字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:吳聖韓
研究生英文姓名:Wu, Sheng-Han
中文論文名稱:莫三比克吳郭魚短型顆粒蛋白前體 PGRN1 基因在抗弧菌之分子機制研究
英文論文名稱:Study on molecular mechanism of short-form progranulin PGRN1 gene from Mozambique tilapia in defense against Vibrio species
指導教授姓名:龔紘毅
口試委員中文姓名:教授︰吳金洌
教授︰陳志毅
教授︰陳威戎
教授︰周信佑
教授︰陳歷歷
副教授︰胡紹揚
副教授︰龔紘毅
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學號:20133004
請選擇論文為:學術型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:115
中文關鍵詞:吳郭魚顆粒蛋白前體顆粒蛋白免疫調節抗菌活性弧菌
英文關鍵字:TilapiaProgranulinGranulinImmune modulationAntibacterial activityVibrio species
相關次數:
  • 推薦推薦:0
  • 點閱點閱:46
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
顆粒蛋白前體 (progranulin, PGRN) 是一個多功能性生長因子,具有促進細胞增生和存活、參與癌症生成及轉移、組織修復、發育和發炎反應等功能。莫三比克吳郭魚 (Oreochromis mossambicus) 短型 PGRN 基因 PGRN1 (OmPGRN1) 會表現兩種轉錄本 (transcript),一種可轉譯出由 206 個胺基酸 (amino acid, a.a.) 組成的 PGRN,包含兩個顆粒蛋白 (granulin, GRN) 單元,OmGRN-A 和 OmGRN-B。另一個則為新穎 RNA 選擇性剪接 (RNA alternative splicing) 產生的 mRNA,可轉譯出由 20 個 a.a. 組成的訊號胜肽 (signal peptide) 和 41 個 a.a. 組成的 GRN 單元,命名為 OmGRN-41。OmGRN-41 和 OmPGRN1 主要會表現在免疫相關組織,包含脾臟、頭腎和腸道。而且經創傷弧菌 (Vibrio vulnificus) 感染後 1 及 6 小時後,分別會進一步誘導 OmGRN-41 和 OmPGRN1 在脾臟的表現。本研究首先建立肌肉專一性表現分泌型 OmGRN-41、OmGRNA 和 OmPGRN1 之基因轉殖斑馬魚。結果顯示表現 OmGRN-41、OmGRNA 和 OmPGRN1 皆可提升基因轉殖斑馬魚感染 V. vulnificus 後之相對存活率,分別為 68%、32% 和 36%。而表現分泌型 OmGRN-41 具有顯著性活化基因轉殖斑馬魚之免疫反應相關基因的表現,如 TNFa、TNFb、IL-8、IL-1β、IL-6、IL-26、IL-21、IL-10、complement C3、lysozyme (Lyz) 和肝臟抗微生物胜肽 hepcidin (HAMP) 等。此外 OmGRN-41 亦能在基因轉殖斑馬魚感染 V. vulnificus 初期,進一步提升先天性免疫反應相關基因之表現,如 TNFb、IL-8、IL-1β、IL-6、complement C3、Lyz 和 HAMP 等。接著利用合成胜肽探討 OmGRN-41 對不同的病原性細菌之抗菌活性。結果顯示 OmGRN-41 合成胜肽對多種革蘭氏陰性弧菌屬病原菌具有殺菌活性,包含 V. vulnificus (64 μΜ)、V. alginolyticus (128 μΜ)、V. harveyi (128 μΜ) 和 V. parahaemolyticus (256 μΜ);亦對 V. alginolyticus (64 μΜ 處理後 8 小時內) 和 V. harveyi (64 μΜ 處理後 12 小時內) 和 V. parahaemolyticus (64 μΜ 處理後 8 小時內;128 μM 處理後 12 小時內) 具有抑菌活性。然而對於革蘭氏陰性菌 Aeromonas hydrophila、Edwardsiella tarda 以及革蘭氏陽性菌 Streptococcus agalactiae 和 Streptococcus iniae 皆不具抗菌活性。而由殺菌時間曲線 (time-kill curves) 中發現經 OmGRN-41 合成胜肽處理 2 小時內,即可殺死超過 99% 以上的弧菌屬病原菌,包含 V. vulnificus (64 μΜ 處理 1 小時內)、V. alginolyticus (128 μΜ 處理 1 小時內)、V. harveyi (128 μΜ 處理 2 小時內) 和 V. parahaemolyticus (256 μΜ 處理 2 小時內)。此外 OmGRN-41 經過 pH 2-10 或 40-100℃ 加熱處理 1 小時後,對 V. vulnificus 仍具有 MIC 和 MBC 的活性 (64 μΜ)。進一步利用穿透式電子顯微鏡可觀察到 OmGRN-41 合成胜肽會破壞 V. vulnificus 的外膜,進而導致其菌體破裂,使其胞內物質流出。此外 2-128 μΜ OmGRN-41 合成胜肽對於吳郭魚及綿羊紅血球溶血性低 (<3%)。在 in vivo 實驗也證實 OmGRN-41 合成胜肽能有效提升尼羅吳郭魚 (Oreochromis niloticus) 感染 V. vulnificus 後之存活率,且能降低其肝臟中 V. vulnificus 的菌數。最後利用酵母菌雙雜合系統 (yeast two-hybrid system) 篩選出一些與 OmGRN-41 交互作用的候選分子,如卵黃蛋白原 (vitellogenin)、鈣調蛋白 (calmodulin)、粒線體丙酮酸載體 (mitochondrial pyruvate carrier)、原血紅素結合素 (hemopexin) 等。本研究結果顯示 OmGRN-41 胜肽是一個新穎的殺菌劑,特別是針對弧菌屬病原菌。OmGRN-41 為一個新的宿主防禦胜肽,同時具有免疫調節劑和抗菌胜肽的角色。因此 OmGRN-41 具有潛力應用於治療人類或水產養殖動物之弧菌感染症。
Progranulin (PGRN) is a multi-functional growth factor that mediates cell proliferation, survival, migration, tumorigenesis, wound healing, development, and anti-inflammation activity. A short-form PGRN gene PGRN1 of Mozambique tilapia (Oreochromis mossambicus) expresses two transcripts, OmPGRN1 encoding a 206 a.a. PGRN with two granulin (GRN) units named OmGRN-A and OmGRN-B. And a novel alternatively spliced transcript encoding a novel, secreted GRN peptide composed of 20-a.a. ER signal peptide and 41-a.a. GRN unit named OmGRN-41. OmGRN-41 and OmPGRN1 were not only abundantly expressed in immune-related organs including spleen, head kidney, and intestine of Mozambique tilapia, but also were further induced in the spleen of Mozambique tilapia challenged with Vibrio vulnificus at 1 h post infection (hpi) and 6 hpi, respectively. In this study, we established three transgenic zebrafish lines expressing the secreted OmGRN-41, OmGRN-A and OmPGRN1 specifically in muscle. The relative percent of survival (RPS) was enhanced in adult transgenic zebrafish expressing OmGRN-41 (68%), OmGRN-A (32%) and OmPGRN1 (36%) compared with control transgenic zebrafish expressing AcGFP after challenge with V. vulnificus. And the secreted OmGRN-41 can induce the expression of innate immune response-related genes, such as TNFa, TNFb, IL-8, IL-1β, IL-6, IL-26, IL-21, IL-10, complement C3, lysozyme (Lyz) and the hepatic antimicrobial peptide hepcidin (HAMP), in adult transgenic zebrafish without V. vulnificus infection. In addition, the OmGRN-41 can enhance the innate immune response by further elevating TNFb, IL-1β, IL-8, IL-6, and HAMP expression in early responsive time to the V. vulnificus challenge in transgenic zebrafish. Furthermore, synthetic OmGRN-41 peptide was used to investigate its anti-bacterial activities against various bacterial pathogens. The results showed that synthetic OmGRN-41 had bactericidal activity against gram-negative Vibrio species including V. vulnificus (64 μM), V. alginolyticus (128 μM), V. harveyi (128 μM), V. parahaemolyticus (256 μΜ); and exhibited bacteriostatic activities to V. alginolyticus (64 μM in 8 hours), and V. harveyi (64 μM in 12 hours), and V. parahaemolyticus (64 μM in 8 hours, 128 μM in 12 hours). However, no anti-bacterial activities of synthetic OmGRN-41 was observed for gram-negative Aeromonas hydrophila, Edwardsiella tarda, and gram-positive Streptococcus agalactiae, and Streptococcus iniae. Time-kill curves showed that the Vibrio species was eradicated over 99% of bacteria by synthetic OmGRN-41 treatment for 2 hours, including V. vulnificus (64 μM in 1 hour), V. alginolyticus (128 μM in 1 hour), V. harveyi (128 μM in 2 hours) and V. parahaemolyticus (256 μM in 2 hours). Synthetic OmGRN-41 exerted the antimicrobial activity to V. vulnificus with MIC and MBC at 64 μM after treated in pH 2 to pH 10 or after heated for 1 hour at high temperature from 40℃ to 100℃. The TEM observed that the outer membrane of V. vulnificus was disrupted by synthetic OmGRN-41 leading to morphology rupture and loss of cytoplasmic contents. Additionally, little hemolytic activity (<3%) for the tilapia and sheep erythrocytes were detected after treated with 2 to 128 μM synthetic OmGRN-41. The in vivo experiments also confirmed that synthetic OmGRN-41 can effectively enhance the survival of Nile tilapia (Oreochromis niloticus) infected by V. vulnificus, and decreased the number of V. vulnificus in the liver of infected Nile tilapia. Finally, some candidate molecules interacting with OmGRN-41 were identified by the yeast two-hybrid system, such as vitellogenin, calmodulin, mitochondrial pyruvate carrier, hemopexin and so on. Our results suggest that the OmGRN-41 peptide is a novel bactericidal agent, especially for Vibrio species. OmGRN-41 as a new host defense peptide is not only an immune modulator but also an antimicrobial peptide. It indicates that OmGRN-41 can be applied to therapy for vibriosis in human or aquaculture animals.
致謝 I
摘要 II
Abstract IV
目次 VI
圖次 VIII
表次 IX
縮寫表 X
第一章 緒論 1
1.1 全球漁業現況 1
1.2 吳郭魚養殖概述 1
1.3 研究動機和目的 1
第二章 OmPGRN1 基因選殖、表現及序列分析 3
2.1 前言 3
2.2 材料方法 4
2.3 結果 11
2.4 討論 12
第三章 以基因轉殖斑馬魚模式探討 OmPGRN1、OmGRN-A 及 OmGRN-41 在調節免疫反應及抗創傷弧菌感染之機制 14
3.1 前言 14
3.2 材料方法 18
3.3 結果 24
3.4 討論 27
第四章 新穎吳郭魚 GRN 胜肽單元 OmGRN-41 抗菌活性分析 30
4.1 前言 30
4.2 材料方法 31
4.3 結果 34
4.4 討論 37
第五章 鑑定與吳郭魚 GRN 單元 OmGRN-41 交互作用之分子 39
5.1 前言 40
5.2 材料方法 40
5.3 結果 44
5.4 討論 45
第六章 結論 46
參考文獻 47
圖 61
表 95
已發表之相關著作 115

Alharbi, A.H., 1994. First isolation of Streptococcus sp from hybrid tilapia (Oreochromis niloticus X Oreochromis aureus) in Saudi-Arabia. Aquaculture 128, 195-201.
Amsterdam, A., Lin, S., Hopkins, N., 1995. The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev. Biol. 171, 123-129.
Anakwe, O.O., Gerton, G.L., 1990. Acrosome biogenesis begins during meiosis: evidence from the synthesis and distribution of an acrosomal glycoprotein, acrogranin, during guinea pig spermatogenesis. Biol Reprod 42, 317-328.
Aoki, W., Ueda, M., 2013. Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals (Basel) 6, 1055-1081.
Arukwe, A., Goksoyr, A., 2003. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation: oogenetic, population, and evolutionary implications of endocrine disruption. Comp. Hepatol. 2, 4.
Avrova, A.O., Stewart, H.E., De Jong, W.D., Heilbronn, J., Lyon, G.D., Birch, P.R., 1999. A cysteine protease gene is expressed early in resistant potato interactions with Phytophthora infestans. Mol. Plant. Microbe Interact. 12, 1114-1119.
Baba, T., Hoff, H.B., 3rd, Nemoto, H., Lee, H., Orth, J., Arai, Y., Gerton, G.L., 1993. Acrogranin, an acrosomal cysteine-rich glycoprotein, is the precursor of the growth-modulating peptides, granulins, and epithelins, and is expressed in somatic as well as male germ cells. Mol Reprod Dev 34, 233-243.
Bahar, A.A., Ren, D., 2013. Antimicrobial peptides. Pharmaceuticals (Basel) 6, 1543-1575.
Bals, R., Goldman, M.J., Wilson, J.M., 1998. Mouse beta-defensin 1 is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect. Immun. 66, 1225-1232.
Bateman, A., Belcourt, D., Bennett, H., Lazure, C., Solomon, S., 1990. Granulins, a novel class of peptide from leukocytes. Biochem Biophys Res Commun 173, 1161-1168.
Bateman, A., Bennett, H.P., 2009. The granulin gene family: from cancer to dementia. Bioessays 31, 1245-1254.
Baum, C., Dullmann, J., Li, Z.X., Fehse, B., Meyer, J., Williams, D.A., von Kalle, C., 2003. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101, 2099-2114.
Bayne, C.J., Gerwick, L., 2001. The acute phase response and innate immunity of fish. Dev Comp Immunol 25, 725-743.
Belcourt, D.R., Lazure, C., Bennett, H.P., 1993. Isolation and primary structure of the three major forms of granulin-like peptides from hematopoietic tissues of a teleost fish (Cyprinus carpio). J Biol Chem 268, 9230-9237.
Berks, M., 1995. The C. elegans genome sequencing project. C. elegans genome mapping and sequencing consortium. Genome Res. 5, 99-104.
Bhandari, V., Giaid, A., Bateman, A., 1993. The complementary deoxyribonucleic acid sequence, tissue distribution, and cellular localization of the rat granulin precursor. Endocrinology 133, 2682-2689.
Bo, J., Cai, L., Xu, J.H., Wang, K.J., Au, D.W., 2011. The marine medaka Oryzias melastigma--a potential marine fish model for innate immune study. Mar Pollut Bull 63, 267-276.
Boman, H.G., 1995. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61-92.
Brogden, K.A., 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3, 238-250.
Bruckner, A., Polge, C., Lentze, N., Auerbach, D., Schlattner, U., 2009. Yeast two-hybrid, a powerful tool for systems biology. Int. J. Mol. Sci. 10, 2763-2788.
Buchmann, K., 2014. Evolution of innate immunity: clues from invertebrates via fish to mammals. Front. Immunol. 5, 459.
Buonocore, F., Forlenza, M., Randelli, E., Benedetti, S., Bossu, P., Meloni, S., Secombes, C.J., Mazzini, M., Scapigliati, G., 2005. Biological activity of sea bass (Dicentrarchus labrax L.) recombinant interleukin-1beta. Mar. Biotechnol. (N. Y.) 7, 609-617.
Burridge, L., Weis, J.S., Cabello, F., Pizarro, J., Bostick, K., 2010. Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306, 7-23.
Butler, G.S., Dean, R.A., Tam, E.M., Overall, C.M., 2008. Pharmacoproteomics of a metalloproteinase hydroxamate inhibitor in breast cancer cells: Dynamics of membrane type 1 matrix metalloproteinase-mediated membrane protein shedding. Mol. Cell. Biol. 28, 4896-4914.
Cabello, F.C., 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ. Microbiol. 8, 1137-1144.
Cadieux, B., Chitramuthu, B.P., Baranowski, D., Bennett, H.P., 2005. The zebrafish progranulin gene family and antisense transcripts. BMC Genomics 6, 156.
Canonico, G.C., Arthington, A., Mccrary, J.K., Thieme, M.L., 2005. The effects of introduced tilapias on native biodiversity. Aquatic Conservation 15, 463-483.
Chai, H., Allen, W.E., Hicks, R.P., 2014. Synthetic antimicrobial peptides exhibit two different binding mechanisms to the lipopolysaccharides isolated from Pseudomonas aeruginosa and Klebsiella pneumoniae. Int J Med Chem 2014, 809283.
Chan, A.W., Luetjens, C.M., Schatten, G.P., 2000. Sperm-mediated gene transfer. Curr Top Dev Biol 50, 89-102.
Chen, M.H., Li, Y.H., Chang, Y., Hu, S.Y., Gong, H.Y., Lin, G.H., Chen, T.T., Wu, J.L., 2007. Co-induction of hepatic IGF-I and progranulin mRNA by growth hormone in tilapia, Oreochromis mossambiccus. Gen Comp Endocrinol 150, 212-218.
Chitramuthu, B.P., Baranowski, D.C., Kay, D.G., Bateman, A., Bennett, H.P., 2010. Progranulin modulates zebrafish motoneuron development in vivo and rescues truncation defects associated with knockdown of Survival motor neuron 1. Mol. Neurodegener. 5, 41.
CLSI, 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard—ninth edition CLSI M07-A9.
Couto, M.A., Harwig, S.S., Cullor, J.S., Hughes, J.P., Lehrer, R.I., 1992. Identification of eNAP-1, an antimicrobial peptide from equine neutrophils. Infect. Immun. 60, 3065-3071.
Cuenca, F.F., Pascual, A., Martinez, L.M., Conejo, M.C., Perea, E.J., 2003. Evaluation of SDS-polyacrylamide gel systems for the study of outer membrane protein profiles of clinical strains of Acinetobacter baumannii. J. Basic Microbiol. 43, 194-201.
Dalmo, R.A., Ingebrigtsen, K., Bogwald, J., 1997. Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES). J. Fish Dis. 20, 241-273.
Daniel, R., He, Z., Carmichael, K.P., Halper, J., Bateman, A., 2000. Cellular localization of gene expression for progranulin. J Histochem Cytochem 48, 999-1009.
Dastpeyman, M., Smout, M.J., Wilson, D., Loukas, A., Daly, N.L., 2018. Folding of granulin domains. Peptide Sci 110.
De Vry, J., Martinez-Martinez, P., Losen, M., Temel, Y., Steckler, T., Steinbusch, H.W., De Baets, M.H., Prickaerts, J., 2010. In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog. Neurobiol. 92, 227-244.
Defoirdt, T., Sorgeloos, P., Bossier, P., 2011. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 14, 251-258.
Di Domizio, J., Meller, S., Gilliet, M., 2015. Interleukin (IL)-26 overexpressed in psoriatic skin has antimicrobial and pro-inflammatory functions. J. Invest. Dermatol. 135, S72-S72.
Ding, L., Yang, L., Weiss, T.M., Waring, A.J., Lehrer, R.I., Huang, H.W., 2003. Interaction of antimicrobial peptides with lipopolysaccharides. Biochemistry 42, 12251-12259.
Edwards, J.L., Schrick, F.N., McCracken, M.D., van Amstel, S.R., Hopkins, F.M., Welborn, M.G., Davies, C.J., 2003. Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am. J. Reprod. Immunol. 50, 113-123.
Eichinger, L., Pachebat, J.A., Glockner, G., Rajandream, M.A., Sucgang, R., Berriman, M., Song, J., Olsen, R., Szafranski, K., Xu, Q., Tunggal, B., Kummerfeld, S., Madera, M., Konfortov, B.A., Rivero, F., Bankier, A.T., Lehmann, R., Hamlin, N., Davies, R., Gaudet, P., Fey, P., Pilcher, K., Chen, G., Saunders, D., Sodergren, E., Davis, P., Kerhornou, A., Nie, X., Hall, N., Anjard, C., Hemphill, L., Bason, N., Farbrother, P., Desany, B., Just, E., Morio, T., Rost, R., Churcher, C., Cooper, J., Haydock, S., van Driessche, N., Cronin, A., Goodhead, I., Muzny, D., Mourier, T., Pain, A., Lu, M., Harper, D., Lindsay, R., Hauser, H., James, K., Quiles, M., Madan Babu, M., Saito, T., Buchrieser, C., Wardroper, A., Felder, M., Thangavelu, M., Johnson, D., Knights, A., Loulseged, H., Mungall, K., Oliver, K., Price, C., Quail, M.A., Urushihara, H., Hernandez, J., Rabbinowitsch, E., Steffen, D., Sanders, M., Ma, J., Kohara, Y., Sharp, S., Simmonds, M., Spiegler, S., Tivey, A., Sugano, S., White, B., Walker, D., Woodward, J., Winckler, T., Tanaka, Y., Shaulsky, G., Schleicher, M., Weinstock, G., Rosenthal, A., Cox, E.C., Chisholm, R.L., Gibbs, R., Loomis, W.F., Platzer, M., Kay, R.R., Williams, J., Dear, P.H., Noegel, A.A., Barrell, B., Kuspa, A., 2005. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43-57.
Eldar, A., Bejerano, Y., Bercovier, H., 1994. Streptococcus shiloi and Streptococcus difficile - 2 new Streptococcal species causing a meningoencephalitis in fish. Curr. Microbiol. 28, 139-143.
Elkabets, M., Gifford, A.M., Scheel, C., Nilsson, B., Reinhardt, F., Bray, M.A., Carpenter, A.E., Jirstrom, K., Magnusson, K., Ebert, B.L., Ponten, F., Weinberg, R.A., McAllister, S.S., 2011. Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J. Clin. Invest. 121, 784-799.
Evans, B.C., Nelson, C.E., Yu, S.S., Beavers, K.R., Kim, A.J., Li, H.M., Nelson, H.M., Giorgio, T.D., Duvall, C.L., 2013. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. Jove-J Vis Exp.
Evans, D.L., Jaso-Friedmann, L., 1992. Nonspecific cytotoxic cells as effectors of immunity in fish. Annu. Rev. Fish Dis. 2, 109-121.
Falanga, A., Lombardi, L., Franci, G., Vitiello, M., Iovene, M.R., Morelli, G., Galdiero, M., Galdiero, S., 2016. Marine antimicrobial peptides: Nature provides templates for the design of novel compounds against pathogenic bacteria. Int. J. Mol. Sci. 17.
FAO, 2017. FAOSTAT-Food balance sheets.
FAO, 2018. FAO yearbook-Fishery and aquaculture statistics 2016. Rome/Roma. 104pp.
FAO, 2019. Food outlook-Biannual report on global food markets. Rome. Licence: CC BY-NC-SA 3.0 IGO.
Feghali, C.A., Wright, T.M., 1997. Cytokines in acute and chronic inflammation. Front Biosci 2, d12-26.
Fields, S., Song, O.K., 1989. A novel genetic system to detect protein protein interactions. Nature 340, 245-246.
Figueiredo, H.C.P., Klesius, P.H., Arias, C.R., Evans, J., Shoemaker, C.A., Pereira, D.J., Peixoto, M.T.D., 2005. Isolation and characterization of strains of Flavobacterium columnare from Brazil. J. Fish Dis. 28, 199-204.
Fujiwara, S., Imai, J., Fujiwara, M., Yaeshima, T., Kawashima, T., Kobayashi, K., 1990. A potent antibacterial protein in royal jelly - Purification and determination of the primary structure of royalisin. J. Biol. Chem. 265, 11333-11337.
Gama Sosa, M.A., De Gasperi, R., Elder, G.A., 2010. Animal transgenesis: an overview. Brain Struct Funct 214, 91-109.
Ganz, T., 2003. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710-720.
Garcia, J., Munro, E.S., Monte, M.M., Fourrier, M.C.S., Whitelaw, J., Smail, D.A., Ellis, A.E., 2010. Atlantic salmon (Salmo salar L.) serum vitellogenin neutralises infectivity of infectious pancreatic necrosis virus (IPNV). Fish Shellfish Immunol. 29, 293-297.
Giuliani, A., Pirri, G., Nicoletto, S.F., 2007. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent. Eur. J. Biol. 2, 1-33.
Goldburg, R., Naylor, R., 2005. Future seascapes, fishing, and fish farming. Front. Ecol. Environ. 3, 21-28.
Gong, H.Y., Wu, S.H., Chen, C.Y., Huang, C.W., Lu, J.K., Chou, H.Y., 2017. Complete genome sequence of Streptococcus iniae 89353, a virulent strain isolated from diseased tilapia in Taiwan. Genome Announc 5.
Gossen, M., Bujard, H., 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89, 5547-5551.
Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., Bujard, H., 1995. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766-1769.
Gruys, E., Toussaint, M.J., Niewold, T.A., Koopmans, S.J., 2005. Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci B 6, 1045-1056.
Gui, L., Zhang, P., Zhang, Q., Zhang, J., 2016. Two hepcidins from spotted scat (Scatophagus argus) possess antibacterial and antiviral functions in vitro. Fish Shellfish Immunol 50, 191-199.
Haefner, B., 2003. Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 8, 536-544.
Hancock, R.E., Brown, K.L., Mookherjee, N., 2006. Host defence peptides from invertebrates--emerging antimicrobial strategies. Immunobiology 211, 315-322.
Hancock, R.E., Sahl, H.G., 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551-1557.
Hanington, P.C., Barreda, D.R., Belosevic, M., 2006. A novel hematopoietic granulin induces proliferation of goldfish (Carassius auratus L.) macrophages. J Biol Chem 281, 9963-9970.
Hanington, P.C., Brennan, L.J., Belosevic, M., Andrew Keddie, B., 2008. Molecular and functional characterization of granulin-like molecules of insects. Insect Biochem Mol Biol 38, 596-603.
Hassan, M., Kjos, M., Nes, I.F., Diep, D.B., Lotfipour, F., 2012. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113, 723-736.
Hibbitts, A., O'Leary, C., 2018. Emerging nanomedicine therapies to counter the rise of methicillin-resistant Staphylococcus aureus. Materials 11.
Hirano, T., 1998. Interleukin 6 and its receptor: ten years later. Int. Rev. Immunol. 16, 249-284.
Holland, M.C., Lambris, J.D., 2002. The complement system in teleosts. Fish Shellfish Immunol 12, 399-420.
Hrabal, R., Chen, Z.G., James, S., Bennett, H.P.J., Ni, F., 1996. The hairpin stack fold, a novel protein architecture for a new family of protein growth factors. Nat. Struct. Biol. 3, 747-752.
Hsieh, J.C., Pan, C.Y., Chen, J.Y., 2010. Tilapia hepcidin (TH)2-3 as a transgene in transgenic fish enhances resistance to Vibrio vulnificus infection and causes variations in immune-related genes after infection by different bacterial species. Fish Shellfish Immunol 29, 430-439.
Huang, H.N., Rajanbabu, V., Pan, C.Y., Chan, Y.L., Hui, C.F., Chen, J.Y., Wu, C.J., 2011. Modulation of the immune-related gene responses to protect mice against Japanese encephalitis virus using the antimicrobial peptide, tilapia hepcidin 1-5. Biomaterials 32, 6804-6814.
Huang, P.H., Chen, J.Y., Kuo, C.M., 2007. Three different hepcidins from tilapia, Oreochromis mossambicus: analysis of their expressions and biological functions. Mol Immunol 44, 1922-1934.
Hussein-Al-Ali, S.H., El Zowalaty, M.E., Hussein, M.Z., Geilich, B.M., Webster, T.J., 2014. Synthesis, characterization, and antimicrobial activity of an ampicillin-conjugated magnetic nanoantibiotic for medical applications. Int J Nanomedicine 9, 3801-3814.
Inoue, K., Takano, H., Shimada, A., Morita, T., Yanagisawa, R., Sakurai, M., Sato, M., Yoshino, S., Yoshikawa, T., 2005. Cytoprotection by interleukin-6 against liver injury induced by lipopolysaccharide. Int. J. Mol. Med. 15, 221-224.
Jacobs, L., Chenia, H.Y., 2007. Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. Int. J. Food Microbiol. 114, 295-306.
Jenssen, H., 2005. Anti herpes simplex virus activity of lactoferrin/lactoferricin -- an example of antiviral activity of antimicrobial protein/peptide. Cell. Mol. Life Sci. 62, 3002-3013.
Jenssen, H., Hamill, P., Hancock, R.E., 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491-511.
Jian, J.L., Konopka, J., Liu, C.J., 2013a. Insights into the role of progranulin in immunity, infection, and inflammation. J. Leukoc. Biol. 93, 199-208.
Jian, J.L., Zhao, S., Tian, Q.Y., Gonzalez-Gugel, E., Mundra, J.J., Uddin, S.M.Z., Liu, B., Richbourgh, B., Brunetti, R., Liu, C.J., 2013b. Progranulin directly binds to the CRD2 and CRD3 of TNFR extracellular domains. FEBS Lett. 587, 3428-3436.
Kaplan, W., Littlejohn, T.G., 2001. Swiss-PDB Viewer (Deep View). Brief Bioinform 2, 195-197.
Kaplanski, G., Marin, V., Montero-Julian, F., Mantovani, A., Farnarier, C., 2003. IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol. 24, 25-29.
Kawai, T., Akira, S., 2010. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol. 11, 373-384.
Kawakami, K., 2004. Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Zebrafish:2nd Edition Genetics Genomics and Informatics 77, 201-222.
Kawakami, K., 2007. Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8 Suppl 1, S7.
Kawakami, K., Imanaka, K., Itoh, M., Taira, M., 2004a. Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis. Gene 338, 93-98.
Kawakami, K., Koga, A., Hori, H., Shima, A., 1998. Excision of the Tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 225, 17-22.
Kawakami, K., Noda, T., 2004. Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics 166, 895-899.
Kawakami, K., Shima, A., 1999. Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene 240, 239-244.
Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., Mishina, M., 2004b. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133-144.
Kawarazuka, N., Bene, C., 2011. The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr. 14, 1927-1938.
Ken, C.F., Chen, C.N., Ting, C.H., Pan, C.Y., Chen, J.Y., 2017. Transcriptome analysis of hybrid tilapia (Oreochromis spp.) with Streptococcus agalactiae infection identifies toll-like receptor pathway-mediated induction of NADPH oxidase complex and piscidins as primary immune-related responses. Fish Shellfish Immunol 70, 106-120.
Kessenbrock, K., Frohlich, L., Sixt, M., Lammermann, T., Pfister, H., Bateman, A., Belaaouaj, A., Ring, J., Ollert, M., Fassler, R., Jenne, D.E., 2008. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J. Clin. Invest. 118, 2438-2447.
Koga, A., Suzuki, M., Inagaki, H., Bessho, Y., Hori, H., 1996. Transposable element in fish. Nature 383, 30.
Laing, K.J., Zou, J.J., Wang, T., Bols, N., Hirono, I., Aoki, T., Secombes, C.J., 2002. Identification and analysis of an interleukin 8-like molecule in rainbow trout Oncorhynchus mykiss. Dev Comp Immunol 26, 433-444.
Laird, A.S., Van Hoecke, A., De Muynck, L., Timmers, M., Van den Bosch, L., Van Damme, P., Robberecht, W., 2010. Progranulin is neurotrophic in vivo and protects against a mutant tdp-43 induced axonopathy. PLoS One 5.
Leal, C.A., Tavares, G.C., Figueiredo, H.C., 2014. Outbreaks and genetic diversity of Francisella noatunensis subsp orientalis isolated from farm-raised Nile tilapia (Oreochromis niloticus) in Brazil. Genet Mol Res 13, 5704-5712.
Lee, S.H., Peng, K.C., Lee, L.H., Pan, C.Y., Hour, A.L., Her, G.M., Hui, C.F., Chen, J.Y., 2013. Characterization of tilapia (Oreochromis niloticus) viperin expression, and inhibition of bacterial growth and modulation of immune-related gene expression by electrotransfer of viperin DNA into zebrafish muscle. Vet Immunol Immunopathol 151, 217-228.
Leippe, M., 1999. Antimicrobial and cytolytic polypeptides of amoeboid protozoa--effector molecules of primitive phagocytes. Dev Comp Immunol 23, 267-279.
Levy, S.B., Marshall, B., 2004. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122-129.
Li, Y.H., Chen, H.Y., Li, Y.W., Wu, S.Y., Wangta, L., Lin, G.H., Hu, S.Y., Chang, Z.K., Gong, H.Y., Liao, C.H., Chiang, K.Y., Huang, C.W., Wu, J.L., 2013. Progranulin regulates zebrafish muscle growth and regeneration through maintaining the pool of myogenic progenitor cells. Sci. Rep. 3, 1176.
Li, Y.H., Chen, M.H., Gong, H.Y., Hu, S.Y., Li, Y.W., Lin, G.H., Lin, C.C., Liu, W., Wu, J.L., 2010. Progranulin A-mediated MET signaling is essential for liver morphogenesis in zebrafish. J Biol Chem 285, 41001-41009.
Li, Z.J., Zhang, S.C., Liu, Q.H., 2008. Vitellogenin functions as a multivalent pattern recognition receptor with an opsonic activity. PLoS One 3.
Li, Z.J., Zhang, S.C., Zhang, J., Liu, M., Liu, Z.H., 2009. Vitellogenin is a cidal factor capable of killing bacteria via interaction with lipopolysaccharide and lipoteichoic acid. Mol. Immunol. 46, 3232-3239.
Lin, M.C., Hui, C.F., Chen, J.Y., Wu, J.L., 2013. Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Peptides 44, 139-148.
Lin, M.F., Tsai, P.W., Chen, J.Y., Lin, Y.Y., Lan, C.Y., 2015. OmpA binding mediates the effect of antimicrobial peptide LL-37 on Acinetobacter baumannii. PLoS One 10.
Lin, S.B., Fan, T.W., Wu, J.L., Hui, C.F., Chen, J.Y., 2009. Immune response and inhibition of bacterial growth by electrotransfer of plasmid DNA containing the antimicrobial peptide, epinecidin-1, into zebrafish muscle. Fish Shellfish Immunol 26, 451-458.
Lin, Y.M., Wu, S.J., Chang, T.W., Wang, C.F., Suen, C.S., Hwang, M.J., Chang, M.D.T., Chen, Y.T., Liao, Y.D., 2010. Outer membrane protein I of Pseudomonas aeruginosa is a target of cationic antimicrobial peptide/protein. J. Biol. Chem. 285, 8985-8994.
Liu, G., Zhu, J., Chen, K., Gao, T., Yao, H., Liu, Y., Zhang, W., Lu, C., 2016. Development of Streptococcus agalactiae vaccines for tilapia. Dis. Aquat. Organ. 122, 163-170.
Liu, M., Pan, J.L., Ji, H.F., Zhao, B.S., Zhang, S.C., 2011. Vitellogenin mediates phagocytosis through interaction with Fc gamma R. Mol. Immunol. 49, 211-218.
Liu, Q.H., Zhang, S.C., Li, Z.J., Gao, C.R., 2009. Characterization of a pattern recognition molecule vitellogenin from carp (Cyprinus carpio). Immunobiology 214, 257-267.
Liu, Y., Liggitt, D., Zhong, W., Tu, G., Gaensler, K., Debs, R., 1995. Cationic liposome-mediated intravenous gene delivery. J Biol Chem 270, 24864-24870.
Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402-408.
Lo, W.S., Chen, H., Chen, C.Y., Kuo, C.H., 2014. Complete genome sequence of Vibrio vulnificus 93U204, a bacterium isolated from diseased tilapia in Taiwan. Genome Announc 2.
Magnadottir, B., 2006. Innate immunity of fish (overview). Fish Shellfish Immunol 20, 137-151.
Masso-Silva, J.A., Diamond, G., 2014. Antimicrobial peptides from fish. Pharmaceuticals (Basel) 7, 265-310.
Matsubara, T., Mita, A., Minami, K., Hosooka, T., Kitazawa, S., Takahashi, K., Tamori, Y., Yokoi, N., Watanabe, M., Matsuo, E., Nishimura, O., Seino, S., 2012. PGRN is a key adipokine mediating high fat diet-induced insulin resistance and obesity through IL-6 in adipose tissue. Cell Metab. 15, 38-50.
Matsuzaki, K., Murase, O., Fujii, N., Miyajima, K., 1996. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35, 11361-11368.
Michels, K., Nemeth, E., Ganz, T., Mehrad, B., 2015. Hepcidin and host defense against infectious diseases. PLoS Pathog. 11, e1004998.
Mulero, V., Meseguer, J., 1998. Functional characterisation of a macrophage-activating factor produced by leucocytes of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 8, 143-156.
Muratori, M.C.S., de Oliveira, A.L., Ribeiro, L.P., Leite, R.C., Costa, A.P.R., da Silva, M.C.C., 2000. Edwardsiella tarda isolated in integrated fish farming. Aquac. Res. 31, 481-483.
Nakakura, N., Hietter, H., Van Dorsselaer, A., Luu, B., 1992. Isolation and structural determination of three peptides from the insect Locusta migratoria. Identification of a deoxyhexose-linked peptide. Eur J Biochem 204, 147-153.
Nakao, M., Mutsuro, J., Nakahara, M., Kato, Y., Yano, T., 2003. Expansion of genes encoding complement components in bony fish: biological implications of the complement diversity. Dev Comp Immunol 27, 749-762.
Nam, B.H., Park, E.M., Kim, Y.O., Kong, H.J., Kim, W.J., Kang, J.H., Ji, Y.J., Lee, S.J., Choi, T.J., 2009. Identification of two differentially expressed forms of progranulin mRNA in the teleost fish Paralichthys olivaceus. Fish Shellfish Immunol 26, 177-182.
Nara, K., Matsue, H., Naraoka, T., 2004. Granulin-like peptide in the mid-gut gland of the bivalve mollusk, Patinopecten yessoensis. Biochim Biophys Acta 1675, 147-154.
Neumann, N.F., Stafford, J.L., Barreda, D., Ainsworth, A.J., Belosevic, M., 2001. Antimicrobial mechanisms of fish phagocytes and their role in host defense. Dev. Comp. Immunol. 25, 807-825.
Neves, J.V., Wilson, J.M., Rodrigues, P.N., 2009. Transferrin and ferritin response to bacterial infection: the role of the liver and brain in fish. Dev Comp Immunol 33, 848-857.
Nguyen-Chi, M., Laplace-Builhe, B., Travnickova, J., Luz-Crawford, P., Tejedor, G., Phan, Q.T., Duroux-Richard, I., Levraud, J.P., Kissa, K., Lutfalla, G., Jorgensen, C., Djouad, F., 2015. Identification of polarized macrophage subsets in zebrafish. Elife 4, e07288.
Oses, S.M., Pascual-Mate, A., de la Fuente, D., de Pablo, A., Fernandez-Muino, M.A., Sancho, M.T., 2016. Comparison of methods to determine antibacterial activity of honeys against Staphylococcus aureus. Njas-Wagen J Life Sc 78, 29-33.
Ottinger, M., Clauss, K., Kuenzer, C., 2016. Aquaculture: Relevance, distribution, impacts and spatial assessments - A review. Ocean Coast Manag 119, 244-266.
Pan, C.Y., Tsai, T.Y., Su, B.C., Hui, C.F., Chen, J.Y., 2017. Study of the antimicrobial activity of tilapia piscidin 3 (TP3) and TP4 and Their effects on immune functions in hybrid tilapia (Oreochromis spp.). PLoS One 12, e0169678.
Park, B., Buti, L., Lee, S., Matsuwaki, T., Spooner, E., Brinkmann, M.M., Nishihara, M., Ploegh, H.L., 2011. Granulin is a soluble cofactor for toll-like receptor 9 signaling. Immunity 34, 505-513.
Park, C.B., Kim, H.S., Kim, S.C., 1998. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244, 253-257.
Paushter, D.H., Du, H., Feng, T.C., Hu, F.H., 2018. The lysosomal function of progranulin, a guardian against neurodegeneration. Acta Neuropathol. 136, 1-17.
Peddie, S., Zou, J., Cunningham, C., Secombes, C.J., 2001. Rainbow trout (Oncorhynchus mykiss) recombinant IL-1beta and derived peptides induce migration of head-kidney leucocytes in vitro. Fish Shellfish Immunol 11, 697-709.
Pedersen, B.K., Febbraio, M.A., 2008. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88, 1379-1406.
Pelegrin, P., Garcia-Castillo, J., Mulero, V., Meseguer, J., 2001. Interleukin-1beta isolated from a marine fish reveals up-regulated expression in macrophages following activation with lipopolysaccharide and lymphokines. Cytokine 16, 67-72.
Peng, K.C., Pan, C.Y., Chou, H.N., Chen, J.Y., 2010. Using an improved Tol2 transposon system to produce transgenic zebrafish with epinecidin-1 which enhanced resistance to bacterial infection. Fish Shellfish Immunol 28, 905-917.
Pirity, M., Hadjantonakis, A.K., Nagy, A., 1998. Embryonic stem cells, creating transgenic animals. Methods Cell Biol 57, 279-293.
Plowman, G.D., Green, J.M., Neubauer, M.G., Buckley, S.D., McDonald, V.L., Todaro, G.J., Shoyab, M., 1992. The epithelin precursor encodes two proteins with opposing activities on epithelial cell growth. J Biol Chem 267, 13073-13078.
Pratesi, A., Tarantini, F., Di Bari, M., 2013. Skeletal muscle: an endocrine organ. Clin Cases Miner Bone Metab 10, 11-14.
Qiu, X., Lv, M., Jian, X., Chen, D., Zhou, H., Zhang, A., Wang, X., 2017. In vitro characterization of grass carp (Ctenopharyngodon idella) IL-26 in regulating inflammatory factors. Fish Shellfish Immunol 66, 148-155.
Rajanbabu, V., Chen, J.Y., 2011a. Antiviral function of tilapia hepcidin 1-5 and its modulation of immune-related gene expressions against infectious pancreatic necrosis virus (IPNV) in Chinook salmon embryo (CHSE)-214 cells. Fish Shellfish Immunol 30, 39-44.
Rajanbabu, V., Chen, J.Y., 2011b. Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 32, 415-420.
Rauta, P.R., Nayak, B., Das, S., 2012. Immune system and immune responses in fish and their role in comparative immunity study: A model for higher organisms. Immunol. Lett. 148, 23-33.
Ristow, S., Evans, D.L., Jaso-Friedmann, L., 2000. Analyzing nonspecific cytotoxic cells in fish. Methods Mol Biol 121, 347-357.
Rollins-Smith, L.A., Carey, C., Longcore, J., Doersam, J.K., Boutte, A., Bruzgal, J.E., Conlon, J.M., 2002. Activity of antimicrobial skin peptides from ranid frogs against Batrachochytrium dendrobatidis, the chytrid fungus associated with global amphibian declines. Dev Comp Immunol 26, 471-479.
Rombout, J.H.W.M., Huttenhuis, H.B.T., Picchietti, S., Scapigliati, G., 2005. Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol. 19, 441-455.
Roy, S., Kumar, V., Kumar, V., Behera, B.K., 2017. Acute phase proteins and their potential role as an indicator for fish health and in diagnosis of fish diseases. Protein Peptide Lett 24, 78-89.
Sakata, T., Hattori, M., 1988. Characteristics of Vibrio vulnificus isolated from diseased tilapia. Fish Pathol 23, 33-40.
Sato, Y., Kasai, T., Nakagawa, S., Tanabe, K., Watanabe, T., Kawakami, K., Takahashi, Y., 2007. Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305, 616-624.
Saurabh, S., Sahoo, P.K., 2008. Lysozyme: an important defence molecule of fish innate immune system. Aquac. Res. 39, 223-239.
Scapigliati, G., Fausto, A.M., Picchietti, S., 2018. Fish lymphocytes: an evolutionary equivalent of mammalian innate-like lymphocytes? Front. Immunol. 9.
Secombes, C.J., Wang, T., Bird, S., 2011. The interleukins of fish. Dev Comp Immunol 35, 1336-1345.
Secombes, C.J., Wang, T., Hong, S., Peddie, S., Crampe, M., Laing, K.J., Cunningham, C., Zou, J., 2001. Cytokines and innate immunity of fish. Dev Comp Immunol 25, 713-723.
Seppola, M., Larsen, A.N., Steiro, K., Robertsen, B., Jensen, I., 2008. Characterisation and expression analysis of the interleukin genes, IL-1beta, IL-8 and IL-10, in Atlantic cod (Gadus morhua L.). Mol Immunol 45, 887-897.
Sharon, N., Lis, H., 2004. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14, 53R-62R.
Shi, X.D., Zhang, S.C., Pang, Q.X., 2006. Vitellogenin is a novel player in defense reactions. Fish Shellfish Immunol. 20, 769-772.
Shoyab, M., McDonald, V.L., Byles, C., Todaro, G.J., Plowman, G.D., 1990. Epithelins 1 and 2: isolation and characterization of two cysteine-rich growth-modulating proteins. Proc Natl Acad Sci U S A 87, 7912-7916.
Singh, R.S., Tiwary, A.K., Kennedy, J.F., 1999. Lectins: Sources, activities, and applications. Crit. Rev. Biotechnol. 19, 145-178.
Smith, P., 2008. Antimicrobial resistance in aquaculture. Rev. Sci. Tech. 27, 243-264.
Snider, J., Kotlyar, M., Saraon, P., Yao, Z., Jurisica, I., Stagljar, I., 2015. Fundamentals of protein interaction network mapping. Mol. Syst. Biol. 11.
Stafford, J.L., Belosevic, M., 2003. Transferrin and the innate immune response of fish: identification of a novel mechanism of macrophage activation. Dev Comp Immunol 27, 539-554.
Stuart, G.W., Vielkind, J.R., McMurray, J.V., Westerfield, M., 1990. Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression. Development 109, 577-584.
Suh, H.S., Choi, N., Tarassishin, L., Lee, S.C., 2012. Regulation of progranulin expression in human microglia and proteolysis of progranulin by matrix metalloproteinase-12 (MMP-12). PLoS One 7.
Tafalla, C., Figueras, A., Novoa, B., 2001. Viral hemorrhagic septicemia virus alters turbot Scophthalmus maximus macrophage nitric oxide production. Dis. Aquat. Organ. 47, 101-107.
Tam, J.P., Wang, S., Wong, K.H., Tan, W.L., 2015. Antimicrobial peptides from plants. Pharmaceuticals (Basel) 8, 711-757.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30, 2725-2729.
Tan, G., Gao, Y., Shi, M., Zhang, X., He, S., Chen, Z., An, C., 2005. SiteFinding-PCR: a simple and efficient PCR method for chromosome walking. Nucleic Acids Res 33, e122.
Tang, W., Lu, Y., Tian, Q.Y., Zhang, Y., Guo, F.J., Liu, G.Y., Syed, N.M., Lai, Y., Lin, E.A., Kong, L., Su, J., Yin, F., Ding, A.H., Zanin-Zhorov, A., Dustin, M.L., Tao, J., Craft, J., Yin, Z., Feng, J.Q., Abramson, S.B., Yu, X.P., Liu, C.J., 2011. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478-484.
Tessera, V., Guida, F., Juretic, D., Tossi, A., 2012. Identification of antimicrobial peptides from teleosts and anurans in expressed sequence tag databases using conserved signal sequences. FEBS J 279, 724-736.
Tey, Y.H., Jong, K.J., Fen, S.Y., Wong, H.C., 2015. Occurrence of Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio vulnificus in the aquacultural environments of Taiwan. J. Food Prot. 78, 969-976.
Tipmongkolsilp, N., del Castillo, C.S., Hikima, J., Jung, T.S., Kondo, H., Hirono, I., Aoki, T., 2012. Multiple drug-resistant strains of Aeromonas hydrophila isolated from tilapia farms in Thailand. Fish Pathol 47, 56-63.
Tolkatchev, D., Xu, P., Ni, F., 2001. A peptide derived from the C-terminal part of a plant cysteine protease folds into a stack of two beta-hairpins, a scaffold present in the emerging family of granulin-like growth factors. J. Pept. Res. 57, 227-233.
Torrent, M., Pulido, D., Rivas, L., Andreu, D., 2012. Antimicrobial peptide action on parasites. Curr. Drug Targets 13, 1138-1147.
Tossi, A., Sandri, L., Giangaspero, A., 2000. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55, 4-30.
Trede, N.S., Langenau, D.M., Traver, D., Look, A.T., Zon, L.I., 2004. The use of zebrafish to understand immunity. Immunity 20, 367-379.
Tsai, M.A., Wang, P.C., Liaw, L.L., Yoshida, T., Chen, S.C., 2012. Comparison of genetic characteristics and pathogenicity of Lactococcus garvieae isolated from aquatic animals in Taiwan. Dis. Aquat. Organ. 102, 43-51.
Tsuruma, K., Saito, Y., Okuyoshi, H., Yamaguchi, A., Shimazawa, M., Goldman, D., Hara, H., 2018. Granulin 1 Promotes Retinal Regeneration in Zebrafish. Invest Ophth Vis Sci 59, 6057-6066.
Uribe, C., Folch, H., Enriquez, R., Moran, G., 2011. Innate and adaptive immunity in teleost fish: a review. Vet. Med. (Praha) 56, 486-503.
Valenzuela, C.A., Zuloaga, R., Poblete-Morales, M., Vera-Tobar, T., Mercado, L., Avendano-Herrera, R., Valdes, J.A., Molina, A., 2017. Fish skeletal muscle tissue is an important focus of immune reactions during pathogen infection. Dev Comp Immunol 73, 1-9.
Vallejo, A.N., Miller, N.W., William Clem, L., 1992. Antigen processing and presentation in teleost immune responses. Annu. Rev. Fish Dis. 2, 73-89.
Vranken, W.F., Chen, Z.G., Xu, P., James, S., Bennett, H.P.J., Ni, F., 1999. A 30-residue fragment of the carp granulin-1 protein folds into a stack of two beta-hairpins similar to that found in the native protein. J. Pept. Res. 53, 590-597.
Wang, D., Bai, X., Tian, Q., Lai, Y., Lin, E.A., Shi, Y., Mu, X., Feng, J.Q., Carlson, C.S., Liu, C.J., 2012. GEP constitutes a negative feedback loop with MyoD and acts as a novel mediator in controlling skeletal muscle differentiation. Cell. Mol. Life Sci. 69, 1855-1873.
Wang, G., Li, X., Wang, Z., 2016. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44, D1087-1093.
Wang, L., Hu, C., Shao, L., 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12, 1227-1249.
Wang, M., Lu, M.X., 2016. Tilapia polyculture: a global review. Aquac. Res. 47, 2363-2374.
Wang, T., Diaz-Rosales, P., Costa, M.M., Campbell, S., Snow, M., Collet, B., Martin, S.A., Secombes, C.J., 2011. Functional characterization of a nonmammalian IL-21: rainbow trout Oncorhynchus mykiss IL-21 upregulates the expression of the Th cell signature cytokines IFN-gamma, IL-10, and IL-22. J Immunol 186, 708-721.
Wang, Y.D., Kung, C.W., Chi, S.C., Chen, J.Y., 2010. Inactivation of nervous necrosis virus infecting grouper (Epinephelus coioides) by epinecidin-1 and hepcidin 1-5 antimicrobial peptides, and downregulation of Mx2 and Mx3 gene expressions. Fish Shellfish Immunol 28, 113-120.
Wang, Y.D., Peng, K.C., Wu, J.L., Chen, J.Y., 2014. Transgenic expression of salmon delta-5 and delta-6 desaturase in zebrafish muscle inhibits the growth of Vibrio alginolyticus and affects fish immunomodulatory activity. Fish Shellfish Immunol 39, 223-230.
Whyte, S.K., 2007. The innate immune response of finfish--a review of current knowledge. Fish Shellfish Immunol 23, 1127-1151.
Wimley, W.C., 2010. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 5, 905-917.
Xu, D.M., Suenaga, N., Edelmann, M.J., Fridman, R., Muschel, R.J., Kessler, B.M., 2008. Novel MMP-9 substrates in cancer cells revealed by a label-free quantitative proteomics approach. Mol. Cell. Proteomics 7, 2215-2228.
Yang, J., Zhang, Y., 2015. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43, W174-181.
Ye, J., Kaattari, I.M., Ma, C., Kaattari, S., 2013. The teleost humoral immune response. Fish Shellfish Immunol 35, 1719-1728.
Yin, F., Banerjee, R., Thomas, B., Zhou, P., Qian, L., Jia, T., Ma, X., Ma, Y., Iadecola, C., Beal, M.F., Nathan, C., Ding, A., 2010. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med 207, 117-128.
Yin, Z., Lam, T.J., Sin, Y.M., 1997. Cytokine-mediated antimicrobial immune response of catfish, Clarias gariepinus, as a defence against Aeromonas hydrophila. Fish Shellfish Immunol. 7, 93-104.
Zanocco-Marani, T., Bateman, A., Romano, G., Valentinis, B., He, Z.H., Baserga, R., 1999. Biological activities and signaling pathways of the granulin/epithelin precursor. Cancer Res. 59, 5331-5340.
Zasloff, M., 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.
Zhang, J., Yu, L.P., Li, M.F., Sun, L., 2014. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish Shellfish Immunol 38, 127-134.
Zhang, S.C., Sun, Y.N., Pang, Q.X., Shi, X.D., 2005. Hemagglutinating and antibacterial activities of vitellogenin. Fish Shellfish Immunol. 19, 93-95.
Zhang, Y., Yu, L.C., 2008. Microinjection as a tool of mechanical delivery. Curr. Opin. Biotechnol. 19, 506-510.
Zhao, J., Wei, J., Liu, M., Xiao, L., Wu, N., Liu, G., Huang, H., Zhang, Y., Zheng, L., Lin, X., 2013. Cloning, characterization and expression of a cDNA encoding a granulin-like polypeptide in Ciona savignyi. Biochimie 95, 1611-1619.
Zhou, J., Gao, G., Crabb, J.W., Serrero, G., 1993. Purification of an autocrine growth factor homologous with mouse epithelin precursor from a highly tumorigenic cell line. J Biol Chem 268, 10863-10869.
Zhou, J.G., Wei, J.G., Xu, D., Cui, H.C., Yan, Y., Ou-Yang, Z.L., Huang, X.H., Huang, Y.H., Qin, Q.W., 2011. Molecular cloning and characterization of two novel hepcidins from orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol 30, 559-568.
Zhu, J., Nathan, C., Jin, W., Sim, D., Ashcroft, G.S., Wahl, S.M., Lacomis, L., Erdjument-Bromage, H., Tempst, P., Wright, C.D., Ding, A., 2002a. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 111, 867-878.
Zhu, L.Y., Nie, L., Zhu, G., Xiang, L.X., Shao, J.Z., 2013. Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. Dev Comp Immunol 39, 39-62.
Zhu, S., Gao, B., 2013. Evolutionary origin of beta-defensins. Dev Comp Immunol 39, 79-84.
Zhu, Z., Zheng, T., Lee, C.G., Homer, R.J., Elias, J.A., 2002b. Tetracycline-controlled transcriptional regulation systems: advances and application in transgenic animal modeling. Semin Cell Dev Biol 13, 121-128.
Zou, J., Mercier, C., Koussounadis, A., Secombes, C., 2007. Discovery of multiple beta-defensin like homologues in teleost fish. Mol Immunol 44, 638-647.
(此全文20240810後開放外部瀏覽)
電子全文
全文檔開放日期:2024/08/10
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *