字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:曾婉儀
研究生英文姓名:Tseng, Wan-Yi
中文論文名稱:具加強肋幾何結構之水下聲場輻射研究
英文論文名稱:Study on Underwater Acoustic Radiation of a Geometric Structure with Reinforced Ribs
指導教授姓名:陳永爲
口試委員中文姓名:教授︰張建仁
業界委員︰張君名
副教授︰陳永爲
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學號:10766012
請選擇論文為:應用型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:59
中文關鍵詞:加強肋減振有限元聲學聲場輻射
英文關鍵字:Reinforced RibsReducing VibrationFinite Element MethodAcoustic Radiation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:16
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
本文利用有限元素法計算水下載具安裝加強肋之水下聲場輻射現象。水下載具之設計需考量體積及重量配置,而加強肋能達到在增加最小質量之狀況下增加結構整體剛性之目的,除此之外亦能提升整體結構抗壓強度並增加下潛深度,且具備抑制振動之效果。然而,結構體受到外力激振後,連動周圍介質引發結構耦合特性,進而產生結構噪音及聲場輻射音,因此若要探討水下聲場輻射,必須探討結構體與介質之流固耦合現象。本文以有限元素法為基礎,計算流固耦合問題,並計算聲結構產生之水下聲場輻射。由於離散技巧所建構之剛性矩陣不同:有限元素法為系統或稀疏矩陣、邊界元素法為全矩陣(或稱滿矩陣),其計算結果有限元素法之計算效率優於邊界元素法。當分析不規則幾何時,容易產生數值不穩定之現象。當結構幾何安裝加強肋時,加強肋凸出處與結構體交接處,進行聲場網格建置時,結構網格及聲場網格之耦合面無法完全貼合,造成邊界產生不連續性,導致計算結果有所誤差。本文以整體結構向外增加微小距離之方式創造聲場網格,使結構網格及聲場網格之耦合面得以完全貼合,保持邊界條維持連續性。最後分別比較理論與數值解,驗證此方法具有其可行性與準確性。其計算結果與求解流程具備工程應用之價值。
In this thesis, we use the finite element method to solve the underwater acoustic radiation of underwater vehicles with reinforced ribs. The designs of underwater vehicles have to take into account the limit of space and weight, while the reinforced ribs can achieve the purpose of increasing the stiffness of the structure with minimal mass. However, after the structure is excited by an external force, it causes the coupling characteristics and acoustic radiation. Therefore, it is necessary for exploring the underwater acoustic radiation to investigate the fluid-solid interaction. We use the finite element method to solve the problem of fluid-solid interaction and the underwater acoustic radiation. Because of the different solving matrix, the computation efficiency of the finite element method is better than the boundary element method. When the structure is installed with reinforced ribs, the coupling faces of the structure and the acoustic cannot be completely matched. It causes that the boundary is discontinuous and errors in the calculation results. In this thesis, we add a small distance of the structure to create the acoustic mesh. It makes the coupling faces of the structural mesh and the acoustic mesh completely fit, and keep the continuity of boundary. Finally, we compare the theoretical and numerical solutions to verify the feasibility and accuracy of this method. The numerical results and the solution flow have the value in engineering application.
摘要 I
Abstract II
致謝 III
圖目錄 VI
表目錄 VIII
符號說明 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 本文架構 3
第二章 理論基礎 5
2.1 修正型Helmholtz方程式 5
2.2 聲學有限元 7
2.2.1聲學有限元系統矩陣 7
2.2.2耦合聲學有限元 9
2.3圓柱殼加環型肋之振動 11
第三章 數值模擬及驗證 14
3.1 平板加裝T型樑之影響 14
3.2 圓桶薄殼加裝T型樑之影響 16
3.3 具T型樑結構之水下聲場輻射 17
3.4 圓球體之聲場輻射 17
3.5 圓球體加裝T型樑之聲場輻射 18
3.5.1 圓球體加一小段T型樑 19
3.5.2 圓球體加四小段T型樑 20
3.5.3 圓球體加整圈T型樑 20
3.6 小結 21
第四章 應用環型肋於水下載具 41
4.1 水下載具幾何驗證 41
4.2 應用環型肋於複雜水下載具之聲場輻射 42
第五章 結論與未來展望 55
參考文獻 56

[1] S. Timoshenko and S. Woinowsky-Krieger, “Theory of plates and shells”, McGraw-Hill, 1959.
[2] M. Heckl, “Wave propagation on beam-plate systems”, The Journal of the Acoustical Society of America, Vol.33, No.5, pp. 640-651, 1961.
[3] D. J. Mead, “Free wave propagation in periodically supported, infinite beams” Journal of Sound and Vibration, Vol.11, pp.181-197, 1970.
[4] G. Maidanik, “Response of ribbed panels to reverberant acoustic fields”, The Journal of the Acoustical Society of America, Vol.34, No.6, pp.809-826, 1962.
[5] M. L. Rumerman, “Vibration and wave propagation in ribbed plates”, The Journal of the Acoustical Society of America, Vol.57, No.2, pp.370-373, 1975.
[6] I. D. Wilken and W. Soedel, “The receptance method applied to ring-stiffened cylindrical shells: Analysis of modal characteristics”, Journal of Sound and Vibration, Vol.44, pp.563-576, 1976.
[7] C. H. Hodges, J. Power and J. Eoodhouse, “The low frequency vibration of a ribbed cylinder, Part 1: Theory”, Journal of Sound and Vibration, Vol.101, pp.219-235, 1985.
[8] S. S. Rao, “The finite element method in engineering”, Pergamon International Library of Science, Technology, Engineering and Social Studies. Elsevier, 1982.
[9] M. D. Olson and C. R. Hazell, “Vibration studies on some integral rib-stiffened plates”, Journal of Sound and Vibration, Vol.50, pp.43-61, 1977.
[10] A. Mukherjee and M. Mukhopadhyay, “Finite element free vibration of eccentrically stiffened plates”, Computers & Structures, Vol.30, pp.1303-1317, 1988.
[11] I. E. Harik and M. Guo, “Finite element analysis of eccentrically stiffened plates in free vibration”, Computers & Structures, Vol.49, pp.1007-1015, 1993.
[12] M. Orris and M. Petyt, “A finite element study of harmonic wave propagation in periodic structures”, Journal of Sound and Vibration, Vol.33, pp.223-236, 1974.
[13] D. E. Beskos and J. B. Oates, “Dynamic analysis of ring-stiffened circular cylindrical shells”, Journal of Sound and Vibration, Vol.75, pp.1-15, 1981.
[14] L.V. King, “On the acoustic radiation pressure on spheres”, Proceedings of the Royal Society of London Society A, Vol.147, No.861, pp. 212-250, 1934.
[15] T. Hasegawa and K. Yosioka, “Acoustic‐radiation force on a solid elastic sphere”, The Journal of the Acoustical Society of America, Vol.46, pp.1139-1143, 1969.
[16] H. A. Schenck, “Improved integral formulation for acoustic radiation problems”, The Journal of the Acoustical Society of America, Vol.44, pp.41-58, 1968.
[17] M. C. Junger and D. Feit, “Sound, structures, and their interaction”, Acoustical Society of America, 1972.
[18] L. Cremer and M. Heckl, “Structure-borne sound: structural vibrations and sound radiation at audio frequencies”, Springer-Verlag Berlin Heidelberg, 1973.
[19] L. Kiefling and G. C. Feng, “Fluid-structure finite element vibrational analysis”, AIAA Journal, Vol.14, No.2, 1976.
[20] C. B., Burroughs, “Acoustic radiation from fluid‐loaded infinite circular cylinders with doubly periodic ring supports”, The Journal of the Acoustical Society of America, Vol.75, No.3, pp.715-722, 1984.
[21] O. C. Zienkiewicz and R. E. Newton, “Coupled vibrations of a structure submerged in a compressible fluid”, Proceedings of the International Symposium on Finite Element Techniques, University of Stuttgart, Stuttgart, pp. 360-378, 1969.
[22] L. H. Chen and D. G. Schweikert, “Sound radiation from an arbitrary body”, The Journal of the Acoustical Society of America, Vol.35, pp. 1626-1632, 1963.
[23] A. F. Seybert, T. W. Wu and X. F. Wu, “Radiation and scattering of acoustic waves from elastic solids and shells using the boundary element method”, The Journal of the Acoustical Society of America, Vol.84, 1988.
[24] P. Bettess, “Infinite elements”, International Journal for Numerical Methods in Engineering, Vol.11, 1977.
[25] G. C. Everstine, “Finite element formulatons of structural acoustics problems”, Computers & Structures, Vol.65, pp.307-321, 1997.
[26] D. Clouteau, M. L. Elhabre and D. Aubry, “Periodic BEM and FEM-BEM coupling”, Computational Mechanics, Vol.25, pp 567–577, 2000.
[27] S. Kopuz and N. Lalor, “Analysis of interior acoustic fields using the finite element method and the boundary element method”, Applied Acoustics, Vol.45, pp.193-210, 1995.
[28] Q. Zhou and P. F. Joseph, “A numerical method for the calculation of dynamic response and acoustic radiation from an underwater structure”, Journal of Sound and Vibration, Vol.283, pp.853-873, 2005.
[29] X. H. Miao, D. J. Qian, X. L. Yao and H. Chao, “Sound radiation of underwater structure based on coupled acoustic-structural analysis with ABAQUS”, Journal of ship mechanics, Vol.13, No.2, pp.319-323. 2009.
[30] X. L. Yao, Q. J. Liu, Q. Weng and W. H. Liu, “Research on the vibration and near-field acoustic radiation of underwater ribbed cylindrical shell”, Journal of ship mechanics, Vol.1, No.2, pp.13-19, 2009.
[31] 何祚鏞, “結構振動與聲輻射”, 哈爾濱工程大學出版社, 2007。
[32] 李增剛與詹福良, “Virtual.Lab Acoustics聲學仿真計算高級應用實例”, 國防工業出版社, 2014。
[33] 詹福良, “Virtual.Lab Acoustics 聲學仿真計算從入門到精通”, 西北工業大學出版社, 2013。
[34] X. Chen, M. Luo, D. P. Peng and L.U.O. Bin., “Analysis of characteristic of sound radiation from double cylindrical shell coated with viscoelastic layer”, Acta Acustica, Vol.6, 2003.
[35] J. Yan, T. Y. Li, J. X. Liu and X. Zhu, “Space harmonic analysis of sound radiation from a submerged periodic ring-stiffened cylindrical shell”, Applied Acoustics, Vol.67, No.8, pp.743-755, 2006.
[36] X. M., Zhang, “Frequency analysis of submerged cylindrical shells with the wave propagation approach”, International Journal of Mechanical Sciences, Vol.44, No.7, pp.1259-1273, 2002.
[37] 王宇庭, “預測結構之聲音輻射”, 國立臺灣海洋大學輪機工程學系研究所, 2015。
[38] 林芝妤, “應用多層三明治結構於流固耦合問題”, 國立臺灣海洋大學輪機工程學系研究所, 2017。
[39] 鄭皓庭, “水下載具結構振動與聲場輻射研究”, 國立臺灣海洋大學輪機工程學系研究所, 2018。
(此全文限內部瀏覽)
電子全文
全文檔開放日期:不公開
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *