字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:周育嫻
研究生英文姓名:Chou, Yu-Hsien
中文論文名稱:寬巷未定值法用於精密單點定位解算
英文論文名稱:Wide-lane Ambiguity Resolution for GNSS Precise Point Positioning
指導教授姓名:王和盛
口試委員中文姓名:教授︰張帆人
教授︰卓大靖
教授︰王立昇
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程學系
學號:10767003
請選擇論文為:學術型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:51
中文關鍵詞:精密單點定位寬巷整數未定值約束型最小平方法
英文關鍵字:Precise Point PositioningWide-Lane AmbiguityConstrained Least-Squares
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
精密單點定位 (Precise Point Positioning, PPP) 係利用單一GNSS接收機以達到載波相位相對定位精度的一種定位方法,有別於相對定位,無法利用差分的方式消去整數未定值的影響,因此本論文基於MW寬巷組合(Melbourne-Wubbena Combinations)解算出的寬巷整數未定值(wide-laning ambiguity),將兩種寬巷觀測量公式結合,提出新的定位解算方法,藉由寬巷未定值可實時偵測週波脫落(cycle slip)與降低測量雜訊的特性,以期得到更好的定位結果。
在新方法中,我們將介紹寬巷、窄巷與無電離層組合的運用,探討寬巷未定值與一般單頻未定值的差別,結合精密單點定位進行雙頻雙系統的實驗,並以三次差分結果作為實驗的標準驗證。實驗結果表明,與傳統最小平方法相比,本論文方法有較好的定位效能,並且在靜態以及動態實驗中均可使用。
此外,我們更進一步加入約束型最小平方法(Constrained Least-Squares)的計算,並藉由殘差輔助討論受多路徑影響的時段。結果表明,此方法對於對抗多路徑所造成的誤差,有不錯的效果。
Precise Point Positioning (PPP) is a standalone positioning method that is able to provide centimeter-level accuracy without utilizing the difference technique that is needed in the relative positioning method. In this thesis, a new positioning method based on the Melbourne-Wubbena combinations to solve the wide-laning ambiguity value is proposed, which can detect cycle slip and reduce measurement noise in real time.
In this thesis, we introduce the application of different observables combinations, such as wide lane, narrow lane and ionosphere-free, and explore the difference between the ambiguity of wide lane and general single frequency. We perform various dual-frequency and dual-system experiments. Additionally, a kinematic positioning based on the triple-difference method is also conducted to serve as the reference trajectory for the verification of the kinematic experiments.
The experimental results show that, in comparison with the traditional least squares method, the proposed method has better positioning performance and can be used in both static and dynamic cases.
Additionally, we also provide a constrained least-squares method to mitigate the effect of multipath. The time period affected by multipath is investigated by residual error. The results show that this method is effective against the error caused by multipath.
第一章、緒論 1
1.1 前言 1
1.2 研究目的與動機 1
1.3 文獻回顧 1
第二章、精密單點定位基本原理 3
2.1 GNSS觀測量 3
2.1.1 虛擬距離觀測量(Pseudo-range measurement ) 3
2.1.2 載波相位觀測量(Carrier phase measurement ) 4
2.2 誤差來源與模型簡介 5
2.3 定位原理 11
第三章、PPP定位演算法介紹 13
3.1 Melbourne-Wubbena 觀測量組合(MW observables combinations) 13
3.2 MW法結合去電離層線性組合 15
3.3 約束型最小平方法(Constrained Least-Squares) 16
3.4 三次差分 17
第四章、實驗與結果分析 22
4.1 實驗環境與設備 22
4.2 實驗相關驗證 25
4.3 靜態實驗結果 32
4.4 動態實驗結果 40
4.5 約束型最小平方法實驗結果 43
第五章、結論與未來展望 47
參考文獻 48
[1] Kouba, J. (2009). A guide to using international GNSS service (IGS) products. Retrieved from https://igscb.jpl.nasa.gov/components/usage.html
[2] Counselman, C. C., Shapiro, I. I., Greenspan, R. L. and Cox, D. B. (1979). Backpack VLBI Terminal with Subcentimeter Capability. Radio Interferometric Techniques for Geodesy, NASA Conference Publication, Vol. 2115, pp. 409-413.
[3] Kouba, J. and Héroux, P. (2001). GPS precise point positioning using IGS orbit products. GPS Solutions, pp. Volume 5, Issue 2, pp. 12-28.
[4] Mark Petovello. (2009), GPS jamming and linear carrier phase combinations. GNSS Solution, pp. 14-19.
[5] Counselman, C.C., III, and S.A. Gourevitch (1981), Miniature Interferometer Terminals for Earth Surveying: Ambiguity and Multipath With Global Positioning System, IEEE Transactions on Geoscience and Remote Sensing, Vol. GE-19, No. 4, October 1981, pp. 244-252.
[6] Hatch R. (1991) Instantaneous Ambiguity Resolution. In: Schwarz KP., Lachapelle G. (eds) Kinematic Systems in Geodesy, Surveying, and Remote Sensing. International Association of Geodesy Symposia, vol 107.
[7] Teunissen, P.J.G. (1995), The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation[J]. Journal of Geodesy, 1995, 70(1-2):65-82.
[8] Neil Ashby (2003), Relativity in the Global Positioning System. Living Reviews in Relativity, December 2003.
[9] J. Sanz Subirana, J.M. Juan Zornoza and M. Hernández-Pajares, (2011). Carrier Phase Wind-up Effect. Technical University of Catalonia, Spain. Retrieved from navipedia: https://gssc.esa.int/navipedia/index.php/Carrier_Phase_Wind-up_Effect
[10] Rodrigo F. Leandro, Marcelo Santos and Richard B. Langley (2006), UNB Neutral Atmosphere Models: Development and Performance.
[11] Niell, A.E. (1996), Global Mapping Functions for the Atmosphere Delay at Radio Wavelengths. Journal of Geophysical Research, Vol. 101, No. B2, pp. 3227- 3246.
[12] Garrett Seepersad and Sunil Bisnath (2015), Reduction of PPP convergence period through pseudorange multipath and noise mitigation. GPS Solutions, July 2015, Volume 19, Issue 3, pp 369–379.
[13] Sanz Subirana, J.M, Juan Zornoza and M. Hernández-Pajares(2011), Detector based in code and carrier phase data: The Melbourne-Wübbena combination. Technical University of Catalonia, Spain. Retrieved from navipedia: https://gssc.esa.int/navipedia/index.php/Detector_based_in_code_and_carrier_phase_data:_The_Melbourne-Wübbena_combination
[14] Pratap Misra, Per Enge (2005), Global Positioning System: Signals, Measurements and Performance. Second Edition, pp. 242-251.
[15] Sylvain Loyer, Félix Perosanz, Flavien Mercier, Hugues Capdeville and Jean-Charles Marty (2012), Zero-difference GPS ambiguity resolution at CNES–CLS IGS Analysis Center. Journal of Geodesy, November 2012, Volume 86, Issue 11, pp 991–1003.
[16] Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M. and Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, Volume 102, Issue B3.
[17] Pratap Misra and Per Enge (2005), Global Positioning System: Signals, Measurements and Performance. Second Edition, pp. 253-256.
[18] Wang, Jau Shyong (1977), Automatic Navigation and Control System Design of an Unmanned Boat.
[19] Hsin-Hao Su (2007), Navigation and Control for Obstacle Avoidance of an Unmanned Vehicle.
[20] P. J. G. Teunissen and Oliver Montenbruck (2017), Springer Handbook of Global Navigation Satellite Systems. pp. 460-464.
[21] Garrett Seepersad and Sunil Bisnath (2015), Reduction of PPP convergence period through pseudorange multipath and noise mitigation. GPS Solut. 2015, 19, 369–379.
(此全文20240803後開放外部瀏覽)
電子全文
全文檔開放日期:2024/08/03
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *