字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:邱劭竹
研究生英文姓名:Chiu, Shao-Jhu
中文論文名稱:臺灣周邊海域黃鰭棘鯛之年齡與成長研究
英文論文名稱:Studies on age and growth of Acanthopagrus Latus in the waters off Taiwan
指導教授姓名:王佳惠
口試委員中文姓名:助理教授︰王世斌
副教授︰張至維
業界委員︰葉信明
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學號:10731007
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:60
中文關鍵詞:黃鰭棘鯛耳石成長方程式隨機森林分析法
英文關鍵字:Acanthopagrus latusotolithgrowth functionRandom forest
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏收藏:0
黃鰭棘鯛 (Acanthopagrus latus) 廣泛分布於全球海域,屬於淺海底層魚類,在台灣水產養殖與沿近海漁業中都是高經濟價值的物種。有關其成長研究過去並不多見,而在黃鰭棘鯛資源量日益衰退的情況下,建立其野外族群之成長模型以便做後續資源評估等相關管理措施,以及搭配放流及其他漁業政策來復育黃鰭棘鯛之漁業資源量是必須的。本研究以耳石作為年齡判讀形質,並自2016年9月至2018年3月期間共採集634尾樣本,其中因苗栗地區樣本佔總樣本80%以上,故將以苗栗地區之黃鰭棘鯛樣本作為本研究後續之分析對象。根據邊緣成長率的分析,判別耳石輪紋形成之週期性為一年,並且在6至7月會開始形成新的輪紋。而以耳石切片建立三個不同成長方程式VBGE、Robertson、Gompertz得知其極限體長(L∞)分別為35.68、41.19、38.85 cm,成長係數(k)為0.43、0.31、0.34 yr-1,且VBGE之AIC值最低,接著以VBGE計算黃鰭棘鯛雌雄成長方程式分別為雌性: Lt = 36.35 (1- e -0.425( t+1.56 ) ),雄性: Lt = 33.52 (1 - e -0.431( t+1.90 ) ),雌雄間成長曲線具顯著差異。另外,為了能更便利的獲取年齡資料,且節省大量時間及人力成本,本研究也將使用其他特徵變量做為年齡形質 (耳石外部形態、全長、性別),並以隨機森林分析法判別何種特徵變量為可行之定齡工具。而根據結果耳石重為最具解釋率之特徵變量,其總體正確判別率為60.08%。故後續累積更多資料,應可以此法取代耳石切片,增加效率。
Yellow seabream (Acanthopagrus latus) distributed globally, and it lived in the shallow sea. In Taiwan, it is an important species in both aquaculture and coastal fisheries, with high economic value. However, research about age and growth of yellow seabream wild population has not been established completed so far. And in the case of yellow seabream resources increasingly recession, it is necessary to establish the growth model to comtribute for the following resource assessment and other related management measures, and combine fry releasing programe and other fisheries policies to enhancing the fishery resources of yellow seabream. The purpose of this study is to estimating growth parameters for yellow seabream by otolith reading and the otolith morphological characteristics (including the length, width and weight of the otolith). Random forest analysis method was used to determine whether the otolith morphological characteristics is a feasible ageing tool. There were 643 specimens collected in this study between September 2016 and March 2018. The specimen from Miaoli accounted for more than 80% of the total specimen. Therefore, only the yellow seabream specimen in Miaoli area will be further analyzed in this study. According to the marginal increment ratio analyses, the formation periodicity of opaque zone was determined to be annual, and a new opaque zone will be formed from June to July. The growth parameters estimated by using VBGE, Robertson and Gompertz were 35.68, 41.19, and 38.85 cm for L∞, 0.43, 0.31, and 0.34 yr-1 for k respectively, and the AIC value was lowest by VBGE. The female and male VBGE growth function for yellow seabream were Lt = 36.35 (1- e -0.425( t+1.56 ) ) for female, and Lt = 33.52 (1 - e -0.431( t+1.90 ) ) for male, and was significant different between sex. According to Random forest analysis, the otolith weight has the most explained rate, and the average correction ratio was 60.08%. Therefore, after collecting more specimens, this method should be able to replace otolith section ageing method to increase efficiency.
目錄
摘要 I
Abstract II
表目錄 V
圖目錄 VI
壹、前言 1
一、黃鰭棘鯛簡介 1
(一)形態特徵與生態習性 1
(二)漁業資源現況 2
二、年齡成長 2
三、前人研究 4
四、研究動機與目的 5
貳、材料與方法 6
一、樣本採集 6
二、基礎生物學資料 6
(一)魚體解剖分析 6
(二)體長體重關係式 6
(三)生殖腺指數 7
(四)肥滿度 7
三、耳石 7
(一)耳石製備 7
(二)耳石定齡 8
(三)邊緣成長率 8
(四)精確度 9
(五)樣本實際年齡推估 9
(六)成長方程式 10
(七)生長表現指數 11
(八)最適之成長方程式選定 11
四、特徵變量分析 11
五、統計檢定 12
參、結果 13
一、基礎生物學資料 13
(一)樣本組成 13
(二)體長及體重頻度分布 13
(三)體長體重關係式 14
(四)生殖腺指數月別變化 14
(五)肥滿度指數月別變化 14
二、耳石 15
(一)邊緣成長率 15
(二)讀輪精確度 15
(三)年齡結構 15
(四)年齡成長 16
(五)生長表現指數 16
(六)最適之成長方程式選定 17
(七)黃鰭鯛性別間之年齡體長關係表 17
三、特徵變量分析 17
肆、討論 18
一、樣本收集 18
二、耳石輪紋之分析 18
三、耳石讀輪之精確性 19
四、成長方程式之探討 19
五、成長參數之探討 20
六、耳石外部形態定齡 21
七、黃鰭鯛雌雄成長之探討 22
八、未來應用 22
五、結論 23
參考文獻 24
Annex 1其他鯛科自2008到2016年總產量與總產值 59
Annex 2 臺灣漁業永續發展協會放流之統計資料 60

參考文獻

Abecasis, D., Bentes, L., Coelho, R., Correia, C., Lino, P. G., Monteiro, P., Goncalves, J. M. S., Ribeiro, J., & Erzini, K. (2008). Ageing seabreams: a comparative study between scales and otoliths. Fisheries Research 89(1), 37-48.
Aldanondo, N., Cotano, U., Etxebeste, E., Irigoien, X., Álvarez, P., de Murguía, A. M., & Herrero, D. L. (2008). Validation of daily increments deposition in the otoliths of European anchovy larvae (Engraulis encrasicolus L.) reared under different temperature conditions. Fisheries Research 93(3), 257-264.
Ashworth, E. C., Hall, N. G., Hesp, S. A., Coulson, P. G., & Potter, I. C. (2016). Age and growth rate variation influence the functional relationship between somatic and otolith size. Canadian Journal of Fisheries and Aquatic Sciences 74(5), 680-692.
Baudouin, M., Marengo, M., Pere, A., Culioli, J. M., Santoni, M. C., Marchand, B., & Durieux, E. D. (2016). Comparison of otolith and scale readings for age and growth estimation of common dentex Dentex dentex. Journal of Fish Biology 88(2), 760-766.
Beamish, R. J., & Fournier, D. A. (1981). A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38(8), 982-983.
Beamish, R., & McFarlane, G. A. (1983). The forgotten requirement for age validation in fisheries biology. Transactions of the American Fisheries Society 112(6), 735-743.
Branstetter, S., & Stiles, R. (1987). Age and growth estimates of the bull shark, Carcharhinus leucas, from the northern Gulf of Mexico. Environmental Biology of Fishes 20(3), 169-181.
Cailliet, G. M., Andrews, A. H., Burton, E. J., Watters, D. L., Kline, D. E., & Ferry-Graham, L. A. (2001). Age determination and validation studies of marine fishes: do deep-dwellers live longer? Experimental Gerontology 36(4-6), 739-764.
Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263-297.
Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59(2), 197-242.
Campana, S. E., & Neilson, J. D. (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42(5), 1014-1032.
Cardinale, M., & Arrhenius, F. (2004). Using otolith weight to estimate the age of haddock (Melanogrammus aeglefinus): a tree model application. Journal of Applied Ichthyology 20(6), 470-475.
Casselman, J. M. (1987). Determination of age and growth. In ‘The Biology of Fish Growth’. (Eds AH Weatherley and HS Gill.) pp. 209–242.
Chang, C. W., Hsu, C. C., Wang, Y. T., & Tzeng, W. N. (2002). Early life history of Acanthopagrus latus and A. schlegeli (Sparidae) on the western coast of Taiwan: temporal and spatial partitioning of recruitment. Marine and Freshwater Research 53(2), 411-417.
Chang, W. Y. (1982). A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences 39(8), 1208-1210.
Degens, E. T., Deuser, W. G., & Haedrich, R. L. (1969). Molecular structure and composition of fish otoliths. Marine Biology 2(2), 105-113.
Dub, J. D., Redman, R. A., Wahl, D. H., & Czesny, S. J. (2013). Utilizing random forest analysis with otolith mass and total fish length to obtain rapid and objective estimates of fish age. Canadian Journal of Fisheries and Aquatic Sciences 70(9), 1396-1401.
Ghasemi, A., & Shadi, A. (2018). Population Structure of Acanthopagrus latus from the Northern Persian Gulf and Gulf of Oman Based on Microsatellite Markers. Turkish Journal of Fisheries and Aquatic Sciences 18(8), 983-990.
Gompertz, B. (1825). XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical Transactions of the Royal Society of London (115), 513-583.
Hales Jr, L. S., & Belk, M. C. (1992). Validation of otolith annuli of bluegills in a southeastern thermal reservoir. Transactions of the American Fisheries Society 121(6), 823-830.
Hall, N. G., Hesp, S. A., & Potter, I. C. (2004). A Bayesian approach for overcoming inconsistencies in mortality estimates using, as an example, data for Acanthopagrus latus. Canadian Journal of Fisheries and Aquatic Sciences 61(7), 1202-1211.
Hsu, C. C. (1991). Parameters estimation of generalized von Bertalanffy growth equation. ACTA Oceanographics Taiwanica 26, 66-77.
Karimi, S., Kochanian, P., Salati, A. P., & Gooraninejad, S. (2014). Plasma sex steroids and gonadosomatic index variations during ovarian development of female wild yellowfin seabream (Acanthopagrus latus). Ichthyological Research 61(1), 68-75.
Lepak, J. M., Cathcart, C. N., & Hooten, M. B. (2012). Otolith mass as a predictor of age in kokanee salmon (Oncorhynchus nerka) from four Colorado reservoirs. Canadian Journal of Fisheries and Aquatic Sciences 69(10), 1569-1575.
Lessa, R., Santana, F. M., & Hazin, F. H. (2004). Age and growth of the blue shark Prionace glauca (Linnaeus, 1758) off northeastern Brazil. Fisheries Research 66(1), 19-30.
Lowenstein, O. (1971). 7 The Labyrinth. In Fish Physiology (Vol. 5, pp. 207-240). Academic Press, Cambridge, United States of America, pp. 600.
Matić-Skoko, S., Ferri, J., Škeljo, F., Bartulović, V., Glavić, K., & Glamuzina, B. (2011). Age, growth and validation of otolith morphometrics as predictors of age in the forkbeard, Phycis phycis (Gadidae). Fisheries Research 112(1), 52-58.
Morales-Nin, B., & Moranta, J. (1997). Life history and fishery of the common dentex (Dentex dentex) in Mallorca (Balearic Islands, western Mediterranean). Fisheries Research 30(1), 67-76.
Morison, A. K., Coutin, P. C., & Robertson, S. G. (1998). Age determination of black bream, Acanthopagrus butcheri (Sparidae), from the Gippsland Lakes of south-eastern Australia indicates slow growth and episodic recruitment. Marine and Freshwater Research 49(6), 491-498.
Morrow, J. E. (1979). Preliminary keys to otoliths of some adult fishes of the Gulf of Alaska, Bering Sea and Beaufort Sea. U.S. Department of Commerce, NOAA, NMFS, Washington, United States of America, pp. 32
Mu, X., Zhang, C., Zhang, C., Xu, B., Xue, Y., & Ren, Y. (2018). Age determination for whitespotted conger Conger myriaster through somatic and otolith morphometrics. Plos One 13(9), e0203537.
Munro, J. L., & Pauly, D. (1983). A simple method for comparing the growth of fishes and invertebrates. Fishbyte 1(1), 5-6.
Pauly, D. (1979). Gill size and temperature as governing factors in fish growth: a generalization of von Bertalanffy's growth formula. Brichte Institution Meereskunde, Kiel, Germany, pp. 156.
Ricker, W. E. (1973). Linear regressions in fishery research. Journal of the Fisheries Board of Canada 30(3), 409-434.
Ricker, W. E. (1979). Growth rates and models. Fish Physiology, 673-743.
Robertson, T. B. (1923). The chemical basis of growth and senescence. JB Lippincott Company, New York, United States of America, pp. 98.
Samamé, M. (1977). Determinación de la edad y crecimiento de la Sardina Sardinops sagax sagax (J). Boleti ́n-Instituto del Mar del Peru ́ 3, 95-112.
Samuel, M., & Mathews, C. P. (1987). Growth and mortality of four Acanthopagrus species. Kuwait Bull. Mar. Sci 9, 159-171.
Shono, H. (2000). Efficiency of the finite correction of Akaike’s information criteria. Fisheries Science 66(3), 608-610.
Springer, V. G. (1982). Pacific plate biogeography, with special reference to shorefishes. Smithsonian Institution Press, Washington, United States of America, pp.193
Vahabnezhad, A., Kaymaram, F., Taghavi Motlagh, S. A., Valinassab, T., & Fatemi, S. M. R. (2016). The reproductive biology and feeding habits of yellow fin seabream, Acanthopagrus latus (Houttuyn, 1782), in the Northern Persian Gulf. Iranian Journal of Fisheries Sciences 15(1), 16-30.
Vieira, A. R., Neves, A., Sequeira, V., Paiva, R. B., & Gordo, L. S. (2014). Age and growth of forkbeard, Phycis phycis, in Portuguese continental waters. Journal of the Marine Biological Association of the United Kingdom 94(3), 623-630.
Von Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth laws. II). Human Biology 10(2), 181-213.
Wakefield, C. B., Potter, I. C., Hall, N. G., Lenanton, R. C., Hesp, S. A., & Handling editor: Valerio Bartolino. (2016). Timing of growth zone formations in otoliths of the snapper, Chrysophrys auratus, in subtropical and temperate waters differ and growth follows a parabolic relationship with latitude. ICES Journal of Marine Science 74(1), 180-192.
Wang, Z., & Zuidhof, M. J. (2004). Estimation of growth parameters using a nonlinear mixed Gompertz model. Poultry Science 83(6), 847-852.
Winner, B. L., MacDonald, T. C., & Amendola, K. B. (2017). Age and growth of sheepshead (Archosargus probatocephalus) in Tampa Bay, Florida. Fishery Bulletin 115(2).
Yamaguchi, M. (1975). Estimating growth parameters from growth rate data. Oecologia 20(4), 321-332.
Zakeri, M., Marammazi, J. G., Kochanian, P., Savari, A., Yavari, V., & Haghi, M. (2009). Effects of protein and lipid concentrations in broodstock diets on growth, spawning performance and egg quality of yellowfin sea bream (Acanthopagrus latus). Aquaculture 295(1-2), 99-105.






王世斌 (2012)。硬骨魚類的成長記錄器。科學發展477:16~21。
石郁筠 (2017)。臺灣澎湖海域黃錫鯛之年齡與成長研究。國立臺灣海洋大學環境生物與漁業科學學系碩士論文,基隆,臺灣,52頁。
廖正信、呂學榮、劉光明、莊守正、王佳惠、蘇楠傑 (2017)。放流及效益評估。行政院農業委員會106年度科技計畫期末研究報告
朱鴻鈞 (2010)。全球漁業發展現況及未來發展趨勢分析─兼論台灣漁業發展現況。台經月刊33 (3) 47~52。
何權浤 (2011)。第一節臺灣漁業重新萌芽再出發─沿岸漁業。漁業傳奇-四大漁業篇:1945~2011年。農業委員會漁業署,臺北,臺灣。116頁。
吳喬斌 (2009)。不同成長方程式套適板鰓類體長─年齡資料之比較研究。國立臺灣海洋大學海洋事務與資源管理研究所碩士論文,基隆,臺灣,108頁。
李加兒、周宏團、許波濤、鄭建民 (1985)。黄鳍鲷Sparus latus Houttuyn生長之初步研究。華南師範大學學報(自然科學版) 1
沈世傑 (1993)。台灣魚類誌。國立台灣大學動物系,臺北,臺灣。960頁。
林維君 (2013)。永續漁業資源再現藍金潮流─國內外漁業產業科技發展現況與展望。農業科技專案計畫服務網,(https://agtech.coa.gov.tw/Topic/topic_more?id=3154453b43164dbf9198c69f7048cf73),(2019年5月30日)。
崔文經 (2018)。鉛對黃鰭鯛生理反應研究。國立臺灣海洋大學水產養殖學系博士論文,基隆,臺灣,172頁。
張至維、朱永淳、程紫芸、林千翔、鄭少茵、江偉全、李匡悌 (2012)。台灣魚類耳石典藏計畫。台灣生物多樣性資訊入口網,(http://taibif.tw/sites/default/files/documents/TELDAP-18.pdf),(2019年3月20日)。
張清風 (2005)。魚類性別轉變的奧秘。科學發展385:18~21。
陸芊妤 (2017)。利用鱗片的碳氮穩定同位素分析判別銀紋笛鯛之來源差異。國立臺灣海洋大學環境生物與漁業科學學系碩士論文,基隆,臺灣,76頁。
葉信利 (2012)。變性的奧秘。科學發展473:6~13。
劉嘉耀 (2017)。以耳石形態學暨微化學分析探討臺灣海域產刺鯧Psenopsis anomala之系群結構。國立臺灣海洋大學海洋事務與資源管理研究所碩士論文,基隆,臺灣,68頁。
關榮豪 (2016)。利用微衛星DNA標記建立黃鰭鯛野生與養殖族群遺傳多型性之研究。國立臺灣海洋大學水產養殖學系碩士論文,基隆,臺灣,92頁。
電子全文
全文檔開放日期:2019/08/07
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *