字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:賴仕杰
研究生英文姓名:Lai, Shih-Chieh
中文論文名稱:延遲付款與訂購量變動下考慮模糊需求之多階整合性存貨模型
英文論文名稱:Multi-echelon Integrated Inventory Model with Fuzzy Demand under Permissible Delay in Payment Depend on Order Quantity
指導教授姓名:楊明峯
口試委員中文姓名:教授︰鍾玉科
副教授︰方信雄
副教授︰趙延丁
助理教授︰蘇健民
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:運輸科學系
學號:10768011
請選擇論文為:學術型
畢業年度:108
畢業學年度:107
學期:
語文別:英文
論文頁數:62
中文關鍵詞:允許延遲付款模糊理論多階層供應鏈整合性存貨模型變動前置時間
英文關鍵字:permissible delay in paymentfuzzy theorymulti-echelon supply chainintegrated inventory modellead time differences
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
在現今競爭激烈的全球市場裡,為了體現出與同產業競爭者的差異化優勢,供應鏈管理已經成為在同業環境下欲突破紅海競爭的一個關鍵因素。其中財務和存貨策略之間的相互作用已經成為業界和學術界共同探討的方向,供應鏈成員之間必須相互合作才能帶來更多的利益。本研究提出了一個多階層之整合性存貨模型,此模型允許延遲付款並考慮模糊需求,以符合現實作業面上所遇到的問題,進而達到最大化整體供應鏈利潤之效益。考慮延遲付款期限與訂購量在常理上成正比之關係,本研究的目的是以此追求最佳總利潤,並嘗試在模糊需求下探討不同條件下之存貨策略。此外,延遲付款已是現今供應鏈系統中常見之存貨策略,即賣方允許買方收到貨品時不需立即付款,更應依不同訂購量給予不同延遲付款條件。因此,供應鏈成員亦會在延遲付款其與前置時間差下產生額外的機會成本或利息收入。本研究透過數值提供供應鏈決策者不同面向之可能影響,藉以解決實際管理作業中高複雜度之存貨問題。
In today’s highly competitive global market, supply chain managers recognize the importance of interactions between financial and inventory decisions in the development of effective supply chains. Simultaneously, in order to promote the competition and differentiation advantage in the industry, the supply chain management has become a critical issue in both practices, academic, and supply chain members have to cooperate with each other to bring more benefits. As a result, this research proposes a multi-echelon inventory model with permissible delay in payment and considering the scenario of uncertain demand to find out the effect on order quantity in inventory policy to enhance the profit of the supply chain. Generally speaking, the credit period is directly proportional to the order quantity. In order to prove this phenomenon, the model in this paper creates a novel mathematical program to consider this condition into the integrated inventory formula. Furthermore, achieving effective coordination among the supply chain members has become a pertinent research issue. This research develops a multi-stage inventory model with lead time differences, backorders, and fuzzy demand. It means the retailer allows the supplier can receive products without payment immediately. Depending on the scale of the order quantity, supply chain members will also generate additional opportunity costs or interest income by the different credit period. Consequently, with a numerical example provided here to illustrate the solution procedure, this research could provide some managerial insights which support decision makers to control the lead time and payment time to improve the performance of the supply chain and solve the complicated inventory problems in real-world operation.
Contents
致謝…………………………………………………………………………………..Ⅰ
中文摘要……………………………………………....…………...…..……….........Ⅱ
Abstract…………………………………………………………….………………..Ⅲ
Contents……………………………………………………………......……………Ⅳ
List of Figures……………………..………………………………………......……Ⅵ
List of Tables………………………..……………………………..…………......... IV
Chapter 1 Introduction………………………………………………………………1
Research Background and Motivation………………………………………….1
Research Purposes………………………………………………………………3
Research Framework and Process……………………………..………………..4
Chapter 2 Literature Review……………………………………………………...…7
2.1 Integrated Inventory Model……………………………………………………..7
2.2 Permissible Delay in Payment………………………………..…………………9
2.3 Fuzzy Theory Applied to Inventory Models…………………………………..11
2.4 Lead Time Differences and Backorders……………………………………….12
2.5 Summary…………………………………………………………..…………..13
Chapter 3 Notations and Assumptions……………………………………….……15
3.1 Notations…………………………………………………………...……….…15
3.2 Assumptions……….…………………………………………………………..17
Chapter 4 Model Formulation……………………………………………...……...19
4.1 Modeling the Supplier’s Total Annual Profit…………………………………19
4.2 Modeling the manufacturer’s Total Annual Profit……………………………21
4.3 Modeling the Retailer’s Total Annual Profit……………………...……….….23
4.4 The Expect Joint Total Annual Profit………………………………...………..25
4.5 Solving Procedure……………………………………….……...……………..28
4.5.1 Determination of the Optimal Order Quantity Q_i for Any Given
L_r and α_B…………………………………………………………..28
4.5.2 Determination of the Optimal Order Quantity L_r for Any Given
α_B and Q_i ………………………………………….……….……..33
4.5.3 Determination of the Optimal Order Quantity α_B for Any Given
L_r and Q_i ……………………………….………………….……..34
4.6 Algorithm……………………………………………………………………..35
Chapter 5 Extended Model……………………………………………………...….36
5.1 Extended notations….................................................................................................…36
5.2 Modeling the Expected Joint Total Annual Profit with Fuzzy Demand……………...36
Chapter 6 Numerical Example and Sensitive Analysis…..…………...………..…40
6.1 Parameter Setting…………………………….………………..……………...40
6.2 Analysis of Numerical Results……………………………………………...…41
6.2.1 The Case Study of Decision Variable ………………….….………...41
6.2.2 The Permissible Delay Time G and JTEP ……….….…………....43
6.2.3 The Permissible Delay Time H and JTEP ……….….…………....44
6.3 The Numerical Analysis of Fuzzy Demand……………….…………………..45
6.4 Sensitivity analysis……………………………………………………....……47
6.4.1 Effect of P ……….….…………………………………….………....47
6.4.2 Effect of δ ……….….…………………………………….………....48
6.4.3 Effect of p ……….….…………………………………….…….....50
Chapter 7 Conclusions…………………….……………………………………....51
7.1 Conclusions…………………………...……………….…………..………….51
7.2 Future Research………………………………………………………………52
Reference……………………………………………………………………...……..53
Appendix……………………………………………...……………………………..57
1. Aggarwal, S. P., & Jaggi, C. K. (1995) “Ordering Policies of Deteriorating Items under Permissible Delay in Payments.” Journal of the Operational Research Society, 46(5), pp. 658–662.
2. A. Kaufmann and M. M. Gupta (1991), “Introduction to Fuzzy Arithmetic: Theory and Applications”, Van Nostrand Reinhold, New York.
3. Banerjee, A. (1986) “A JOINT ECONOMIC-LOT-SIZE MODEL FOR PURCHASER AND VENDOR.” Decision Sciences, 17(3), pp. 292–311.
4. Bodaghi, G., Jolai, F., Rabbani, M., (2018) “An integrated weighted fuzzy multi-objective model for supplier selection and order scheduling in a supply chain,” International Journal of Production Research, Vol.56, pp. 3590-3614.
5. Ben-Daya, M., & Raouf, A. (1994) “Inventory Models Involving Lead Time as a Decision Variable.” The Journal of the Operational Research Society, 45(5), pp. 579.
6. Cárdenas-Barrón, L. E., & Treviño-Garza, G. (2014) “An optimal solution to a three echelon supply chain network with multi-product and multi-period.” Applied Mathematical Modelling, 38(5-6), pp. 1911–1918.
7. Chan C. K., Wong, W. H., Langevin, A., & Lee, Y. C. E. (2017) “An integrated production-inventory model for deteriorating items with consideration of optimal production rate and deterioration during delivery.” International Journal of Production Economics, 189, pp. 1–13.
8. C.-K. Huang, D.-M. Tsai, J.-C. Wu, and K.-J. Chung (2010) “An optimal integrated vendor–buyer inventory policy under conditions of order-processing time reduction and permissible delay in payments,” International Journal of Production Economics, 128(1), pp. 445–451.
9. Chiu, C.-Y., Lin, Y., and Yang, M.-F., (2014) “ Applying Fuzzy Multi-objective Integrated Logistics Model to Green Supply Chain Problems.” Journal of Applied Mathematics, pp. 1–12.
10. Chang, S.-Y., & Yeh, T.-Y. (2013) “A two-echelon supply chain of a returnable product with fuzzy demand.” Applied Mathematical Modelling, 37(6), 4305–4315.
11. Chandra, C., & Grabis, J. (2008) “Inventory management with variable lead-time dependent procurement cost.” Omega, 36(5), pp. 877–887.
12. Chang, S.-C., Yao, J.-S., & Lee, H.-M. (1998) “Economic reorder point for fuzzy backorder quantity.” European Journal of Operational Research, 109(1), pp. 183–202.
13. GOYAL, S. K. (1977) “An integrated inventory model for a single supplier-single customer problem.” International Journal of Production Research, 15(1), pp. 107–111.
14. Goyal, S. K., & Gupta, Y. P. (1989) “Integrated inventory models: The buyer-vendor coordination.” European Journal of Operational Research, 41(3), pp. 261–269.
15. Goyal, S. K., & Gunasekaran, A. (1995) “An integrated production inventory marketing model for deteriorating items.” Computers & Industrial Engineering, 28(4), pp. 755–762.
16. Giannoccaro, I., & Pontrandolfo, P. (2002) “Inventory management in supply chains: a reinforcement learning approach.” International Journal of Production Economics, 78(2), pp. 153–161.
17. Goyal, S. K. (1985) “Economic Order Quantity under Conditions of Permissible Delay in Payments.” Journal of the Operational Research Society, 36(4), pp. 335–338.
18. Hill, R. M. (1997) “The single-vendor single-buyer integrated production-inventory model with a generalised policy.” European Journal of Operational Research, 97(3), pp. 493–499.
19. Ha, D., & Kim, S.-L. (1997) “Implementation of JIT purchasing: An integrated approach.” Production Planning & Control, 8(2), pp. 152–157.
20. Hill, R. M. (1999) “The optimal production and shipment policy for the single-vendor singlebuyer integrated production-inventory problem.” International Journal of Production Research, 37(11), pp. 2463–2475.
21. Huang, C.-K. (2004) “An optimal policy for a single-vendor single-buyer integrated production–inventory problem with process unreliability consideration.” International Journal of Production Economics, 91(1), pp. 91–98.
22. H.J. Tu, M.C. Lo, M.F. Yang, (2011) “A two-echelon inventory model for fuzzy demand with mutual beneficial pricing approach in a supply chain,” African Journal of Business Management, Vol. 5(14), pp. 5500-5508.
23. H. Y. Xia and P. Q. Huang (2008) “An inventory model with quantity discounts and variable lead time when demand distribution is unknown,” Journal of Shanghai Jiaotong University, 42(9), pp. 1515–1519.
24. H. J. Zimmermann (1996), “Fuzzy Set Theory and its Application”, 3rd edition, Kluwer Academic Publishers, Dordrecht.
25. Jaber, M. Y., & Goyal, S. K. (2008) “Coordinating a three-level supply chain with multiple suppliers, a vendor and multiple buyers.” International Journal of Production Economics, 116(1), pp. 95–103.
26. Jaber, M. Y., & Osman, I. H. (2006) “Coordinating a two-level supply chain with delay in payments and profit sharing.” Computers & Industrial Engineering, 50(4), pp. 385–400.
27. Jauhari, W. A., & Pujawan, I. N. (2014) “Joint economic lot size (JELS) model for single-vendor single-buyer with variable production rate and partial backorder.” International Journal of Operational Research, 20(1), pp. 91-108.
28. J.-S. Song, H. Zhang, Y. Hou, and M. Wang (2010) “The effect of lead time and demand uncertainties in (r,q)inventory systems,” Operations Research, 58(1), pp. 68–80.
29. J. C.-H. Pan and Y.-C. Hsiao, (2005) “Integrated inventory models with controllable lead time and backorder discount considerations,” International Journal of Production Economics, vol. 93-94, pp. 387–397.
30. J. S. Yao and K. Wu (2000), “Ranking fuzzy numbers based on decomposition principle and signed distance”, Fuzzy Sets and Systems, Vol. 116, pp. 275–288.
31. Lu, L. (1995) “A one-vendor multi-buyer integrated inventory model.” European Journal of Operational Research, 81(2), pp. 312–323.
32. L. Zhu, J. Zhang, and J. Zhang (2008) “An inventory model with limited storage capacity and shortages under permissible delay in payments,” in Proceedings of the 8th International Conference of Chinese Logistics and Transportation Professionals—Logistics: The Emerging Frontiers of Transportation and Development in China, pp. 1489–1495.
33. L.-Y. Ouyang, B.-R. Chuang, and Y.-J. Lin (2003) “Impact of backorder discounts on periodic review inventory model,” International Journal of Information and Management Sciences, 14(3), pp. 1–13.
34. M.-C. Lo and M.-F. Yang, (2008) “Imperfect reworking process consideration in integrated inventory model under permissible delay in payments,” Mathematical Problems in Engineering, Article ID 396252, 18 pages.
35. M.F. Yang, M.C. Lo and W.H. Chen, (2015) “Optimal Strategy for the Three-echelon Inventory System with Defective Product, Rework and Fuzzy Demand under Credit Period,” Engineering Letters, Vol.23, No.4, pp. 312-317.
36. Mousavi, S. M., & Niaki, S. T. A. (2013) “Capacitated location allocation problem with stochastic location and fuzzy demand: A hybrid algorithm.” Applied Mathematical Modelling, 37(7), pp. 5109–5119.
37. M.-C. Lo, J. C.-H. Pan, K.-C. Lin, and J.-W. Hsu, (2008) “Impact of lead time and safety factor in mixed inventory models with backorder discounts,” Journal of Applied Sciences, vol. 8, no. 3, pp. 528–533.
38. Nahmias, S. (1982) “Perishable Inventory Theory: A Review.” Operations Research, 30(4), pp. 680–708.
39. P. Agarwal, N. Kumar, A. Sharma (2018) ” Fuzzy Production Inventory Model with Stock Dependent Demand Using Genetic Algorithm (GA) Under Inflationary Environment”, Pertanika J. Sci. & Technol. 26 (4), pp. 1637 – 1658.
40. Pan, J. C.-H., & Yang, J.-S. (2002) “A study of an integrated inventory with controllable lead time.” International Journal of Production Research, 40(5), pp. 1263–1273.
41. Pal, B., Sana, S. S., & Chaudhuri, K. (2012) “A three layer multi-item production–inventory model for multiple suppliers and retailers.” Economic Modelling, 29(6), pp. 2704–2710.
42. Pan, J. C.-H., Lo, M.-C., & Hsiao, Y.-C. (2004) “Optimal reorder point inventory models with variable lead time and backorder discount considerations.” European Journal of Operational Research, 158(2), pp. 488–505.
43. Panja, S., & Mondal, S. K.,(2019) “Analyzing a four-layer green supply chain imperfect production inventory model for green products under type-2 fuzzy credit period.” Computers & Industrial Engineering.
44. Raafat, F. (1991) “Survey of Literature on Continuously Deteriorating Inventory Models.” Journal of the Operational Research Society, 42(1), pp. 27–37.
45. Roy, A., Sana, S. S., & Chaudhuri, K. (2012) “Optimal replenishment order for uncertain demand in three layer supply chain.” Economic Modelling, 29(6), pp. 2274–2282.
46. S.S. Sana (2011) “A production-inventory model of imperfect quality products in a three-layer supply chain,” Decision Support Systems, Vol. 50, No. 2, pp. 539-547, 2011.
47. Sana, S. S. (2012) “A collaborating inventory model in a supply chain.” Economic Modelling, 29(5), pp. 2016–2023.
48. S. S. Sana and K. S. Chaudhuri (2008) “A deterministic EOQ model with delays in payments and price-discount offers,” European Journal of Operational Research, Vol. 184, No. 2, pp. 509–533.
49. S. Sarkar & T. Chakrabarti (2013) “An EPQ Model of Exponential Deterioration with Fuzzy Demand and Production with Shortage,” International Journal of Industrial Engineering & Production Research, Volume 24, Number 4 pp. 307-315.
50. Shan-Huo Chen, Chien-Chung Wang, & Arthur, R. (1996) “Backorder fuzzy inventory model under function principle.” Information Sciences, 95(1-2), pp. 71–79.
51. T. Singh, H. Pattanayak. (2012) “An EOQ Model for a Deteriorating Item with Time Dependent Exponentially Declining Demand.” IOSR Journal of Mathematics (IOSRJM), Vol.2, pp. 30-37.
52. Vineet Mittal, Dega Nagaraju, and S. Narayanan, (2015) “Optimality of Inventory Decisions in A Joint Two-Echelon Inventory System With And Without Fuzzy Demand,” International Journal of Applied Engineering Research, ISSN 0973-4562 Volume 10, Number 2, pp. 4497-4510.
53. Yang, M.-F., Lin, Y., Ho, L. H., & Kao, W. F. (2016) “An Integrated Multiechelon Logistics Model with Uncertain Delivery Lead Time and Quality Unreliability.” Mathematical Problems in Engineering, 2016, pp. 1–13.
54. Y.L. Su, M.F. Yang , M. Tu , Y. Lin (2018) ”Optimal Imperfect Preventive Maintenance Logistic Inventory Model With Backorder And Minimal Repair”, Journal of Marine Science and Technology-Taiwan,26(1), pp. 50-63.
55. Yang, M. F., Tseng, W.-C. (2014) “Three-Echelon Inventory Model with Permissible Delay in Payments under Controllable Lead Time and Backorder Consideration.” , Mathematical Problems in Engineering, 2014, pp. 1–16.
56. Zhang, Z. and J. Xu, (2014) “Applying nonlinear MODM model to supply chain management with quantity discount policy under complex fuzzy environment.” J. Indust. Eng. Manage. , 7, pp. 660-680.
(此全文20240715後開放外部瀏覽)
電子全文
全文檔開放日期:2024/07/15
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *