字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:吳鎮宇
研究生英文姓名:Wu, Chen-Yu
中文論文名稱:硫化物與氧化物奈米螢光體成長與發光時效研究
英文論文名稱:Investigations on Growth and Luminescent Persistence of Sulfide and Oxide Nano-Phosphors
指導教授姓名:張宏宜
雷健明
口試委員中文姓名:教授︰呂宗昕
業界委員︰賴宏仁
教授︰向性一
教授︰朱英豪
教授︰陳惠芬
教授︰張宏宜
副教授︰雷健明
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學號:20266001
請選擇論文為:學術型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:128
中文關鍵詞:微波輔助自發同步還原衍生性水熱法Y2O3:Eu3+(Ca,Sr)S:Eu2+SrAl2O4:Eu2+,Dy3+
英文關鍵字:microwave-assisted processin-situ reductioninherited hydrothermalY2O3:Eu3+(Ca,Sr)S:Eu2+SrAl2O4:Eu2+,Dy3+
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
摘 要 ………………………………………………………………………………….I
Abstract II
目錄 ………………………………………………………………………………..IV
圖目錄 VII
表目錄 XIII
第一章 導論與研究目的 1
第二章 文獻回顧 7
2.1 無機陶瓷螢光粒子 7
2.1.1 化合物組成 7
2.1.2 激活劑鑭系自由離子f-f與f-d能態 8
2.1.3 濃度滅 12
2.1.4 溫度淬滅 13
2.1.5 史托克位移△S (Stokes shift) 14
2.1.6 Ce3+與Eu2+激活劑4fn→4fn-15d1光譜 14
2.1.7 鑭系2+與3+化學位移4f能態 19
2.1.8 螢光、磷光、夜光 21
2.2 螢光粒子運用 22
2.2.1 螢光粒子LED與LCD運用 22
2.2.2 長效螢光粒子運用 25
2.3 短時效螢光材料 26
2.3.1 Y2O3:Eu3+ 26
2.3.2 (Ca,Sr)S:Eu2+ 28
2.4 長時效螢光材料SrAl2O4:Eu2+,Dy3+ 29
2.5 螢光粒子製程 31
2.6 核/殼結構回顧 33
第三章 研究方法與量測分析 35
3.1 微波輔助製備奈米Y2O3:Eu3+螢光粒子 35
3.1.1 微波表面修飾Y2O3:Eu3+螢光粒子 36
3.1.2 微波合成Y2O3:Eu3+螢光粒子 36
3.2 碳球模板還原法合成奈米螢光粒子 38
3.2.1 碳球合成 38
3.2.2 模板工程(Core-shell) 38
3.2.3 化學迴流製備奈米螢光粒子 39
3.2.3.4 SrAl2O4:Eu2+製備 39
3.3 衍生水熱法製備SrAl2O4:Eu2+,Dy3+長時效螢光粒子 40
3.4 實驗所用藥品 42
3.5 光致發光(photoluminescence, PL)量測 42
3.6 長餘暉量測方式 43
3.7 穿透式電子顯微鏡微結構分析方式 44
3.8 掃描式電子顯微鏡微結構分析方式 45
3.9 X-射線繞射晶體結構分析 45
3.10 傅立葉轉換紅外光譜分析方式 46
第四章 微波輔助製備奈米Y2O3:Eu3+螢光粒子 47
4.1 Y2O3:Eu3+螢光粒子微波表面修飾 47
4.1.1 Y2O3:Eu3+固態粉碎顆粒與表面修飾方式 47
4.1.2 Y2O3:Eu3+高溫爐粒子表面修飾的微結構變化 47
4.1.3 Y2O3:Eu3+螢光粒子表面修飾發光特性 48
4.1.4 Y2O3:Eu3+螢光粒子表面修飾之結晶特性 50
4.1.5 微波修飾Y2O3:Eu3+螢光粒子的表面微結構變化 50
4.2 Y2O3:Eu3+螢光粒子表面修飾機制 52
4.3 小結微波表面修飾Y2O3:Eu3+螢光粒子 52
4.4 微波合成Y2O3:Eu3+螢光粒子 53
4.4.1 Y2O3:Eu3 +螢光粒子合成方式 54
4.4.2 固態法、尿素水解法與微波尿素水解法製備Y2O3:Eu3+之特性 54
4.4.3 微波尿素溶劑解製備Y2O3:Eu3 +之特性 57
4.4.4 鹼性溶液輔助微波尿素溶劑解製備Y2O3:Eu3 +之特性 60
4.5 各種製程之尿素合成Y2O3:Eu3+螢光粒子機制 63
4.6 小結微波合成Y2O3:Eu3+螢光粒子 64
第五章 碳球模板還原法合成奈米螢光粒子 66
5.1 鹼土金屬硫化物摻雜Eu2+與Ce3+還原的重要性 66
5.2 碳球製備與運用模板結構製作螢光粒子 66
5.2.1 碳球製作過程 67
5.2.2 迴流製作(Ca,Sr)S:Eu2+、CaS:Ce3+、SrY2S4:Eu2+、SrAl2O4:Eu2+奈米粒子 67
5.2.3 固態法製作(Ca,Sr)S:Eu2+螢光粒子 67
5.2.4 製備紅光CaS:Eu2+結合YAG成白光LED 68
5.3 (Ca,Sr)S:Eu2+、CaS:Ce3+、SrAl2O4:Eu2+奈米粒子晶體結構 68
5.4 (Ca,Sr)S:Eu2+、CaS:Ce3+、SrY2S4:Eu2+、SrAl2O4:Eu2+微結構 70
5.5 CaS:Eu/C官能基特性 74
5.6 (Ca,Sr)S:Eu2+、CaS:Ce3+、SrY2S4:Eu2+、SrAl2O4:Eu2+發光特性 75
5.7 奈米螢光粒子LED運用 78
5.8 自發同步還原機制 79
5.9 小結 83
第六章 衍生水熱製備長時效SrAl2O4:Eu2+,Dy3+特性分析 84
6.1 SrAl2O4:Eu2+,Dy3+長時效螢光粒子 84
6.2 衍生性水熱法 85
6.3 衍生性水熱ISAO、BSAO、ASAO相轉變 86
6.4 ISAO、BSAO、ASAO微結構分析 88
6.5 氧化硼在晶格之影響 92
6.6 酸蝕刻對晶體結構的影響 93
6.7 不同製程之鋁酸鍶光致發光與長餘暉 94
6.8 類核/殼結構對光致發光與長餘暉影響 98
6.9 小結 100
第七章 綜合討論 102
7.1 Y2O3:Eu3+螢光粒子微波表面修飾 102
7.2 微波合成Y2O3:Eu3+螢光粒子 103
7.3 碳球模板還原法合成奈米螢光粒子 104
7.4 衍生性水熱法製備長時效SrAl2O4:Eu2+,Dy3+螢光粒子 105
第八章 總結論 108
參考文獻 110
[1] J. H. Van Vleck, “The Puzzle of Rare-Earth Spectra in Solids”, Journal of Physical Chemistry, vol. 41, pp. 67-80, 1937.
[2] G. H. Dieke, H. M. Crosswhite, B. Dynn, “Emission Spectra of the Doubly and Triply Ionized Rare Earths”, Journal of the Optical Society of America, vol. 51, pp. 820-827, 1961.
[3] B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions”, Physical Review, vol. 127, pp. 750-761, 1962.
[4] M. P. Hehlen, M. G. Brik, K. W. Kramer, “50th Anniversary of the Judd-Ofelt Theory: An Experimentalist’s View of the Formalism and Its Application”, Journal of Luminescence, vol. 136, pp. 221-239, 2013.
[5] W. T. Carnall, G. L. Goodman, K. Rajnak, R. S. Rana, “A Systematic Analysis of the Spectra of the Lanthanides Doped into Single Crystal LaF3”, The Journal of Chemical Physics, vol. 90, pp. 3443-3457, 1989.
[6] G. H. Dieke and H. M. Crosswhite, “The Spectra of the Doubly and Triply Ionized Rare Earths”, Applied Optics, vol. 2, pp. 675-686, 1963.
[7] W. C. Martin, “Low-Energy Level Structure of Neutral Cerium (Ce I)”, Physical Review, vol. 3, pp. 1810-1815, 1971.
[8] L. Brewer, “Energies of the Electronic Configurations of the Singly, Doubly, and Triply Ionized Lanthanides and Actinides”, Journal of the Optical Society of America, vol. 61, pp.1666-1682, 1971.
[9] W. C. Martin, “Energy Differences between Two Spectroscopic Systems in Neutral, Singly Ionized, and Doubly Ionized Lanthanide Atoms”, Journal of the Optical Society of America, vol. 61, pp. 1682-1686, 1971.
[10] K. L. V. Sluis, L. J. Nugent, “Ionization Energies of Doubly and Triply Ionized Lanthanides by A Linearization Technique”, The Journal of Chemical Physics, vol. 60, pp. 1927-1930, 1974.
[11] J. Sugar, J. Reader, “Ionization Energies of Doubly and Triply Ionized Rare Earths”, The Journal of Chemical Physics, vol. 59, pp. 2083-2089, 1973.
[12] W. C. Martin, R. Zalubas, L. Hagan, “Atomic Energy Levels-The Rare-Earth Elements. The Spectra of Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, and Lutetium”, National Standard Reference Data System, No. NSRDS-NBS-60, 1978.
[13] D. L. Dexter, J. H. Schulman, “Theory of Concentration Quenching in Inorganic Phosphors”, The Journal of Chemical Physics, vol. 22, pp. 1063-1070, 1954.
[14] E. Thomas, “Quantum Chemistry and Spectroscopy”, 3rd Ed., UK: Pearson College Div., 2009.
[15] P. Dorenbos, “Energy of the First 4f7-4f65d Transition of Eu2+ in Inorganic Compounds”, Journal of Luminescence, vol. 104, pp. 239-260, 2003.
[16] P. Dorenbos, “5d-level Energies of Ce3+ and the Crystalline Environment. II. Chloride, Bromide, and Iodide Compounds”, Physical Review B, vol. 62, pp. 650-659, 2000.
[17] P. Dorenbos, “Relating the Energy of the (Xe)5d1 Configuration of Ce3+ in Inorganic Compounds with Anion Polarizability and Cation Electronegativity”, Physical Review B, vol. 65, pp. 1-6, 2002.
[18] P. Dorenbos, “Relation Between Eu2+ and Ce3+ f↔d-Transition Energies in Inorganic Compounds”, Journal of Physics: Condensed Matter, vol. 15, pp. 4797-4807, 2003.
[19] P. Dorenbos, “Ce3+ 5d-Centroid Shift and Vacuum Referred 4f-Electron Binding Energies of All Lanthanide Impurities in 150 Different Compounds”, Journal of Luminescence, vol. 135, pp. 93-104, 2013.
[20] K. V. den Eeckhout, D. Poelman, P. F. Smet, “Persistent Luminescence in Eu2+-Doped Compounds: A Review”, Materials, vol. 6, pp. 2536-2566, 2010.
[21] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, Q. Y. Zhang, “Phosphors in Phosphor-Converted White Light-Emitting Diodes: Recent Advances in Materials, Techniques and Properties”, Materials Science and Engineering R, vol. 71, pp. 1-34, 2010.
[22] S. Coe-Sullivan, W.H. Liu, P. Allen, J.S. Steckel, “Quantum Dots for LED Downconversion in Display Applications ”, ECS Journal of Solid State Science and Technology, vol. 2, pp. R3026-R3030, 2013.
[23] 根本特殊化学株式会社, www.nemoto.co.jp/nlm/qa/about-luminov, 2018.
[24] Rolex產品 2014/11/25/afterglow-a-1967-rolex-submariner-reference-5512, 2014.
[25] Van Gogh-Roosegaarde, https://www.mydesy.com/van-gogh-roosegaarde, 2014.
[26] R. Bazzi, “Nanoparticles Phosphors Rare Earth Oxides Synthesis and Characterization of Ultrafine Colloids Sesqui-oxides Yttrium and Gadolinium doped (Eu, Tb, Nd)”, Ph.D. thesis, 2004.
[27] M. Nazarov, C. Yoon, “Controlled Peak Wavelength Shift of Ca1-xSrx(SySe1-y):Eu2+ Phosphor for LED Application”, Journal of Solid State Chemistry, vol. 179, pp. 2529-2533, 2006.
[28] Mindat.org, http://www.mindat.org/min-3729.html, 2015.
[29] F. P. Glasser, L. S. D. Glasser, “Crystal Chemistry of Some AB2O4 Compounds”, Journal of the American Ceramic Society, vol. 46, pp. 377-380, 1963.
[30] A. R. Schulze, H. Muller-Buschbaum, “Zur Verbindungsbildung von MeO: M2O3. IV. Zur Struktur von monoklinem SrAl2O4”, Zeitschrigt fur Anorganische und Allgemeine Chemie, vol. 475, pp. 205-210, 1981.
[31] C. M. B. Henderson, D. Taylor, “The Structural Behaviour of the Nepheline Family: (1) Sr and Ba Aluminates (MAl2O4)”, Mineralogical Magazine, vol. 45, pp. 111-127, 1982.
[32] H. Yamada, W. S. Shi, C. N. Xu, “Observation of Orientational Disorder in the Hexagonal Stuffed Tridymite Sr0.864Eu0.136Al2O4 by the Maximum-Entropy Method”, Journal of Applied Crystallography, vol. 37, pp. 698-702, 2004.
[33] K. Fukuda, K. Fukushima, “Crystal Structure of Hexagonal SrAl2O4 at 1073 K”, Journal of Solid State Chemistry, vol. 178, pp. 2709-2714, 2005.
[34] M. Avdeev, S. Yakovlev, A. A. Yaremchenko, V. V. Kharton, “Transitions between P21, P63(√3A), and P6322 Modifications of SrAl2O4 by in situ High-Temperature X-ray and Neutron Diffraction”, Journal of Solid State Chemistry, vol. 180, pp. 3535-3544, 2007.
[35] N. K. Zurba, I. Bdikin, A. Kholkin, D. Golberg, J. M. F. Ferreira, “Intercrystalline Distal-Effect on the Afterglow Phenomenon in Photoluminescent SrAl2O4:Ce(III), Ln Nanotube Growth”, Nanotechnology, vol. 21, pp.1-5, 2010.
[36] I. W. Lenggoro, Y. Itoh, K. Okuyama, “Nanoparticles of a Doped Oxide Phosphor Prepared by Direct-Spray Pyrolysis”, Journal of Materials Research, vol. 19, pp. 3534-3539, 2004.
[37] Y. D. Jiang, Z. L. Wang, F. Zhang, H. G. Paris, C. J. Summers, “Synthesis and Characterization of Y2O3: Eu3+ Powder Phosphor by a Hydrolysis Technique”, Journal of Materials Research, vol. 13, pp. 2950-2955, 1998.
[38] Y. H. Chung, S. T. Park, K. W. Jang, I. G. Kim, S. S. Kim, Y. I. Lee, H. J. Seo, “Optical Properties and Crystal Structure of Eu3+-Doped Y2O3 Crystals Prepared under Different Conditions and with Different Methods”, Journal of the Korean Physical Society, vol. 42, pp. 543-548, 2003.
[39] B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor, “Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles”, Chemical Reviews, vol. 104, pp. 3893-3946, 2004.
[40] R. Srinvasan, N. R. Yogamalar, J. Elanchezhiyan, R. J. Joseyphus, A. C. Bose, “Structural and Optical Properties of Europium Doped Yttrium Oxide Nanoparticles for Phosphor Applications”, Journal of Alloys and Compounds, vol. 496, pp. 472-477, 2010.
[41] R. M. Krsmanovic, Z. Antic, M. G. Nikolic, M. Mitric, M. D. Dramicanin, “Preparation of Y2O3:Eu3+ Nanopowders via Polymer Complex Solution Method and Luminescence Properties of the Sintered Ceramics”, Ceramics International, vol. 37, pp. 525-531, 2011.
[42] A. Pandey, M. K. Roy, A. Pandey, M. Zanella, R. A. Sperling, W. J. Parak, A. B. Samaddar, H. C. Verma, “Chloroform- and Water-Soluble Sol–Gel Derived Eu3+/Y2O3 (Red) and Tb3+/Y2O3 (Green) Nanophosphors: Synthesis, Characterization, and Surface Modification”, IEEE Transactions on Nanobioscience, vol. 8, pp. 43-50, 2009.
[43] S. J. Wang, S. L. Zhong, X. J. Ou-Yang, N. Hu, X. S. Chen, S. P. Wang, R. Xu, “Y(OH)3 and Y2O3 with Novel Structures: Formation and Mechanism”, Materials Science and Engineering B, vol. 162, pp. 200-204, 2009.
[44] A. V. Murugan, A. K. Viswanath, V. Ravi, B. A. Kakade, V. Saaminathan, “Photoluminescence Studies of Eu3+ Doped Y2O3 Nanophosphor Prepared by Microwave Hydrothermal Method”, Applied Physics Letters, vol. 89, 123120, pp. 1-3, 2006.
[45] S. Yin, M. Shinozaki, T. Sato, “Synthesis and Characterization of Wire-Like and Near-Spherical Eu2O3-Doped Y2O3 Phosphors by Solvothermal Reaction”, Journal of Luminescence, vol. 126, pp.427-433, 2007.
[46] D. Zhao, S. Seo, H. Zhang, B. Bae, W. Qin, “Synthesis of Well Dispersed Uniform Sub-4 nm Y2O3:Eu3+ Colloidal Nanocrystals”, Journal of Nanoscience and Nanotechnology, vol. 10, pp. 2036-2039, 2010.
[47] Z. Chen, H. Chen, H. Hu, M. Yu, F. Li, Q. Zhang, Z. Zhou, T. Yi, C. Huang, “Versatile Synthesis Strategy for Carboxylic Acid-Functionalized Upconverting Nanophosphors as Biological Labels”, Journal of the American Chemical Society, vol. 130, pp. 3023-3029, 2008.
[48] Y. Zhao, F. T. Rabouw, C. de M. Donega, A. Meijerink, C. A. van Walree, “Single-Source Precursor Synthesis of Colloidal CaS and SrS Nanocrystals”, Materials Letters, vol. 80, pp. 75-77, 2012.
[49] P. Yang, S. Tretiak, A. E. Masunov, S. Ivanov, “Quantum Chemistry of the Minimal CdSe Clusters”, Journal of Chemical Physics, vol. 129, 074709, pp. 1-12, 2008.
[50] M. A. Malik, M. Afzaal, P. O’Brien, “Precursor Chemistry for Main Group Elements in Semiconducting Materials”, Chemical Reviews, vol. 110, pp. 4417-4446, 2010.
[51] K. K. Banger, M. H.-C. Jin, J. D. Harris, P. E. Fanwick, A. F. Hepp, “A New Facile Route for the Preparation of Single-Source Precursors for Bulk, Thin-Film, and Nanocrystallite I-III-VI Semiconductors”, Inorganic Chemistry, vol. 42, pp. 7713-7715, 2003.
[52] M. A. Malik, M. Y. Wani, M. A. Hashim, “Microemulsion Method: A Novel Route to Synthesize Organic and Inorganic Nanomaterials”, Arabian Journal of Chemistry, vol. 5, pp. 397-417, 2012.
[53] M. J. Lawrence, G. D. Rees, “Microemulsion-Based Media as Novel Drug Delivery Systems”, Advanced Drug Delivery Reviews, vol. 45, pp. 89-121, 2002.
[54] J. Eastoe, M. J. Hollamby, L. Hudson, “Recent Advances in Nanoparticle Synthesis with Reversed Micelles”, Advances in Colloid and Interface Science, vol. 128-130, pp. 5-15, 2006.
[55] X. Lai, J. E. Halpert, D. Wang, “Recent Advances in Micro-/Nano-Structured Hollow Spheres for Energy Applications: From Simple to Complex Systems”, Energy & Environmental Science, vol. 5, pp.5604-5618, 2012.
[56] M. Khatami, H. Alijani, M. Nejad, R. Varma, “Core@shell Nanoparticles: Greener Synthesis Using Natural Plant Products”, Applied Sciences, vol.8, pp.1-17, 2018.
[57] V. V. Srdić, B. Mojić, M. Nikolić, S. Ognjanović, “Recent Progress on Synthesis of Ceramics Core/Shell Nanostructures”, Processing and Application of Ceramics, vol.7, pp.45-62, 2013.
[58] D. D. Guo, L. Zhao, Y. H. Sang, H. Liu, S. Liu, X. D. Sun, “Al2O3/Yttrium Compound Core–Shell Structure Formation with Burst Nucleation: A Process Driven by Electrostatic Attraction and High Surface Energy”, RSC Advances, vol.4, pp.55400-55406, 2014.
[59] Y. Xiao, Z. Y. Gao, D. P.Wu, Y. Jiang, N. Liu, K. Jiang, “Synthesis and Photoluminescence Properties of Uniform Y2O3:Eu3+ Hollow Spheres with Tunable Shell Thickness”, Chemical Research in Chinese Universities, vol.27, pp.919-923, 2011.
[60] X. F. Wang, Z. X. Qiu, Y. M. Li, Q. G. Mi, W. L. Zhou, S. Y. Ai, J. Xu, Y. F. Liu, S.X. Lian, “Core-Shell Structured CaS:Eu2+@CaZnOS via Inward Erosion Growth to Realize a Super Stable Chalcogenide Red Phosphor”, Journal of Materials Chemistry C, vol.7, pp.5931-5936, 2019.
[61] S. Shionoys, W. M. Yen, “Phosphor handbook”, CRC Press; 1998.
[62] H. S. Yoo, H. S. Jang, W. B. Im, J. H. Kang, D. Y. Jeon, “Particle Size Control of a Monodisperse Spherical Y2O3:Eu3+ Phosphor and its Photoluminescence Properties”, Journal of Materials Research, vol. 22, pp. 2017-2024, 2007.
[63] G. Wakefield, E. Holland, P. J. Dobson, J. L. Hutchison, “Luminescence Properties of Nanocrystalline Y2O3:Eu”, Advanced Materials, vol. 13, pp. 1557-1560, 2001.
[64] Q. Pang, J. Shi, Y. Liu, D. Xing, M. Gong, N. Xu, “A Novel Approach For Preparation of Y2O3:Eu3+ Nanoparticles by Microemulsion - Microwave Heating”, Materials Science and Engineering B, vol. 103, pp. 57-61, 2003.
[65] F. W. Liu, C. H. Hsu, F. S. Chen, C. H. Lu, “Microwave-Assisted Solvothermal Preparation and Photoluminescence Properties of Y2O3:Eu3+ Phosphors”, Ceramics International, vol. 38, pp. 1577-1584, 2012.
[66] S. Zhong, J. Chen, S. Wang, Q. Liu, Y. Wang, S. Wang, “Y2O3:Eu3+ Hexagonal Microprisms: Fast Microwave Synthesis and Photoluminescence Properties”, Journal of Alloys and Compounds, vol. 493, pp. 322-325, 2010.
[67] M. Serantoni, E. Mercadelli, A. L. Costa, M. Blosi, L. Esposito, A. Sanson, “Microwave-Assisted Polyol Synthesis of Sub-Micrometer Y2O3 and Yb-Y2O3 Particles for Laser Source Application”, Ceramics International, vol. 36, pp. 103-106, 2010.
[68] K. Y. Kim, Y. H. Yun, “Surface Modification of Oxide Phosphors Using Nano Powders”, Journal of Ceramic Processing Research, vol. 8, pp. 421-426, 2007.
[69] W. J. Liu, Y. H. Wang, M. Q. Zhang, Y. X. Zheng, “Synthesis of Y2O3:Eu3+ Coated Y2O3 Phosphors by Urea-Assisted Homogeneous Precipitation and Its Photo Luminescence Properties”, Materials Letters, Vol. 96, pp. 42-44, 2013.
[70] K. T. Kuo, S. P. Lee, S. Y. Chen, B. M. Cheng, H. C. Lu, D. M. Liu, C. C. Ting, “BaMgAl10O17:Eu Blue Phosphors with MgO Coating and Microwave Irradiation”, Journal of Physics and Chemistry of Solids, vol. 69, pp. 446-450, 2008.
[71] K. T. Kuo, S. P. Lee, S. Y. Chen, B. M. Cheng, H. C. Lu, C. C. Ting, “Effect of Microwave Irradiation on Surface Characteristics and Luminescent Properties of BaMgAl10O17:Eu Blue Phosphor”, Journal of Physics and Chemistry of Solids, vol. 69, pp. 362-365, 2008.
[72] H. Y. Chang, S. Y. Cheng, C. I. Sheu, “Microwave Sintering of Ferroelectric PZT Thick Films”, Materials Letters, vol. 62, pp. 3620-3622, 2008.
[73] D. Demirskyi, H. Borodianska, S. Grasso, Y. Sakka, O. Vasylkiv, “Microstructure Evolution During Field-Assisted Sintering of Zirconia Spheres”, Scripta Materialia, vol. 65, pp. 683-686, 2011.
[74] C. Feldmann, “Polyol-Mediated Synthesis of Nanoscale Functional Materials”, Solid State Sciences, vol. 7, pp. 868-873, 2005.
[75] G. S. Aluri, M. Gowda, N. A. Mahadik, S. G. Sundaresan, M. V. Rao, J. A. Schreifels, J. A. Freitas, Jr., S. B. Qadri, Y. L. Tian, “Microwave Annealing of Mg-Implanted and In Situ Be-Doped GaN”, Journal of Applied Physics, vol. 108, 083103, pp. 1-7, 2010.
[76] C. J. Reidy, T. J. Fleming, S. Hampshire, “Comparison of Microwave and Conventionally Sintered Yttria-Doped Zirconia Ceramics”, International Journal of Applied Ceramic Technology, vol. 8, pp. 1475-1485, 2011.
[77] J. H. Booske, R. F. Cooper, S. A. Freeman, “Microwave Enhanced Reaction Kinetics in Ceramics”, Material Research Innovations, vol. 1, pp. 77–84, 1997.
[78] S. Cho, K. H. Lee, “Synthesis of Crystalline TiO2 Nanostructure Arrays by Direct Microwave Irradiation on a Metal Substrate”, Journal of Crystal Growth, vol. 312, pp. 1785-1788, 2010.
[79] A. Birnboim, T. Olorunyolemi, Y. Carmel, “Calculating the Thermal Conductivity of Heated Powder Compacts”, Journal of the American Ceramic Society, vol. 84, pp. 1315-1320, 2001.
[80] D. Demirskyi, A. Ragulya, D. Agrawal, “Initial Stage Sintering of Binderless Tungsten Carbide Powder Under Microwave Radiation”, Ceramics International, vol. 37, pp. 505-512, 2011.
[81] R. Cauchois, M. Saadaoui, A. Yakoub, K. Inal, B. Dubois-Bonvalot, J. C. Fidalgo, “Impact of Variable Frequency Microwave and Rapid Thermal Sintering on Microstructure of Inkjet-Printed Silver Nanoparticles”, Journal of Materials Science, vol. 47, pp. 7110-7116, 2012.
[82] J. R. Greer, R. A. Street, “Thermal Cure Effects on Electrical Performance of Nanoparticle Silver Inks”, Acta Materialia, vol. 55, pp. 6345-6349, 2007.
[83] G. Blasse, B. C. Grabmaier, “Luminescent Materials”, Springer-Verlag, Berlin Heidelberg, 1994.
[84] R. C. Ropp, “Luminescence and the Solid State”, Elsevier, Amsterdam, Oxford, New York, Tokyo, 1991.
[85] S. Shionoys, W. M. Yen, “Phosphor Handbook”, CRC Press, 1998.
[86] A. Vecht, C. Gibbons, D. Davies, X. Jing, P. Marsh, T. Ireland, J. Silver, A. Newport, D. Barber, “Engineering Phosphors for Field Emission Displays”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 17, pp. 750-757, 1999.
[87] X. Jing, T. Ireland, C. Gibbons, D. J. Barber, J. Silver, A. Vecht, G. Fern, P. Trowga, D. C. Morton, “Control of Y2O3:Eu Spherical Particle Phosphor Size, Assembly Properties, and Performance for FED and HDTV”, Journal of the Electrochemical Society, vol. 146, pp. 4654-4658, 1999.
[88] T. Hirai, T. Hirano, I. Komasawa, “Preparation of Y2O3:Eu3+ Phosphor Fine Particles Using an Emulsion Liquid Membrane System”, Journal of Materials Chemistry, vol. 10, pp. 2306-2310, 2000.
[89] K. Ohno, T. Abe, “The Synthesis and Particle Growth Mechanism of Bright Green Phosphor YAG:Tb”, Journal of the Electrochemical Society, vol. 141, pp. 1252-1254, 1994.
[90] C. Tan, Y. Liu, W. Li, Y. Zhang, Y. Han, “Uniform Lanthanide-Doped Y2O3 Hollow Microspheres: Controlled Synthesis and Luminescence Properties”, Materials Science and Engineering B, vol. 176, pp. 1251-1256, 2011.
[91] J. G. Li, X. Li, X. Sun, T. Ishigaki, “Monodispersed Colloidal Spheres for Uniform Y2O3:Eu3+ Red-Phosphor Particles and Greatly Enhanced Luminescence by Simultaneous Gd3+ Doping”, Journal of Physical Chemistry C, vol. 112, pp. 11707-11716, 2008.
[92] L. Muresan, E. J. Popovici, F. Imre-Lucaci, R. Grecu, E. Indrea, “Studies on Y2O3:Eu Phosphor with Different Particle Size Prepared by Wet Chemical Method”, Journal of Alloys and Compounds, vol .483, pp. 346-349, 2009.
[93] S. Ray, P. Pramanik, A. Singha, A. Roy, “Optical Properties of Nanocrystalline Y2O3:Eu3+”, Journal of Applied Physics, vol. 97, 094312, pp. 1-6, 2005.
[94] H. Huang, G. Q. Xu, W.S. Chin, L.M. Gan, C.H. Chew, “Synthesis and Characterization of Eu:Y2O3 Nanoparticles”, Nanotechnology, vol.13, pp.318–323, 2002.
[95] C. Feldmann, “Polyol-Mediated Synthesis of Nanoscale Functional Materials”, Solid State Sciences, vol. 7, pp. 868-873, 2005.
[96] S. Zhong, S. Wang, Q. Liu, Y. Wang, S. Wang, J. Chen, R. Xu, L. Luo, “Y2O3:Eu3+ Microstructures: Hydrothermal Synthesis and Photoluminescence Properties”, Materials Research Bulletin, vol. 44, pp. 2201-2205, 2009.
[97] G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions”, The Journal of Chemical Physics, vol. 37, pp. 511-520, 1962.
[98] E. Matijevic, W. P. Hsu, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds”, Journal of Colloid and Interface Science, vol. 118, pp. 506-523, 1987.
[99] W. P. Hsu, L. Ronnquist, E. Matijevic, “Preparation and Properties of Monodispersed Colloidal Particles of Lanthanide Compounds. 2. Cerium (1V)”, Langmuir, vol. 4, pp. 31-37, 1988.
[100] R. Jenkins, “X-Ray Techniques: Overview”, Encyclopedia of Analytical Chemistry, pp. 1-20, 2006.
[101] S. Ekambaram, K. C. Patil, M. Maaza, “Synthesis of Lamp Phosphors: Facile Combustion Approach”, Journal of Alloys and Compounds, vol. 393, pp. 81-92, 2005.
[102] D. Michael, P. Mingos, D. R. Baghurst, “Applications of Microwave Dielectric Heating Effects to Synthetic Problems in Chemistry”, Chemical Society Reviews, vol. 20, pp. 1-47, 1991.
[103] J. F. Carpentier, “Multidentate Fluorinated Alkoxide Ligand Platforms for Oxophilic Metal Centers: from MOCVD Source Reagents to Polymerization Catalysts”, Dalton Transactions, vol. 39, pp. 37-48, 2010.
[104] R. Singh, “Development of Flotation Reagents with Chelating Functional Groups”, in : Workshop on Froth Flotation: Recent Trends, pp. 68-78, Sep. 22-24, RRL Bhubaneswar, 1998.
[105] H. Bonnemann, R. M. Richards, “Nanoscopic Metal Particles - Synthetic Methods and Potential Applications”, European Journal of Inorganic Chemistry, pp. 2455-2480, 2001.
[106] W. Wang, H. Cao, G. Zhu, P. Wang, “A Facile Strategy to Modify TiO2 Nanoparticles via Surface-Initiated ATRP of Styrene”, Journal of Polymer Science: Part A: Polymer Chemistry, vol. 48, pp.1782-1790, 2010.
[107] C. A. Traina, J. Schwartz, “Surface Modification of Y2O3 Nanoparticles”, Langmuir, vol. 23, pp. 9158-9161, 2007.
[108] S. Lechevallier, P. Hammer, J. M. A. Caiut, S. Mazeres, R. Mauricot, M. Verelst, H. Dexpert, S. J. L. Ribeiro, J. Dexpert-Ghys, “APTES-Modified RE2O3:Eu3+ Luminescent Beads: Structure and Properties”, Langmuir, vol. 28, pp.3962-3971, 2012.
[109] C. Li, J. Lin, “Rare Earth Fluoride Nano-/Microcrystals: Synthesis, Surface Modification and Application”, Journal of Materials Chemistry, vol. 20, pp. 6831-6847, 2010.
[110] S. Setua, D. Menon, A. Asok, S. Nair, M. Koyakutty, “Folate Receptor Targeted, Rare-Earth Oxide Nanocrystals for Bi-Modal Fluorescence and Magnetic Imaging of Cancer Cells”, Biomaterials, vol. 31, pp. 714-729, 2010.
[111] S. Dhara, P. Bhargava, “Influence of Nature and Amount of Dispersant on Rheology of Aged Aqueous Alumina Gelcasting Slurries”, Journal of the American Ceramic Society, vol. 88, pp. 547-552, 2005.
[112] L. J. Gauckler, Th. Graule, F. Baader, “Ceramic Forming Using Enzyme Catalyzed Reactions”, Materials Chemistry and Physics, vol. 61, pp. 78-102, 1999.
[113] D. Hanaor, M. Michelazzi, C. Leonelli, C. C. Sorrell, “The effects of Carboxylic Acids on the Aqueous Dispersion and Electrophoretic Deposition of ZrO2”, Journal of the European Ceramic Society, vol. 32, pp. 235-244, 2012.
[114] H. S. Wang, C. K. Duan, P. A. Tanner, “Visible Upconversion Luminescence from Y2O3:Eu3+,Yb3+”, Journal of Physics and Chemistry C, vol. 112, pp. 16651-16654, 2008.
[115] Y. H. Zheng, N. Guo, Y. C. Jia, H. Qiaoab, H. P. You, “An Obvious Rolling Process in the Synthesis of Y2O3:Eu3+ Micro-urchins Built from Nanoscrolls”, CrystEngComm, vol. 14, pp. 7195-7200, 2012.
[116] S. Som, S. K. Sharma, “Eu3+/Tb3+-Codoped Y2O3 Nanophosphors: Rietveld Refinement, Bandgap and Photoluminescence Optimization”, Journal of Physics D: Applied Physics, vol. 45, pp. 1-11, 2012.
[117] A. M. Khachatourian, F. Golestani-Fard, H. Sarpoolaky, C. Vogt, M. S. Toprak, “Microwave Assisted Synthesis of Monodispersed Y2O3 and Y2O3:Eu3+ Particles”, Ceramics International, vol. 41, pp. 2006-2014, 2015.
[118] S. Som, S. Das, S. Dutta, H. G. Visser, M. K. Pandey, P. Kumar, R. K. Dubey, S. K. Sharma, “Synthesis of Strong Red Emitting Y2O3:Eu3+ Phosphor by Potential Chemical Routes: Comparative Investigations on the Structural Evolutions, Photometric Properties and Judd–Ofelt analysis”, Royal Society of Chemistry, vol. 5, pp.70887-70898, 2015.
[119] Y. S. Liu, Y. Y. Ruan, L. L. Song, W. J. Dong, C. R. Li, “Morphology-Controlled Synthesis of Y2O3:Eu3+ and the Photoluminescence Property”, Journal of Alloys and Compounds, vol. 581, pp. 590-595, 2013.
[120] M. Lv, G. C. Li, J. Dai, X. Li, “A Simple Solvothermal Synthesis of Spherical Y2O3:Eu3+”, Advanced Materials Research, vol. 1088, pp. 58-63, 2015.
[121] L. Nardo, A. Andreoni, M. Masson, T. Haukvik, H. H. Tonnesen, “Studies on Curcumin and Curcuminoids. XXXIX. Photophysical Properties of Bisdemethoxycurcumin”, Journal of Fluorescence, vol. 21, pp. 627-635, 2011.
[122] Frank V. Distefano, W. O. Patent 082155 (2007).
[123] K. Koyama, T. Miyagawa, M. Mathuyuki, “Red Colored Phosphor and Process for Preparing the Same”, United States Patent, 4264677, 1981.
[124] T. Takahashi, “Method for Preparing Divalent-Europium-Activated Calcium Sulfide Phosphors”, United States Patent, 4374037, 1983.
[125] H. Kasano,K. Megumi, H. Yamamoto, “Phosphor and Method of Manufacturing the Phosphor”, European Patent Specification, 0030853B1, 1984.
[126] M. J. Hampden-Smith, T. T. Kodas, J. Caruso, D. J. Skamser, Q. H. Powell, K. Kunze, “Sulfur-Containing Phosphor Powders, Methods for Making Phosphor Powders and Devices Incorporating Same”, United States Patent, 6153123, 2000.
[127] P. N. Yocom, D. Zaremba, “Long Persistence Alkaline Earth Sulfide Phosphors”, United States Patent, 6379584, 2002.
[128] K. N. Kim, S. M. Park, T. Matsuoka, “Method for Manufacturing Red Phosphor and Light Emitting Diode for Using the Same”, European Patent Specification, 1915437B1, 2008.
[129] T. Kato, K. Murakami, K. Sugawara, “Carbon Reduction of Gypsum Produced from Flue Gas Desulfurization”, Chemical Engineering Transactions, vol. 29, pp. 805-810, 2012.
[130] X. H. He, Y. Zhu, “Improvement of Morphology and Luminescence of CaS: Eu2+ Red-Emitting Phosphor Particles Via Carbon-Containing Additive Strategy”, Journal of Materials Science, vol. 43, pp. 1515-1519, 2008.
[131] J. E. Van-Haecke, P. F. Smet, K. De-Keyser, D. Poelman, “Single Crystal CaS:Eu Luminescent Particles Obtained by Solvothermal Synthesis”, Journal of the Electrochemical Society, vol. 154, pp. J278-J282, 2007.
[132] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerene”, Nature, vol. 318, pp. 162-163, 1985.
[133] H. W. Kroto, “C60: Buckminsterfullerene, the Celestial Sphere that Fell to Earth”, Angewandte Chemie International Edition in English, vol. 31, pp. 111-129, 1992.
[134] A. A. Deshmukh, S. D. Mhlanga, N. J. Coville. “Carbon Spheres”, Materials Science and Engineering R, vol. 70, pp. 1-28, 2010.
[135] Q. Wang, H. Li, L. Chen, X. Huang, “Monodispersed Hard Carbon Spherules with Uniform Nanopores”, Carbon, vol. 39, pp. 2211-2214, 2001.
[136] J. Liu, P. Tian, J. Ye, L. Zhou, W. Gong, Y. Lin, G. Ning, “Hydrothermal Synthesis of Carbon Microspheres from Glucose: Tuning Sphere Size by Adding Oxalic Acid”, Chemistry Letters, vol. 38, pp. 948-949, 2009.
[137] Y. S. Shin, L. Q. Wang, I. T. Bae, B. W. Arey, G. J. Exarhos, “Hydrothermal Syntheses of Colloidal Carbon Spheres from Cyclodextrins”, Journal of Physical Chemistry C, vol. 112, pp. 14236-14240, 2008.
[138] Y. Zhao, W. Li, X. Zhao, D. P. Wang, S. X. Liu, “Carbon Spheres Obtained via Citric Acid Catalysed Hydrothermal Carbonisation of Cellulose”, Materials Research Innovations, vol. 17, pp. 546-551, 2013.
[139] T. V. Mwenya, H. Y. Fan, H. Dai, M. C. Li, “The Detailed Evolution of Carbon Spheres by Hydrothermal Method”, International Journal of Photoenergy, vol. 2016, pp. 1-5, 2016.
[140] S. Krstić, B. Kaluđerović, V. Dodevski, A. Z. Bjelajac, “Structural Properties of Carbon Microspheres Obtained by Hydrothermal Treatment of Fructose”, Zaštita materijala, vol. 56, pp. 155-158, 2015.
[141] M. Li, W. Li, S. Liu, “Control of the Morphology and Chemical Properties of Carbon Spheres Prepared from Glucose by a Hydrothermal Method”, Journal of Materials Research, vol. 27, pp. 1117-1123, 2012.
[142] S. Xu, C. Liu, F. Ye, Y. Guo, J. Wiezorek, “Alkali-Assisted Hydrothermal Route to Control Submicron-Sized Nanoporous Carbon Spheres with Uniform Distribution”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 515, pp. 1-11, 2017.
[143] Y. Gong, L. Xie, H. Li, Y. Wang, “Sustainable and Scalable Production of Monodisperse and Highly Uniform Colloidal Carbonaceous Spheres Using Sodium Polyacrylate as the Dispersant”, Chemical Communications, vol. 50, pp. 12633-12636, 2012.
[144] Z. X. Zhang, G. Y. Wu, Z. C. Xu, S. S. Wu, L. Gu, “Adsorption of Methyl Blue onto Uniform Carbonaceous Spheres Prepared Via an Anionic Polyacrylamide-Assisted Hydrothermal Route”, Materials Chemistry and Physics, vol. 208, pp. 8-18, 2018.
[145] Q. Wu, W. Li, J. Tan, S. X. Liu, “Flexible Cage-Like Carbon Spheres with Ordered Mesoporous Structures Prepared Via a Soft-Template/Hydrothermal Process from Carboxymethylcellulose”, RSC Advances, vol. 4, pp. 61518-61524, 2014.
[146] Y. M. Wang, P. R. Chen, Y. L. Zhou, L. F. He, J. Zhang, S. W. Zhu, B. J. Cheng, “Synthesis of Carbon Microspheres Under Ambient Pressure”, Journal of Porous Materials, vol. 25, pp. 1245-1250, 2017.
[147] G. Jia, M. Yang, Y. H. Song, H. P. You, H. J. Zhang, “General and Facile Method to Prepare Uniform Y2O3: Eu Hollow Microspheres”, Crystal Growth and Design, vol. 9, pp. 301-307, 2009.
[148] P. P. Yang, S. L. Gai, Y. C. Liu, W. X. Wang, C. X. Li, J. Lin, “Uniform Hollow Lu2O3:Ln (Ln= Eu3+, Tb3+) Spheres: Facile Synthesis and Luminescent Properties”, Inorganic Chemistry, vol. 50, pp. 2182-2190, 2011.
[149] C. M. Zhang, J. Y. Wang, Y. M. Liu, G. Jia, “Template-Directed Synthesis and Upconversion Luminescence of Y2O3 Hollow Spheres”, Advanced Materials Research, vol. 1052, pp. 198-202, 2014.
[150] F. He, P. P. Yang, D. Wang, C. X. Li, N. Niu, S. L. Gai, M. L. Zhang, “Preparation and Up-Conversion Luminescence of Hollow La2O3:Ln (Ln= Yb/Er, Yb/Ho) Microspheres”, Langmuir, vol. 27, pp. 5616-5623, 2011.
[151] C. B. Tan, Y. X. Liu, Y. N. Han, W. B. Li, “Influence of Carbon Templates and Yb3+ Concentration on Red and Green Luminescence of Uniform Y2O3:Yb/Er Hollow Microspheres”, Journal of Luminescence, vol. 131, pp. 1198-1202, 2011.
[152] L. W. Zeng, D. Q. Chen, F. Huang, A. P. Yang, L. Lei, Y. S. Wang, “Uniform Eu3+:CeO2 Hollow Microspheres Formation Mechanism and Optical Performance”, Journal of Alloys and Compounds, vol. 534, pp. 64-69, 2012.
[153] G. Tian, Z. J. Gu, X. X. Liu, L. J. Zhou, W. Y. Yin, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, Y. L. Zhao, “Facile Fabrication of Rare-Earth-Doped Gd2O3 Hollow Spheres with Upconversion Luminescence, Magnetic Resonance, and Drug Delivery Properties”, The Journal of Physical Chemistry C, vol. 115, pp. 23790-23796, 2011.
[154] L. Dong, D. An, M. Gong, Y. Lu, H. L. Gao, Y. J. Xu, S. H. Yu, “PEGylated Upconverting Luminescent Hollow Nanospheres for Drug Delivery and in Vivo Imaging”, Small, vol. 9, pp. 3235-3241, 2013.
[155] K. Suresh, K. V. R. Murthy, C. Atchyutha-Rao, N. V. Poornachandra-Rao, “Rare Earth Doped Alkali Earth Sulfide Phosphors for White-Light LEDs”, ISRN Condensed Matter Physics, vol. 2011, pp.1-3, 2012.
[156] W. Lehmann, F. M. Ryan, “Cathodoluminescence of CaS:Ce3+ and CaS:Eu2+ Phosphors”, Journal of The Electrochemical Society, vol. 118, pp. 477-482, 1971.
[157] A. Wachtel, “CaS:Cu, Eu Electroluminescent Phosphors”, Journal of The Electrochemical Society, vol. 107, pp. 199-206, 1960.
[158] D. Jia, J. Zhu, B. Wu, “Influence of Co‐Doping with Cl− on the Luminescence of CaS:Eu2+”, Journal of the Electrochemical Society, vol. 147, pp. 3948-3952, 2000.
[159] C. Guo, D. Huang, Q. Su, “Methods to Improve the Fluorescence Intensity of CaS:Eu2+ Red-Emitting Phosphor for White LED”, Materials Science and Engineering B, vol. 130, pp. 189-193, 2006.
[160] L. Lu, X. Zhang, Z. Bai, X. Wang, X. Mi, Q. Liu, “Synthesis of Infrared Up-Conversion Material SrS:Eu, Sm”, Advanced Powder Technology, vol. 17, pp. 181-187, 2006.
[161] D. Jia, J. Zhu, B. Wu, “Trapping Centers in CaS:Bi3+ and CaS:Eu2+, Tm3+”, Journal of the Electrochemical Society, vol. 147, pp. 386-389, 2000.
[162] Y. Nakao, “Luminescence Centers of MgS, CaS and CaSe Phosphors Activated with Eu2+ Ion”, Journal of the Physical Society of Japan, vol. 48, pp. 534-541, 1980.
[163] M. Pham-Thi, “Rare-Earth Calcium Sulfide Phosphors for Cathode-Ray Tube Displays”, Journal of Alloys and Compounds, vol. 225, pp. 547-551, 1995.
[164] Z. Hasan, M. Solonenko, P.I. Macfarlane, L. Biyikli, V.K. Mathur, F.A. Karwacki, “Persistent High Density Spectral Holeburning in CaS:Eu and CaS: Eu, Sm Phosphors”, Applied Physics Letters, vol. 72, pp. 2373-2375, 1998.
[165] J. Lin, Y. Huang, Y. Bando, C. Tang, D. Golberg, “BN Tubular Layer-Sheathed CaS:Eu2+ Nanowires as Stable Red-Light-Emitting Nanophosphors”, Chemical Communications, vol. 43, pp. 6631-6633, 2009.
[166] Y. Kojima, T. Toyama, “Effect of Strontium and Lithium Ions on Afterglow Time of Red-Emitting CaS:Eu2+, Pr3+ Phosphor Upon Visible-Light Irradiation”, Journal of Alloys and Compounds, vol. 475, pp. 524-528, 2009.
[167] K. Mori, Y. Kojima, N. Nishimiya, “Effect of Reducing Atmosphere on the Afterglow Properties of Red-Emitting CaS:Eu2+, Pr3+ Phosphors”, Functional Materials Letters, vol. 5, 1260012 (4 pages), 2012.
[168] Y. Kojima, A. Takahashi, T. Umegaki, “Synthesis of Orange-Red-Emitting Eu2+, Pr3+ Codoped SrS Long Afterglow Phosphor”, Journal of Luminescence, vol. 146, pp. 42-45, 2014.
[169] C. Wang, K. Tang, Q. Yang, C. An, B. Hai, G. Shen, Y. Qian, “Blue-Light Emission of Nanocrystalline CaS and SrS Synthesized Via a Solvothermal Route”, Chemical Physics Letters, vol. 351, pp. 385-390, 2002.
[170] N. Avci, J. Musschoot, P. F. Smet, K. Korthout, A. Avci, C. Detavernier, D. Poelman, “Microencapsulation of Moisture-Sensitive CaS:Eu2+ Particles with Aluminum Oxide”, Journal of the Electrochemical Society, vol. 156, pp. J333-J337, 2009.
[171] D. Poelman, J. E. Van Haecke, P. F. Smet, “Advances in Sulfide Phosphors for Displays and Lighting”, Journal of Materials Science: Materials in Electronics, vol. 20, pp. S134-S138, 2009.
[172] N. Avci, I. Cimieri, P. F. Smet, D. Poelman, “Stability Improvement of Moisture Sensitive CaS:Eu2+ Micro-Particles by Coating with Sol–Gel Alumina”, Optical Materials, vol. 33, pp. 1032-1035, 2011.
[173] K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, C. H. Kim, “Synthesis, Characterization, and Luminescent Properties of CaS:Eu Phosphor”, Journal of the American Ceramic Society, vol. 89, pp. 3413-3416, 2006.
[174] Y. J. Zhang, J. Zhao, D. J. Wang, J. Ma, “Effect of NH4Cl Flux on Structural and Luminescent Properties of CaS:Eu2+ Phosphors”, Advanced Materials Research, vol. 989-994, pp. 755-758, 2014.
[175] M. D. Lane, “Mid-Infrared Emission Spectroscopy of Sulfate and Sulfate-Bearing Minerals”, American Mineralogist, vol. 92, pp. 1-18, 2007.
[176] Z. Song, M. Zhang, C. Ma, “Study on the Oxidation of Calcium Sulfide Using TGA and FTIR”, Fuel Processing Technology, vol. 88, pp. 569-575, 2007.
[177] H. Böke, S. Akkurt, S. Özdemir, E. H. Göktürk, E. N. C. Saltik, “Quantification of CaCO3–CaSO3•0.5H2O–CaSO4•2H2O Mixtures by FTIR Analysis and its ANN Model”, Materials Letters, vol. 58, pp. 723-726, 2004.
[178] S. Wang, Q. Gao, J. Wang, “Thermodynamic Analysis of Decomposition of Thiourea and Thiourea Oxides”, Journal of Physical Chemistry B, vol. 109, pp. 17281-17289, 2005.
[179] C. Wildfirea, E. M. Sabolsky, M. J. Spencera, D. Shekhawat, “Solid-State Synthesis of YAG Powders through Microwave Coupling of Oxide/Carbon Particulate Mixtures”, Ceramics International, vol. 43, pp. 11455-11462, 2017.
[180] L. J. Yin, B. Dierre , T. Sekiguchi , J. van Ommen, H. Hintzen, Y. Cho, “Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors”, Materials, vol. 10, pp. 1-16, 2017.
[181] L. J. Yin, X. Xu, W. Yu, J. G. Yang, L. X. Yang, X. F. Yang, L. Y. Hao, “Synthesis of Eu2+-Doped AlN Phosphors by Carbothermal Reduction”, Journal of the American Ceramic Society, vol. 93, pp. 1702-1707, 2010.
[182] Y. Li, M. Gecevicius, J. Qiu, “Long Persistent Phosphors—from Fundamentals to Applications”, Chemical Society Reviews, vol. 45, pp. 2090-2136, 2016.
[183] J. Botterman, P. F. Smet, “Persistent Phosphor SrAl2O4:Eu, Dy in Outdoor Conditions: Saved by the Trap Distribution”, Optics Express, vol. 23, pp. A868-A881, 2015.
[184] J. Kaur, R. Shrivastava, B. Jaykumar, N. S. Suryanarayana, “Studies on the Persistent Luminescence of Eu2+ and Dy3+-Doped SrAl2O4 Phosphors: A Review”, Research on Chemical Intermediates, vol. 40, pp. 317-343, 2014.
[185] T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, “A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4:Eu2+, Dy3+”, Journal of the Electrochemical Society, vol. 143, pp. 2670-2673, 1996.
[186] T. Katsumata, T. Nabae, K. Sasajime, S. Komuro, T. Morikawa, “Effects of Composition on the Long Phosphorescent SrAl2O4:Eu2+, Dy3+ Phosphor Crystals”, Journal of the Electrochemical Society, vol. 144, pp. L243-L245, 1997.
[187] A. Nag, T. R. N. Kutty, “Role of B2O3 on the Phase Stability and Long Phosphorescence of SrAl2O4:Eu, Dy”, Journal of Alloys and Compounds, vol. 354, pp. 221-231, 2003.
[188] Y. Liu, C. N. Xu, “Influence of Calcining Temperature on Photoluminescence and Triboluminescence of Europium-Doped Strontium Aluminate Particles Prepared by Sol-Gel Process”, The Journal of Physical Chemistry B, vol. 107, pp. 3991-3995, 2003.
[189] G. Blasse, A. Bril, “Fluorescence of Eu2+-activated Alkaline-earth Aluminates”, Philips Research Reports, vol. 23, pp. 201-206, 1968.
[190] H. D. Megaw, “Crystal structure: A Working Approach”, W. B. Saunders: London, 1973.
[191] S. Ito, S. Banno, K. Suzuki, M. Inagaki, “Phase Transition in SrAl2O4”, Zeitschrift für Phusikalische Chemie, vol. 105, pp. 173-178, 1977.
[192] S. H. M. Poort, W. P. Blokpoel, G. Blasse, “Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate”, Chemistry of Materials, vol. 7, pp. 1547-1551, 1995.
[193] R. D. Shannon, "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides", Acta Crystallographica. A32, pp. 751-767, 1976.
[194] J. Bierwagen, S. Yoon, N. Gartmann, B. Walfort, H. Hagemann, “Thermal and Concentration Dependent Energy Transfer of Eu2+ in SrAl2O4”, Optical Materials Express, vol. 6, pp. 793-803, 2016.
[195] D. Haranath, V. Shanker, H. Chander, P. Sharma, “Tuning of Emission Colours in Strontium Aluminate Long Persisting Phosphor”, Journal of Physics D: Applied Physics, vol. 36, pp. 2244-2248, 2003.
[196] G. M. Qiu, Y. G. Chen, J. Q. Cui, X. J. Geng, H. Wang, B. Song, “Synthesis of Long Afterglow Phosphors Doped B SrA12O4:Eu2+, Dy3+ and Its Luminescent Properties”, Journal of Rare Earths, vol. 25, pp. 86-89, 2007.
[197] Y. L. Chang, H. I. Hsiang, M. T. Liang, F. S. Yen, “Phase Evolution and Thermal Behaviors of the Solid-State Reaction Between SrCO3 and Al2O3 to Form SrAl2O4 Under Air and CO2-Air Atmospheres”, Ceramics International, vol. 38, pp. 2269-2276, 2012.
[198] Y. H. Wang, X. Y. Song, S. H. Zhang, “Effect of B2O3 On Long-Last Phosphorescence of SrAl2O4:Eu2+,Dy3+”, Materials Science Forum, vol. 610-613, pp. 403-407, 2009.
[199] P. Dorenbos, “Mechanism of Persistent Luminescence in Eu2+ and Dy3+ Codoped Aluminate and Silicate Compounds”, Journal of the Electrochemical Society, vol. 152, pp. H107-H110, 2005.
[200] F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M. H. Whangbo, A. Garcia, T. L. Mercier, “Mechanism of Phosphorescence Appropriate for the Long-Lasting Phosphors Eu2+-Doped SrAl2O4 with Codopants Dy3+ and B3+”, Chemistry of Materials, vol. 17, pp. 3904-3912, 2005.
[201] E. Nakazawa, T. Mochida, “Traps in SrAl2O4:Eu2+ Phosphor with Rare-Earth Ion Doping”, Journal of Luminescence, vol. 72-74, pp. 236-237, 1997.
[202] W. Jia, H. Yuan, L. Lu, H. Liu, W. M. Yen, “Phosphorescent Dynamics in SrAl2O4:Eu2+, Dy3+ Single Crystal Fibers”, Journal of Luminescence, vol. 76-77, pp. 424-428, 1998.
[203] J. Hölsä, H. Jungner, M. Lastusaari, J. Niittykoski, “Persistent Luminescence of Eu2+ Doped Alkaline Earth Aluminates, MAl2O4:Eu2+”, Journal of Alloys and Compounds, vol. 323-324, pp. 326-330, 2001.
[204] T. Aitasalo, J. Hölsä, H. Jungner, J. C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, “Effect of Temperature on the Luminescence Processes of SrAl2O4: Eu2+”, Radiation Measurements, vol. 38, pp. 727-730, 2004.
[205] D. S. Kshatri, A. Khare, “Comparative Study of Optical and Sructural Properties of Micro-and Nanocrystalline SrAl2O4:Eu2+, Dy3+ Phosphors”, Journal of Luminescence, vol. 155, pp. 257-268, 2014.
[206] F. C. Palilla, A. K. Levine, M. R. Tomkus, “Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2O4 Activated by Divalent Europium”, Journal of the Electrochemical Society, vol. 115, pp. 642-644, 1968.
[207] J. Botterman, J. J. Joos, P. F. Smet, “Trapping and Detrapping in SrAl2O4:Eu, Dy Persistent Phosphors: Influence of Excitation Wavelength and Temperature”, Physical Review B, vol. 90, 085147 (15 pages), 2014.
[208] S. D. Han, K. C. Singh, T. Y. Cho, H. S. Lee, D. Jakhar, J. P. Hulme, C. H. Han, J. D. Kim, I. S. Chun, J. H. Gwak, “Preparation and Characterization of Long Persistence Strontium Aluminate Phosphor”, Journal of Luminescence , vol. 128, pp. 301–305, 2008.
[209] I. C. Chen, T. M. Chen, “Sol-Gel Synthesis and the Effect of Boron Addition on the Phosphorescent Properties of SrAl2O4:Eu2+, Dy3+ Phosphors”, Journal of Materials Research, vol. 16, pp. 644-651, 2001.
[210] I. C. Chen, T. M. Chen, “Effect of Host Compositions on the Afterglow Properties of Phosphorescent Strontium Aluminate Phosphors Derived from the Sol-Gel Method”, Journal of Materials Research, vol. 16, pp. 1293-1300, 2001.
[211] J. Niittykoski, T. Aitasalo, J. Hölsä, H. Jungner, M. Lastusaari, M. Parkkinen, M. Tukia, “Effect of Boron Substitution on the Preparation and Luminescence of Eu2+ Doped Strontium Aluminates”, Journal of Alloys and Compounds, vol. 374, pp. 108-111, 2004.
[212] X. Y. Chen, Z. Li, S. P. Bao, P. T. Ji, “Porous MAl2O4:Eu2+(Eu3+), Dy3+ (M=Sr, Ca, Ba) Phosphors Prepared by Pechini-Type Sol–Gel Method: The Effect of Solvents”, Optical Materials, vol. 34, pp. 48-55, 2011.
[213] P. Huang, Q. Zhang, C. E. Cui, J. Li, “Influence of Excitation Wavelengths on Luminescent Properties of Sr3Al2O6:Eu2+, Dy3+ Phosphors Prepared by Sol-Gel-Combustion Processing”, Optical Materials, vol. 33, pp. 1252–1257, 2011.
[214] X. Lu, M. Sun, J. Zhang, T. Wang, “Effect of Mixing Process on the Luminescent Properties of SrAl2O4:Eu2+, Dy3+ Long Afterglow Phosphors”, Journal of Rare Earths, vol. 28, pp. 150-152, 2010.
[215] J. B. Montes-Frausto, K. Juarez-Moreno, B. Can-Uc, G. A. Hirata-Flores, “Synthesis and Cytotoxic Effects of SrAl2O4 Persistent Luminescence Nanoparticles Codoped with Eu2+/Dy3+ ions”, Optical Materials Express, vol. 6, pp. 1488-1499, 2016.
[216] B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, H. C. Swart, “Photoluminescence and Phosphorescence Properties of MAl2O4:Eu2+, Dy3+ (M=Ca, Ba, Sr) Phosphors Prepared at an Initiating Combustion Temperature of 500 ℃”, Physica B, vol. 404, pp. 4440-4444, 2009.
[217] C. Zhao, D. Chen, “Synthesis of CaAl2O4:Eu, Nd Long Persistent Phosphor by Combustion Processes and Its Optical Properties”, Materials Letters, vol. 61, pp. 3673-3675, 2007.
[218] N. M. Son, L. T. T. Vien, L. V. K. Bao, N. N. Trac, “Synthesis of SrAl2O4: Eu2+, Dy3+ Phosphorescence Nanosized Powder by Combustion Method and Its Optical Properties”, Journal of Physics: Conference Series, vol. 187, pp. 012017(6 pages), 2009.
[219] Q. Xiao, L. Xiao, Y. Liu, X. Chen, Y. Li, “Synthesis and Luminescence Properties of Needle-Like SrAl2O4:Eu, Dy Phosphor via a Hydrothermal Co-precipitation Method”, Journal of Physics and Chemistry of Solids, vol. 71, pp. 1026-1030, 2010.
[220] Y. F. Xu, D.K. Ma, M. L. Guan, X. A. Chen, Q. Q. Pan, S. M. Huang, “Controlled Synthesis of Single-Crystal SrAl2O4:Eu2+, Dy3+ Nanosheets with Long-Lasting Phosphorescence”, Journal of Alloys and Compounds, vol. 502, pp. 38-42, 2010.
[221] C. H. Lu, S. Y. Chen, C. H. Hsu, “Nanosized Strontium Aluminate Phosphors Prepared via a Reverse Microemulsion Route”, Materials Science and Engineering B, vol. 140, pp. 218-221, 2007.
[222] J. Geng, Z. Wu, “Synthesis of Long Afterglow SrAl2O4:Eu2+, Dy3+ Phosphors through Microwave Route”, Journal of Materials Synthesis and Processing, vol. 10, pp. 245-248, 2002.
[223] B. C. Cheng, H. J. Liu, M. Fang, Y. H. Xiao, S. J. Lei, L. Zhang, “Long-Persistent Phosphorescent SrAl2O4:Eu2+, Dy3+ Nanotubes”, Chemical Communications, vol. 8, pp. 944–946, 2009.
[224] G. P. Dong, X. D. Xiao, L. L. Zhang, Z. J. Ma, X. Bao, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, “Preparation and Optical Properties of Red, Green and Blue Afterglow Electrospun Nanofibers”, Journal of Materials Chemistry, vol. 21, pp. 2194–2203, 2011.
[225] C. Z. Li, Y. Imai, Y. Adachi, H. Yamada, K. Nishikubo, C. N. Xu, “One-Step Synthesis of Luminescent Nanoparticles of Complex Oxide, Strontium Aluminate”, Journal of the American Ceramic Society, vol. 90, pp. 2273-2275, 2007.
[226] H. R. Zhang, Z. P. Xue, B. F. Lei, H. W. Dong, H. M. Zhang, S. Q. Deng, M. T. Zheng, Y. L. Liu, Y. Xiao, “A Top-Down Method to Fabricate SrAl2O4:Eu2+, Dy3+ Nanosheets from Commercial Blocky Phosphors”, Optical Materials, vol. 36, pp. 1802-1807, 2014.
[227] J. T. Chen, F. Gu, C. Z. Li, “Influence of Precalcination and Boron-Doping on the Initial Photoluminescent Properties of SrAl2O4:Eu, Dy Phosphors”, Crystal Growth and Design, vol. 8, pp. 3175-3179, 2008.
[228] Y. T. Yu, B. G. Kim, “Effects of Adding B2O3 as a Flux on Phosphorescent Properties in Synthesis of SrAl2O4 :(Eu2+, Dy3+) Phosphor”, Korean Journal of Chemical Engineering, vol. 20, pp. 973-976, 2003.
[229] G. J. Ji, M. M. Li, G. H. Li, G. M. Gao, H. F. Zou, S. C. Gan, X. H. Xu, “Hydrothermal Synthesis of Hierarchical Micron Flower-Like γ-AlOOH and γ-Al2O3 Superstructures from Oil Shale Ash”, Powder Technology, vol. 215-216, pp. 54-58, 2012.
[230] W. Q. Cai, J. G. Yu, M. Jaroniec, “Template-Free Synthesis of Hierarchical Spindle-Like γ -Al2O3 Materials and Their Adsorption Affinity Towards Organic and Inorganic Pollutants in Water”, Journal of Materials Chemistry, vol. 20, pp. 4587–4594, 2010.
[231] J. T. C. van Kemenade, G. P. F. Hoeks, in: The Electrochemical Society Extended Abstracts, vol. 83-1, Abstract 607, p.914, San Francisco, CA, May 8–13, 1983.
[232] T. Y. Peng, H. P. Yang, X. L. Pu, B. Hu, Z. C. Jiang, C. H. Yan, “Combustion Synthesis and Photoluminescence of SrAl2O4:Eu, Dy Phosphor Nanoparticles”, Materials Letters, vol. 58, pp. 352–356, 2004.
[233] B. F. dos Santos Jr, M. V. dos Santos Rezende, P. J. R. Montes, R. M. Araujo, M. A. C. dos Santos, M. E. G. Valerio, “Spectroscopy Study of SrAl2O4:Eu3+”, Journal of Luminescence, vol. 132, pp. 1015–1020, 2012.
[234] X. X. Luo, W. H. Cao, Z. G. Xiao, “Investigation on the Distribution of Rare Earth Ions in Strontium Aluminate Phosphors”, Journal of Alloys and Compounds, vol. 416, pp. 250-255, 2006.
[235] G. H. Lee, C. S. Yoon, S. H. Kang, “Role of Flux in the Production Process of Red Phosphors for White LEDs”, Journal of Materials Science, vol. 43, pp. 6109–6115, 2008.
[236] Nemoto Luminova:SrAl2O4:Eu,Dy、Sr4Al14O25:Eu,Dy、ZnS:Cu規格書2019.
[237] X. D. Lü, “Silica Encapsulation Study on SrAl2O4:Eu2+, Dy3+ Phosphors”, Material Chemistry and Physics, vol. 93, pp. 526–530, 2005.
[238] X. D. Lü, M. J. Zhong, W. G. Shu, Q. M. Yu, X. Q. Xiong, R. Q. Wang, “Alumina Encapsulated SrAl2O4:Eu2+, Dy3+ Phosphors”, Powder Technology, vol. 177, pp. 83-86, 2007.

(此全文20220723後開放外部瀏覽)
電子全文
全文檔開放日期:2022/07/23
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *