字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:嚴智郁
研究生英文姓名:Yen, Chih-Yu
中文論文名稱:離散型線性參數時變系統之滿足極點配置控制器設計
英文論文名稱:Controller Design of Discrete-Time Linear Parameter Varying Systems Subject to Pole-Assignment
指導教授姓名:古忠傑
口試委員中文姓名:教授︰黃有評
教授︰許駿飛
教授︰張文哲
副教授︰古忠傑
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學號:10766009
請選擇論文為:學術型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:59
中文關鍵詞:線性參數時變 (LPV) 系統增益調度 (GS) 控制極點配置法被動控制理論線性矩陣不等式里亞普諾夫 (Lyapunov) 函數
英文關鍵字:Linear Parameter Varying (LPV) SystemGain-Scheduled (GS) ControlPole-Assignment MethodPassivity Control TheoryLinear Matrix InequalityLyapunov Function
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏收藏:0
本論文探討了離散型線性參數時變 (LPV) 系統之滿足極點配置控制器設計問題。由於線性參數時變模型可針對不確定性系統進行有效且完整的描述,故本論文則以此模型發展一系列離散型增益調度 (GS) 控制器的設計法則。在本論文中,應用極點配置法來設計極點範圍以達到所追求的暫態響應,並以增益調度 (GS) 控制技術,設計所要求特性之控制器,為達到上述之目的,本論文利用里亞普諾夫 (Lyapunov) 函數的推導方法得到所需的充分條件,為了廣泛討論系統控制問題,系統的外部干擾 (Disturbance) 也被考慮在此論文中,對於外部影響,被動控制理論被運用來探討外部干擾對系統的影響,同樣地根據里亞普諾夫 (Lyapunov) 函數推導出充分條件,此外,為了使用凸型最佳化演算法,本論文將所推導的穩定條件轉換為線性矩陣不等式 (LMI) 的型式,經由解決此線性矩陣不等式 (LMI),增益調度控制器(GS)控制器可被設計以致於線性參數時變 (LPV) 系統達到漸進穩定及被動之要求。
In this thesis, the Gain-Scheduled (GS) controller design problems for Linear Parameter Varying (LPV) system subject to pole-assignment are discussed and investigated. Because the linear parameter time varying model can effectively and completely describe the uncertain system, the discrete-time GS controller design methods are developed for the model. In this thesis, a pole-assignment method is applied to achieve the transient response. And, the controller of the required characteristics is designed by GS control technology. To achieve the above object, some sufficient conditions are derived via the Lyapunov functions. Besides, the external disturbance is considered for extending the complexity of control problems LPV system. Moreover, the passivity theory is applied to discuss the effect of external disturbance on the LPV system. With the same way, the Lyapunov function is applied to derive some sufficient conditions. Then, the derived sufficient conditions are converted into Linear Matrix Inequality (LMI) form for using the convex optimization algorithm. Through the proposed design methods, the considered LPV system with external disturbance driven by the designed controller is passive and asymptotically stable subject to pole-assignment.
Abstract VIII
Acronyms IX
Nomenclature X
List of Figures XI

Chapter 1 Introduction
1.1 Background 2
1.2 Pole-Assignment and Passivity Performance 3
1.3 Purpose and Contributions 4
1.4 Organization of This Thesis 6

Chapter 2 Description, Method and Technology
2.1 Introduction 8
2.2 Description of Linear Parameter Varying Systems 8
2.3 Passivity Theory 11
2.4 Applications of Pole-Assignment Method 14
2.5 Summary 16

Chapter 3 Robust Control for Linear Parameter Varying Systems Subject to Pole-Assignment
3.1 Introduction 18
3.2 System Descriptions and Problem Statements 18
3.3 Controller Design with Pole-Assignment 20
3.4 Simulation Result 27
3.5 Summary 30

Chapter 4 Robust Control for Linear Parameter Varying Systems Subject to Pole-Assignment Constraints and Passivity
4.1 Introduction 34
4.2 System Descriptions and Problem Statements 34
4.3 Passive Controller Design with Pole-Assignment 36
4.4 Simulation Result 41
4.5 Summary 47

Chapter 5 Conclusions
5.1 Conclusions 52
5.2 Future Works 53

References 54
List of Publications 59

[1] J. W. Lee, “On Uniform Stabilization of Discrete-Time Linear Parameter-Varying Control Systems”, IEEE Transactions on Automatic Control, Vol. 51, No. 10, pp. 1714-1721, Oct. 2006.
[2] V. Cerone and D. Regruto, “Set-Membership Identification of LPV Models with Uncertain Measurements of The Time-Varying Parameter”, Proceedings of the 47th IEEE Conference on Decision and Control, pp. 4491-4496, Cancun, Mexico, Dec. 2008.
[3] W. Qin and Q. Wang, “Modeling and Control Design for Performance Management of Web Servers Via An LPV Approach”, IEEE Transactions on Control Systems Technology, Vol. 15, No. 2, pp. 259-275, Mar. 2007.
[4] W. Qiu, V. Vittal and M. Khammash, “Decentralized Power System Stabilizer Design Using Linear Parameter Varying Approach”, IEEE Transactions on Power Systems, Vol. 19, No. 4, pp. 1951-1960, Nov. 2004.
[5] E. Prempain, I. Postlethwaite and A. Benchaib, “A Linear Parameter Variant Control Design for An Induction Motor”, Control Engineering Practice, Vol. 10, No. 6, pp. 633-644, Jun. 2002.
[6] J. D. Caigny, J. F. Camino, R. C. L. F. Oliveira, P. L. D. Peres and J. Swevers, “Gain-Scheduled and Control of Discrete-Time Polytopic Time-Varying Systems”, IET Control Theory and Applications, Vol. 4, No. 3, pp. 362-380, Apr. 2010.
[7] B. Kulcsár and M. Verhaegen, “Robust Inversion Based Fault Estimation for Discrete-Time LPV Systems”, IEEE Transactions on Automatic Control, Vol. 57, No. 6, pp. 1581-1586, Jun. 2012.
[8] M. Fiacchini and G. Millerioux, “Dead-Beat Functional Observers for Discrete-Time LPV Systems with Unknown Inputs”, IEEE Transactions on Automatic Control, Vol. 58, No. 12, pp. 3230-3235, Dec. 2013.
[9] E. Garone and A. Casavola, “Receding Horizon Control Strategies for Constrained LPV Systems Based on A Class of Nonlinearly Parameterized Lyapunov Functions”, IEEE Transactions on Automatic Control, Vol. 57, No. 9, pp. 2354-2360, Sept. 2012.
[10] A. Ilka and V. Vesely, “Robust Gain-Scheduled Controller Design for Uncertain LPV Systems: Affine Quadratic Stability Approach”, Journal of Electrical Systems and Information Technology, Vol. 1, No. 1, pp. 45-57, May 2014.
[11] E. Garone, A. Casavola, G. Franźe and D. Famularo, “New Stabilizability Conditions for Discrete-Time Linear Parameter Varying Systems”, Proceedings of the 46th IEEE Conference on Decision and Control, pp. 2755-2760, New Orleans, USA, Dec. 2007.
[12] Z. X. Liu, C. Yuan and Y. M. Zhang, ‘‘Linear Parameter Varying Adaptive Control of an Unmanned Surface Vehicle’’, IFAC Proceedings of the 10th Conference on Maneuvering and Control of Marine, Vol. 48, No. 16, pp. 140-145, Copenhagen, Denmark, Aug. 2015.
[13] D. Rotondo, V. Reppa, V. Puig and F. Nejjari, ‘‘Adaptive Observer for Switching Linear Parameter-Varying Systems’’, IFAC Proceedings Volumes, Vol. 47, No. 3, pp. 1471-1476, Oct. 2014.
[14] S. Wang, Y. Jiang, Y. Li and D. Liu, “Reliable Observer-Based Control for Discrete-Time Fuzzy Systems with Time-Varying Delays and Stochastic Actuator Faults via Scaled Small Gain Theorem”, Neurocomputing, Vol. 147, pp. 251-259, Mar. 2015.
[15] S. Zhang, J. J. Yang and G. G. Zhu, “LPV Modeling and Mixed Constrained Control of An Electronic Throttle”, IEEE/ASME Transactions on Mechatronics, Vol. 20, No. 5, pp. 2120-2132, Oct. 2015.
[16] A. White, Z. Ren, G. Zhu and J. Choi, “Mixed Observer-Based LPV Control of A Hydraulic Engine Cam Phasing Actuator”, IEEE Transactions on Control Systems Technology, Vol. 21, No. 1, pp. 229-238, Dec. 2013.
[17] W. Yang, J. Gao and G. Feng, ‘‘An Optimal Approach to Output‐Feedback Robust Model Predictive Control of LPV Systems with Disturbances’’, International Journal of Robust and Nonlinear Control, Vol. 26, No. 15, pp. 3253-3273, Jan. 2016.
[18] C. C. Ku and G. W. Chen, “ Gain-Scheduled Control for LPV Stochastic Systems’’, Mathematical Problems in Engineering, Vol. 2015, Article ID: 854957, 14 Pages, June 2015.
[19] F. D. Bianchi, H. De Battista and R. J. Mantz, “Optimal Gain-Scheduled Control of Fixed-Speed Active Stall Wind Turbines”, IET Renewable Power Generation, Vol. 4, No. 2, pp. 228-238, Sep. 2008.
[20] V. F. Montagner, R. C. L. F. Oliveira, V. J. S. Leite and P. L. D. Peres, “Gain Scheduled State Feedback Control of Discrete-Time Systems with Time-Varying Uncertainties: an LMI Approach”, Proceedings of the 44th the IEEE Conference on Decision and Control, pp. 4305-4310, Plaza de España Seville, Spain, Dec. 2005.
[21] J. S. Shamma and M. Athans, “Guaranteed Properties of Gain Scheduled Control for Linear Parameter-Varying Plants”, Automatica, Vol. 27, No. 3, pp. 559-564, May. 1991.
[22] D. J. Leith and W. E. Leithead, “Survey of Gain-Scheduling Analysis and Design”, International Journal of Control, Vol. 73, No. 11, pp. 1001-1025, Nov. 2000.
[23] J. Daafouz and J. Bernussou, “Parameter Dependent Lyapunov Functions for Discrete Time Systems with Time Varying Parameter Uncertainties”, Systems & Control Letters, Vol. 43, No. 5, pp. 355-359, Aug. 2001.
[24] C. C. Ku and G. W. Chen, “Gain-Scheduled Controller Design for Discrete-Time Linear Parameter Varying Systems with Multiplicative Noises”, International Journal of Control, Automation and Systems, Vol. 13, No. 6, pp. 1382-1890, Sept. 2015.
[25] N. Wang and K. Y. Zhao, “Parameter-Dependent Lyapunov Function Approach to Stability Analysis for Discrete-Time LPV systems”, Proceedings of the IEEE International Conference on Automation and Logistics, pp. 724-728, Jinan, China, Aug. 2007.
[26] M. Chilali and P. Gahinet, ‘‘ Design with Pole Placement Constraints: an LMI Approach’’, IEEE Transactions on Automatic control, Vol. 41, No. 3, pp. 358-367, Mar. 1996.
[27] M. Chilali, P. Gahinet, P. Apkarian, “Robust Pole Placement in LMI Regions’’, IEEE Transactions on Automatic Control, Vol. 44, No.12, pp. 2257-2270, Dec. 1999.
[28] D. Henrion, M. Sebek, V. Kucera, “Robust Pole Placement for Second-Order Systems: an LMI approach”, Kybernetika, Vol. 41, No. 1, pp.1-14, June 2005.
[29] S. K. Hong, Y. Nam, “Stable Fuzzy Control System Design with Pole-Placement Constraint: an LMI approach”, Computers in Industry, Vol. 51, pp. 1-11, May. 2003.
[30] E. Palacios and A. Titli, ‘‘Pole Placement in LMI Region with Takagi-Sugeno Fuzzy Systems’’, IFAC Intelligent Components and Instruments for Control Application, Vol. 36, No. 13, pp.243-248, July 2003.
[31] P. F. Toulotte, S. Delprat, T. M. Guerraa and J. Boonaert, “Vehicle Spacing Control Using Robust Fuzzy Control with Pole Placement in LMI Region”, Engineering Applications of Artificial Intelligence, Vol. 21, No. 5, pp. 756-768, Aug. 2008.
[32] A. H. Besheer, H. M. Emara and M. M. Aziz, “Wind Energy Conversion System Regulation via LMI Fuzzy Pole Cluster Approach”, Electric Power Systems Research, Vol. 79, No. 4, pp. 531-538, Apr. 2009.
[33] J. Li, G. Wu and Z. Wang, “An LMI Approach to D-stable Robust Fault Tolerant Control of Uncertaint Systems”, Proceedings of the International Conference Automatic and Logistics, pp. 1745-1749, Jinan, China, Aug. 2007.
[34] A. Cherifi, K. Guelton, and L. Arcese, “Quadratic Design of Robust Controllers for Uncertain T-S Models with D-stability Constraints”, IFAC-PapersOnLine, Vol. 49, No. 5, pp. 19-24, May 2016.
[35] W. J. Chang, H. Y. Qiao, “Sliding mode fuzzy control for nonlinear stochastic systems subject to pole assignment and variance constraint”, Information Sciences, Vol. 432, pp. 133-145, Mar. 2018.
[36] B. Marinescu, ‘‘Output Feedback Pole Placement for Linear Time-Varying Systems with Application to the Control of Nonlinear Systems’’, Automatica, Vol. 46, No. 9, pp. 1524-1530, Sep. 2010.
[37] C. C. Ku, P. H. Huang, W. J. Chang ‘‘Passive Fuzzy Controller Design for Nonlinear Systems with Multiplicative Noises”, Journal of the Franklin Institute, Vol. 347, No. 5, pp.732-750, June. 2010.
[38] W. J. Chang, C. C. Ku and W. Chang, “Analysis and Synthesis of Discrete Nonlinear Passive Systems via Affine T-S Fuzzy Models”, International Journal of System Science, Vol. 39, No. 8, pp. 809-821, Aug. 2008.
[39] W. J. Chang, S. S. Jheng and C. C. Ku, “Passive Estimated State Feedback Fuzzy Controller Design for Discrete Perturbed Fuzzy Systems with Multiplicative Noises”, Journal of Chinese Institute of Engineers, Vol. 36, No. 6, pp. 684-695, Nov. 2013.
[40] S. Xie, L. Xie and C.E. De-Souza “Robust Dissipative Control for Linear Systems with Dissipative Uncertainty”, International Journal of Control, Vol. 70, No. 2, pp.169-191, Feb. 1998.
[41] C. G. Li, H .B. Zhang and X. F. Liao. “Passivity and Passification of Uncertain Fuzzy Systems”, IEEE Proceedings-Circuits Devices Systems, Vol. 152, No. 6, pp.649-653, Dec. 2005.
[42] Z. G. Wu, P. Shi, H. Su and J. Chu, “Network-Based Robust Passive Control for Fuzzy Systems with Randomly Occurring Uncertainties”, IEEE Transactions on Fuzzy Systems, Vol. 21, No. 5, pp.966-971, Oct. 2012.
[43] J. C. Willems and H. L. Trentrlman, “Synthesis of Dissipative Systems Using Quadratic Differential Forms: Part I.”, IEEE Transactions on Automatic Control, Vol.47, No. 1, pp. 53-69, Jan. 2002.
[44] M. Deng and N. Bu, “Robust Control for Nonlinear Systems Using Passivity-Based Robust Right Coprime Factorization”, IEEE Transactions on Automatic Control, Vol. 57, No. 10, pp. 2599-2604, Oct. 2012.
[45] Z. P. Jiang and D. J. Hill ‘‘Passivity and Disturbance Attenuation via Output Feedback for Uncertain Nonlinear Systems’’, IEEE Transactions on Automatic Control, Vol. 43, No. 7, pp. 992-997, Jul. 1998.
[46] Y. Y. Cao and P. M. Frank, “Robust Disturbance Attenuation for a Class of Uncertain Discrete-Time Fuzzy Systems”, IEEE Transactions on Fuzzy Systems, Vol. 8, No. 4, pp. 406-415, Sep. 2000.
[47] R. Lozano, B. Brogliato, O. Egeland and B. Maschke, Dissipative Systems Analysis and Control Theory and Applications, Springer, London, Jun. 2000.
[48] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.
[49] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, UK, 2004.
[50] K. Tanaka and M. Sano, “A Robust Stabilization Problem of Fuzzy Control Systems and Its Application to Backing up Control of A Truck-Trailer”, IEEE Transactions on Fuzzy Systems, Vol. 2, No. 2, pp. 119-134, May 1994.
[51] S. T. Zhang and G. Ren, “Fuzzy Adaptive Control for Ship Steering Autopilot Based on Back Stepping Technique”, Journal of Traffic and Transportation Engineering, Vol. 5, No. 4, pp. 72-76, Dec. 2005.
[52] L. Song, Q. Yao and S. Yan, “Discrete Variable Structure Control Design and Its Application to A Ship Autopilot Servo System”, International Conference on Electrical Machines and Systems, No. 2, pp. 1621-1624, Nanjing, China, Sep. 2005.
電子全文
全文檔開放日期:2019/07/17
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *