journal of Marine and Freshwater Research 49, 178-191.
Sibert, J., J. Hampton (2003). Mobility of tropical tunas and the implications for fisheries management. Marine Policy 27, 87-95.
Smith, R.C., K.S. Baker (1978). The bio-optical state of ocean waters and remote sensing. Limnology and Oceanography, 247-259.
Smith, T.M., R.W. Reynolds (2003). Extended reconstruction of global sea surface temperatures based on COADS data (1854-1997). Journal of Climate 16, 1495-1510.
Solomon, S., (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press.
Steinacher, M., F. Joos, T.L. Froelicher, L. Bopp, P. Cadule, V. Cocco, S.C. Doney, M. Gehlen, K. Lindsay, J.K. Moore, B. Schneider, J. Segschneider (2010). Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences 7, 979-1005.
Stempniewicz, L., K. Blachowlak-Samolyk, J.M. Weslawski (2007). Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem - A scenario. Deep-Sea Research Part Ii-Topical Studies in Oceanography 54, 2934-2945.
Su, N.-J., S.-Z. Yeh, C.-L. Sun, A.E. Punt, Y. Chen, S.-P. Wang (2008). Standardizing catch and effort data of the Taiwanese distant-water longline fishery in the western and central Pacific Ocean for bigeye tuna, Thunnus obesus. Fisheries Research 90, 235-246.
Sugimoto, T., H. Tameishi (1992). Warm-core rings, streamers and their role on the fishing ground formation around Japan. Deep Sea Research Part A. Oceanographic Research Papers 39, S183-S201.
Sund, P.N., M. Blackburn, F. Williams (1981). Tunas and their environment in the Pacific Ocean: a review. Oceanography and marine biology : an annual review 19, 443-512.
Svedäng, H., S. Hornborg (2014). Selective fishing induces density-dependent growth. Nature Communications 5, 1-6.
Tanabe, T. (2002). Studies on the early life ecology of skipjack tuna, Katsuwonus pelamis, in the tropical western-north Pacific. Bulletin of Fisheries Research Agency 3, 63-132.
Tian, S.Q., X.J. Chen, Y. Chen, L.X. Xu, X.J. Dai (2009). Evaluating habitat suitability indices derived from CPUE and fishing effort data for Ommatrephes bratramii in the northwestern Pacific Ocean. Fisheries Research 95, 181-188.
U.S. Fish Wildlife Service (1981). Standards for the development of habitat suitability index models. Division of Ecological Services 103-ESM 1-54.
Van der Lee, G.E.M., D.T. Van der Molen, H.F.P. Van den Boogaard, H. Van der Klis (2006). Uncertainty analysis of a spatial habitat suitability model and implications for ecological management of water bodies. Landscape Ecology 21, 1019-1032.
van Vuuren, D.P., J. Edmonds, M. Kainuma, K. Riahi, A. Thomson, K. Hibbard, G.C. Hurtt, T. Kram, V. Krey, J.F. Lamarque, T. Masui, M. Meinshausen, N. Nakicenovic, S.J. Smith, S.K. Rose (2011). The representative concentration pathways: an overview. Climatic Change 109, 5-31.
Vayghan, A.H., R. Zarkami, R. Sadeghi, H. Fazli (2016). Modeling habitat preferences of Caspian kutum, Rutilus frisii kutum (Kamensky, 1901) (Actinopterygii, Cypriniformes) in the Caspian Sea. Hydrobiologia 766, 103-119.
Wang, L.C., C.R. Wu (2013). Contrasting the Flow Patterns in the Equatorial Pacific Between Two Types of El Nino. Atmosphere-Ocean 51, 60-74.
Ware, D.M., R.E. Thomson (2005). Bottom-Up Ecosystem Trophic Dynamics Determine Fish Production in the Northeast Pacific. Science 308, 1280-1284.
Wolter, K., M.S. Timlin (1998). Measuring the strength of ENSO events: How does 1997/98 rank? Weather 53, 315-324.
Wood, S.N., N.H. Augustin (2002). GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecological Modelling 157, 157-177.
Yeh, S.W., J.S. Kug, B. Dewitte, M.H. Kwon, B.P. Kirtman, F.F. Jin (2009). El Nino in a changing climate. Nature 461, 511-514.
Yen, K.-W., H.-J. Lu (2016). Spatial–temporal variations in primary productivity and population dynamics of skipjack tuna Katsuwonus pelamis in the western and central Pacific Ocean. Fisheries Science 82, 563–571.
Yen, K.W., H.J. Lu, Y. Chang, M.A. Lee (2012a). Using remote-sensing data to detect habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean. International Journal of Remote Sensing 33, 7507-7522.
Yen, K.W., H.J. Lu, C.H. Hsieh (2012b). Using Remote Sensing and Catch Data to Detect Ocean Hot Spots for Skipjacks in the Western Central Pacific Ocean. Journal of the Fisheries Society of Taiwan 39, 235-246.
Yu, J.-Y., Y. Zou (2013). The enhanced drying effect of Central-Pacific El Nino on US winter. Environmental Research Letters 8, 1-7.
Yu, J.-Y., Y. Zou, S.T. Kim, T. Lee (2012). The changing impact of El Nino on US winter temperatures. Geophysical Research Letters 39, 1-8.
電子全文
全文檔開放日期:2016/07/17
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *