字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:張志明
研究生英文姓名:Chang, Chih-Ming
中文論文名稱:滿足多重性能限制下之船舶穩定翼系統智慧型模糊控制器設計
英文論文名稱:Intelligent Fuzzy Controller Design for Ship Fin Stabilizing Systems Subject to Multi-Performance Constraints
指導教授姓名:張文哲
口試委員中文姓名:教授︰鍾鴻源
教授︰陶金旺
教授︰連長華
教授︰練光佑
教授︰吳政郎
教授︰張文哲
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學號:20266003
請選擇論文為:應用型
畢業年度:108
畢業學年度:108
學期:
語文別:英文
論文頁數:85
中文關鍵詞:Takagi-Sugeno模糊模型模糊控制強健控制被動限制狀態方差限制輸出方差限制極點配置限制
英文關鍵字:Takagi-Sugeno Fuzzy ModelRobust ControlPassive ConstraintState Variance ConstraintOutput Variance ConstraintPole Placement ConstraintFuzzy Control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:17
  • 收藏收藏:0
當船舶航行於無法預測的海面上時,其穩定性與性能要求即成為了很重要的 議題。橫搖會造成船上乘客的不舒適感,而橫搖行為是嚴重受到海浪的影響。惡 劣的海況會使船舶橫搖更加劇烈,因此而影響船上乘客的舒適度,甚至會對船上 的貨物及設備造成傷害。為了穩定船舶的橫搖行為,有了升力反饋穩定翼系統。 然而,由於無法預測的海面,使得船舶行為較為複雜,為了穩定或控制這樣的船 舶行為,有許多的設備被建構出來,例如本論文中所考慮的穩定翼系統,而這些 系統設備都存在著非線性特性。近幾十年來,我們知道 Takagi-Sugeno 模糊模型 及模糊控制理論是控制非線性系統很有力的一個技術。基於 Takagi-Sugeno 模糊 模型,本論文提出了受限於多重性能限制之智慧型模糊控制。藉由被動限制、狀 態方差限制、輸出方差限制及極點配置限制等,我們可以同時達到船舶穩定翼系 統之暫態及穩態之性能要求。也就是說,在無法預測的海面上航行時,我們能保 證船舶橫搖行為的穩定性及性能。在最後,我們展示了穩定翼系統的模擬結果來 驗證我們所提出的控制理論。
When a ship maneuvering on the unpredicted seas, the stability and performance requirements become the important issues. The rolling motion will cause discomfort to the passengers directly and it is influenced by the sea waves seriously. The rough sea causes the intense rolling motion which will affect the comfort of passengers, even the cargos and equipment on the ship may be harmed. Thus, the lift-feedback fin stabilizing system is designed to stable the ship rolling motion. Because of the unpredicted seas, many motions of the ship become more complex. To stable or control these ship motions, many devices are designed, such as the fin stabilizing system considered in this dissertation, which consist of nonlinearity. The Takagi-Sugeno fuzzy model and fuzzy control theory are known as powerful techniques in the control of the nonlinear systems in past few decades. Based on the T-S fuzzy model, the intelligent fuzzy controller design subject to multi- performance constraints is proposed in this dissertation. Via the passive constraint, state variance constraint, output variance constraint and pole placement constraints, the performance requirements of transient and steady-state can be achieved for the fin stabilizing systems simultaneously. That is, the stability and performances of the rolling motion of a ship maneuvering on the unpredicted seas can be ensured. At last, the simulation results of the fin stabilizing systems are presented to verify effectiveness of the proposed design method.
摘要 Ⅱ

第一章 簡介 Ⅲ

第二章 基於 Takagi-Sugeno 模糊模型針對含乘積式雜訊之船舶穩
定翼系統的連續型被動模糊控制 Ⅳ

第三章 船舶穩定翼系統之滿足暫態及穩態性能限制的連續型強健模糊控制


第四章 船舶穩定翼系統滿足暫態、穩態及輸出限制的離散型強健模糊控制


第五章 結論與未來展望 Ⅶ
[1] J. Bell and W. P. Walker, “Activated and passive controlled fluid tank system for ship stabilization,” Transactions on Society of Naval Architects and Marine Engineers, Vol. 71, pp. 150-193, 1966.
[2] E. V. Lewis, Principles of Naval Architecture, Vol. III, Motions in Waves and Controllability, The Society of Naval Architects and Marine Engineers, 1989.
[3] J. Van Amerongen and H. R. Van Nauta Lemke, “Recent developments in automatic steering of ships,” The Journal of Navigation, Vol. 39, No. 3, pp. 349-362, 1987.
[4] J. N. Sgobbo and M. G. Parsons, “Rudder/fin roll stabilization to the USCG WMEC 901 class vessel,” Marine Technology, Vol. 36, No. 3, pp. 157-170, 1999.
[5] P. Yu, S. Liu, Z. H. Deng and H. Z. Jin, “Comparison between lift feedback control and fin angle feedback control of fin stabilizer,” Ship Engineering, Vol. 2, pp. 56-58, 2001. [6] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Mans, and Cybernetics, Vol. 15, No. 1, pp. 116-132, 1985.
[7] M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy Sets and Systems, Vol. 28, No. 1, pp. 15-33, 1988.
[8] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., New York, 2001.
[9] H. O. Wang, K. Tanaka and M. F. Griffin, “An approach to fuzzy control of nonlinear system: stability and design issues,” IEEE Transactions on Fuzzy Systems, Vol. 4, No. 1, pp. 14-23, 1996.
[10] W. J. Chang, W. H. Huang, W. Chang and C. C. Ku, “Robust fuzzy control for continuous perturbed time-delay affine Takagi-Sugeno Fuzzy models,” Asian Journal of Control, Vol. 13, No. 6, pp. 818-830, 2011.
[11] W. J. Chang, C. T. Yang and P. H. Chen, “Robust fuzzy congestion control of TCP/AQM router via perturbed Takagi-Sugeno fuzzy models,” International Journal of Fuzzy Systems, Vol. 15, No. 2, pp. 203-213, 2013.
[12] C. M. Lin, C. S. Hsueh and C. H. Chen, “Robust adaptive backstepping control for a class of nonlinear systems using recurrent wavelet neural network,” Neurocomputing, Vol. 142, pp. 372-382, 2014.
[13] H. Y. Qiao, W. J. Chang and C. C. Ku, “Robust fuzzy based sliding mode control for uncertain discrete nonlinear systems for achieving performance requirements,” International Journal of Fuzzy Systems, vol. 20, no. 1, pp. 246-258, 2018.
[14] W. J. Chang and B. Y. Huang, “Robust fuzzy control subject to state variance and passivity constraints for perturbed nonlinear systems with multiplicative noises,” ISA Transactions, Vol. 53, No. 6, pp. 1787-1795, 2014.
[15] Z. Zhong, Y. Zhu and T. Yang, “Robust decentralized static output-feedback control design for large-scale nonlinear systems using Takagi-Sugeno fuzzy models,” IEEE Access, Vol. 4, pp. 8250-8263, 2016.
[16] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.
[17] G. Eli, S. Uri and Y. Isaac, Control and Estimation of State-Multiplicative Linear Systems, Springer, London, 2005. [18] E. T. Jeung, J. H. Kim and H. B. Park, “H-output feedback controller design for linear systems with time-varying delayed state,” IEEE Transactions on Automatic Control, Vol. 43, No. 7, pp. 971-974, 1998.
[19] W. J. Chang and W. Chang, “Discrete fuzzy control of time-delay affine Takagi-Sugeno fuzzy models with constraint,” IEE Proceedings-Control Theory and Applications, Vol. 153, No. 6, pp. 745-752, 2006.
[20] R. Lozano, B. Brogliato, O. Egeland and B. Maschke, Dissipative Systems Analysis and Control Theory and Application, Springer, London, 2000.
[21] A. Hotz and R. E. Skelton, “Covariance control theory,” International Journal of Control, Vol. 46, No. 1, pp. 13-32, 1987.
[22] E. Collins and R. E. Skelton, “A theory of state covariance assignment for discrete systems,” IEEE Transactions on Automatic Control, Vol. 32, No. 1, pp. 35-41, 1987.
[23] R. E. Skelton and M. Ikeda, “Covariance controllers for linear continuous-time systems,” International Journal of Control, Vol. 49, No. 5, pp. 1773-1785, 1989.
[24] C. Hsieh and R. E. Skelton, “All covariance controllers for linear discrete-time systems,” IEEE Transactions on Automatic Control, Vol. 35, No. 8, pp. 908-915, 1990.
[25] S. Gutman and E. Jury, “A general theory for matrix root-clustering in subregions of the complex plane,” IEEE Transactions on Automatic Control, Vol. 26, No. 4, pp. 853-863, 1981.
[26] M. Chilali and P. Gahinet, “H design with pole placement constraints: an LMI approach,” IEEE Transactions on Automatic Control, Vol. 41, No. 3, pp.358-367, 1996.
[27] H. Jin, Y. Gu, B. Wang and X. Hou, “Variable parameters PID controller design of fin stabilizer,” Ship Engineering, Vol. 4, pp. 55-60, 1994.
[28] C. Y. Tzeng and C. Y. Wu, “On the design and analysis of ship stabilizing fin controller,” Journal of Marine Science and Technology, Vol. 8, No. 2, pp. 117-124, 2000.
[29] P. Yu and S. Liu, “Nonlinear auto-disturbance rejection controller for fin stabilizer system,” Journal of Harbin Engineering University, Vol. 23, No. 5, pp. 7-11, 2002.
[30] H. Jin, Y. Luo and Z. Wang, “Design of sliding mode variable structure controller for electric servo system of fin stabilizer,” Proceedings of the Sixth World Congress on Intelligent Control and Automation, Vol. 1, pp. 2086-2090, 2006.
[31] T. Perez and G. C. Goodwin, “Constrained predictive control of ship fin stabilizers to prevent dynamic stall,” Control Engineering Practice, Vol. 16, No. 4, pp. 482-494, 2008.
[32] S. C. Karakas, E. Ucer and E. Pesman, “Control design of fin roll stabilization in beam seas based on Lyapunov’s direct method,” Polish Maritime Research, Vol. 19, No. 2, pp. 25-30, 2012.
[33] H. Ghassemi, F. H. Dadmarzi, P. Ghadimi and B. Ommani, “Neural network-PID controller for roll fin stabilizer,” Polish Maritime Research, Vol. 17, No. 2, pp. 23-28, 2010. [34] W. J. Chang, Y. T. Meng and K. H. Tsai, “AQM router design for TCP network via input constrained fuzzy control of time-delay affine Takagi-Sugeno fuzzy models,” International Journal of Systems Science, Vol. 43, No. 12, pp. 2297-2313, 2012.
[35] W. J. Chang, C. T. Yang and P. H. Chen, “Robust fuzzy congestion control of TCP/AQM router via perturbed Takagi-Sugeno fuzzy models,” International Journal of Fuzzy Systems, Vol. 15, No. 2, pp. 203-213, 2013.
[36] S. Bououden, M. Chadli and H. R. Karimi, “Control of uncertain highly nonlinear biological process based on Takagi-Sugeno fuzzy models,” Signal Processing, Vol. 108, pp. 195-205, 2015.
[37] W. J. Chang, Y. C. Chang and C. C. Ku, “Passive fuzzy control via fuzzy integral Lyapunov function for nonlinear ship drum-boiler systems,” ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 137, No. 4, pp. 041008, 2015. [38] J. C. Chang, C. H. Chen and Z. C. Zhu, “Speed control of the surface-mounted permanent-magnet synchronous motor based on Takagi-Sugeno fuzzy models,” IEEE Transactions on Power Electronics, Vol. 31, No. 9, pp. 6504-6510, 2016.
[39] J. Liu, Y. Gao and W. Luo, “Takagi-Sugeno fuzzy-model-based control of three-phase AC/DC voltage source converters using adaptive sliding mode technique,” IET Control Theory and Applications, Vol. 11, No. 8, pp. 1255-1263, 2017.
[40] M. H. Khooban, N. Vafamand and T. Navid, “Model-predictive control based on Takagi-Sugeno fuzzy model for electrical vehicles delayed model,” IET Control Theory and Applications, Vol. 11, No. 5, pp. 918-934, 2017.
[41] B. Wang, J. Xue and F. Wu, “Finite time Takagi-Sugeno fuzzy control for hydro-turbine governing system,” Journal of Vibration and Control, Vol. 24, No. 5, pp. 1001-1010, 2018.
[42] W. J. Chang and F. L. Hsu, “Mamdani and Takagi-Sugeno fuzzy controller design for ship fin stabilizing systems,” Proceedings of the International Conference on Fuzzy Systems and Knowledge Discovery, Zhangjiajie, China, pp. 376-381, 2015.
[43] Z. H. Xiu and G. Ren, “Fuzzy controller design and stability analysis for ship's lift-feedback-fin stabilizer,” Proceedings of IEEE International Conference on Intelligent Transportation Systems, Vol. 2, pp. 1692-1697, 2003.
[44] Y. H. Liang, H. Z. Jin and L. H. Liang, “Fuzzy-PID controlled lift feedback fin stabilizer,” Journal of Marine Science and Application, Vol. 7, No. 2, pp. 127-134, 2008. [45] N. Wang, X. Meng and Q. Xu, “Fuzzy control system design and stability analysis for ship lift feedback fin stabilizer,” Proceedings of World Congress on Intelligent Control and Automation, pp. 1223-1228, 2008.
[46] W. J. Chang, C. C. Ku, P. H. Huang and W. Chang, “Fuzzy controller design for passive continuous-time affine T-S fuzzy models with relaxed stability conditions,” ISA Transactions, Vol. 48, No. 3, pp. 295-303, 2009.
[47] W. J. Chang, C. C. Ku and C. H. Huang, “Fuzzy control for input constrained passive affine Takagi-Sugeno fuzzy models: an application to truck-trailer system,” Journal of Marine Science and Technology, Vol. 19, No.5, pp. 470-482, 2011.
[48] W. J. Chang, M. W. Chen and C. C. Ku, “Passive fuzzy controller design for discrete ship steering systems via Takagi-Sugeno fuzzy model with multiplicative noises,” Journal of Marine Science and Technology, Vol. 21, No. 2, pp. 159-165, 2013.
[49] C. G. Li, H. B. Zhang and X. F. Liao, “Passivity and passification of uncertain fuzzy systems,” IEE Proceedings-Circuits Devices Systems, Vol. 152, No. 6, pp. 649-653, 2005.
[50] W. J. Chang and S. M. Wu, “Continuous fuzzy controller design subject to minimizing control input energy with output variance constraints,” European Journal of Control, Vol. 11, No. 3, pp. 269-277, 2005.
[51] W. J. Chang, P. H. Chen and C. C. Ku, “Variance and passivity constrained sliding mode fuzzy control for continuous stochastic nonlinear systems,” Neurocomputing, Vol. 201, pp. 29-39, 2016.
[52] P. F. Toulotte, S. Delprat, T. M. Guerraa and J. Boonaert, “Vehicle spacing control using robust fuzzy control with pole placement in LMI region,”Engineering Applications of Artificial Intelligence, Vol. 21, No. 5, pp. 756-768, 2008.
[53] A. H. Besheer, H. M. Emara and M. M. Abdel_Aziz, “Wind energy conversion system regulation via LMI fuzzy pole cluster approach,” Electric Power Systems Research, Vol. 79, No. 4, pp. 531-538, 2009.
[54] C. M. Chang, W. J. Chang, C. C. Ku and F. L. Hsu, “Passive fuzzy control for lift feedback fin stabilizer systems of a ship via multiplicative noise based on fuzzy model,” Journal of Marine Science and Technology, Vol. 26, No. 2, pp. 159-165, 2018.
[55] G. Garcia and J. Bernussou, “Pole assignment for uncertain systems in a specified disk by state feedback,” IEEE Transactions on Automatic Control, Vol. 40, No. 1, pp. 184-190, 1995.
[56] H. Y. Chung, W. J. Chang and M. K. Tsay, “On the controller design for perturbed bilinear stochastic systems,” JSME International Journal Ser. 3, Vibration, Control Engineering, Engineering for Industry, Vol. 33, No. 4, pp. 559-566, 1990.
[57] H. Y. Chung and W. J. Chang, “Constrained variance control with state feedback for bilinear stochastic discrete systems,” Journal of the Chinese Institute of Engineers, Vol. 16, No. 4, pp. 463-469, 1993.
[58] H. Y. Chung and W. J. Chang, “Constrained variance design for bilinear stochastic continuous systems,” IEE Proceedings D: Control Theory and Applications, Vol. 138, No. 2, pp. 145-150, pp. 145-150, 1991.
[59] H. Y. Chung and W. J. Chang, “Observed-state feedback covariance control for bilinear stochastic discrete systems,” C-TAT, Control-Theory and Advanced Technology, Vol. 7, No. 4, pp. 695-707, 1991.
[60] W. J. Chang and H. Y. Chung, “Upper bound covariance control of discrete perturbed systems,” Systems & Control Letters, Vol. 19, No. 6, pp. 493-498, 1992.
[61] W. J. Chang and H. Y. Chung, “A covariance controller design incorporating optimal estimation for nonlinear stochastic systems,” Journal of Dynamic Systems, Measurement, and Control, Vol. 118, No. 2, pp. 346-349, 1996.
[62] D. S. Bernstein and W. M. Haddad, “Robust stability and performance analysis for linear dynamic systems,” IEEE Transactions on Automatic Control, Vol. 34, No. 7, pp. 751-758, 1989.
[63] J. H. Xu, R. E. Skelton and G. Zhu, “Upper and lower covariance bounds for perturbed linear systems,” IEEE Transactions on Automatic Control, Vol. 35, No.8, pp. 944-948, 1990.
[64] S. K. Nguang and W. Assawinchaichote, “H filtering for fuzzy dynamical systems with D stability constraints,” IEEE Transaction on Circuits and System I: Fundamental Theory and Applications, Vol. 50, No. 11, pp. 1503-1508, 2003.
[65] G. Garcia and J. Bernussou, “Pole assignment for uncertain systems in a specified disk by state feedback,” IEEE Transactions on Automatic Control, Vol. 40, No. 1, pp. 184-190, 1995.
[66] H. Z. Jin and X. L. Xu, Ship Control Theory, Harbin Engineering University, 2001.
[67] M. C. M. Teixeira and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, Vol. 7, No. 2, pp. 133-142, 1999.
[68] Z. D. Wang, W. C. Ho and X. Liu, “A note on robust stability of uncertain stochastic fuzzy systems with time delays,” IEEE Transactions on Systems, Man Cybernetics -Part A: System and Humans, Vol. 34, No. 4, pp. 570-576, 2004. [69] E. G. Tian, D. Yue, and Y. J. Zhang, “Delay-dependent robust H control for T-S fuzzy system with interval time-varying delay,” Fuzzy Set and Systems, Vol. 160, No. 12, pp. 1708-1719, 2009.
[70] C. M. Chang and W. J. Chang, “Robust fuzzy control with transient and steady-state performance constraints for ship fin stabilizing systems,” International Journal of Fuzzy Systems, Vol. 21, No. 2, pp. 518-531, 2019.
[71] W. J. Chang and S. M. Wu, “Covariance control for fuzzy-based nonlinear stochastic systems,” International Journal of Fuzzy Systems, Vol. 5, No. 4, pp. 221-228, 2003. [72] S. K. Hong and Y. Nam, “Stable fuzzy control system design with pole-placement constraint: an LMI approach,” Computer in Industry, Vol. 51, No. 1, pp. 1-11, 2003.
[73] W. J. Wang and C. H. Sun, “A relaxed stability criterion for T-S fuzzy discrete systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, Vol. 34, No. 5, pp. 2155-2158, 2004.
[74] W. J. Chang, C. C. Ku, and C. H. Chang, “PDC and Non-PDC fuzzy control with relaxed stability conditions for continuous-time multiplicative noised fuzzy systems,” Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol. 349, No. 8, pp. 2664-2686, 2012.
[75] H. C. Sung and J. B. Park, “Robust fuzzy control for a hybrid magnetic bearings: the relaxed stabilization condition approach,” Nonlinear Dynamics, Vol. 85, No. 4, pp. 2487-2496, 2016.
[76] J. Chen, S. Xu and Q. Ma, “Relaxed stability conditions for discrete-time T-S fuzzy systems via double homogeneous polynomial approach,” International Journal of Fuzzy Systems, Vol. 20, No. 3, pp. 741-749, 2018.
[77] M. Chilali, P. Gahinet and P. Apkarian, “Robust pole placement in LMI regions,” IEEE Transactions on Automatic Control, Vol. 44, No. 12, pp. 2257-2270, 1999.
[78] W. J. Chang, H. Y. Qiao and C. C. Ku, “Sliding mode fuzzy control for nonlinear stochastic systems subject to pole assignment and variance constraint,” Information Sciences, Vol. 432, pp. 133-145, 2018.
[79] F. B. Li, P. Shi, L. G. Wu and X. Zhang, “Fuzzy-model-based D-stability and nonfragile control for discrete-time descriptor systems with multiple delays,” IEEE Transactions on Fuzzy Systems, Vol. 22, No. 4, pp. 1019-1025, 2014.
[80] Y. B. Gao, H. Y. Li, L. G. Wu, H. R. Karimi and H. K. Lam, “Optimal control of discrete-time interval type-2 fuzzy-model-based systems with D-stability constraint and control,” Signal Processing, Vol. 120, pp. 406-421, 2016. [81] W. J. Chang and C. C. Shing, “Robust covariance control for discrete system by Takagi-Sugeno fuzzy controllers,” ISA Transaction, Vol. 43, No. 3, pp. 377-387, 2004.
[82] W. J. Chang, Y. H. Lin, J. Du and C. M. Chang, “Fuzzy control with pole assignment and variance constraints for continuous-time perturbed Takagi-Sugeno fuzzy models: Application to ship steering systems,” International Journal of Control, Automation and Systems, Vol. 17, No. 10, pp. 2677-2692, 2019.
[83] A. Jadbabaie, M. Jamshidi and A. Titli, “Guaranteed-cost design of continuous-time Takagi-Sugeno fuzzy controllers via linear matrix inequalities,” Proc. of IEEE International Conference on Fuzzy Systems, Vol. 1, pp. 268-273, 1998.
[84] W. J. Chang, C. C. Ku and B. J. Huang, “Multi-constrained fuzzy intelligent control for uncertain discrete systems with complex noises: an application to ship steering systems,” Journal of Marine Engineering & Technology, Vol. 16, No. 1, pp. 11-21, 2016.
電子全文
全文檔開放日期:2019/12/31
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *