字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:吳研綸
研究生英文姓名:Wu, Yan-Lun
中文論文名稱:利用時間序列分析法探討多尺度氣候變異指數對全球黃鰭鮪族群之影響
英文論文名稱:Application of time series analysis to detect the effect of multi-scale climate indices on global yellowfin tuna population
指導教授姓名:藍國瑋
口試委員中文姓名:教授︰李明安
業界委員︰葉信明
教授︰謝志豪
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學號:10731003
請選擇論文為:學術型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:54
中文關鍵詞:黃鰭鮪小波分析空間分布全球尺度
英文關鍵字:Yellowfin tunawavelet analysisspatial distributionsglobal scale
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
本研究透過蒐集tRFMOs與臺灣鮪延繩釣漁船於三大洋釣獲黃鰭鮪的漁獲統計資料分別計算黃鰭鮪的釣獲率與漁獲重心,並利用複迴歸分析及小波轉換分析法解析年代際與年際氣候變異因子對黃鰭鮪釣獲率變動週期與關聯性,並探討氣候因子交互影響下對黃鰭鮪釣獲率之跨洋區影響特性與可能之機制。分析結果顯示年代際氣候變異因子(AMO、PDO及NPGO)與黃鰭鮪的豐度及分佈範圍自1980年代中期到2010年期間,約有4至8年的影響週期,顯示年代際氣候變異因子對黃鰭鮪族群豐度變化及分布範圍為跨洋區性,而非侷限於單一海域,而年際氣候變異因子(DMI及ONI)對黃鰭鮪漁獲重心影響侷限於相鄰的兩個區域,如DMI與大西洋、西印度洋釣獲率皆有約2~8年的變動周期,而ONI則主要影響西太平洋、東印度洋及西印度洋之漁獲重心。另進一步探討年代際氣候變異因子(PDO及NPGO)交互影響下之情境,以解釋單一氣候因子與黃鰭鮪漁況間變動趨勢不符合或週期不明顯之時期,分析結果顯示在PDO為正相位且NPGO為負相位下,黃鰭鮪年別平均釣獲率為最高,而又以PDO為負相位且NPGO為正向位時,年別平均釣獲率為最低。推測其原因主要為黃鰭鮪棲息海域於PDO為正相位或NPGO為負相位時,皆會因基礎生產力增加進而影響到黃鰭鮪餌料生物中次級營養位階物種的數量,且影響範圍包含三大洋之黃鰭鮪釣獲率趨勢,顯示氣候變異的交互影響所造成的海洋環境變化亦是影響黃鰭鮪漁況的重要因素之一。
Tuna are globally critical to fisheries because of their broad distribution and high market value. The yellowfin tuna (Thunnus albacares; YFT) is one of the most crucial tuna species. In this study, we analyzed records of YFT catch rates globally to determine the effects of climate indices on the monthly catch rate of YFT. Multiple regression indicated that multidecadal climate indices—the Atlantic Mulitdecadal Oscillation (AMO), North Pacific Gyre Oscillation (NPGO), and Pacific Decadal Oscillation (PDO)—were associated with the catch rate and longitudinal center of gravity of YFT. The effects of the multidecadal climate indices AMO, PDO, and NPGO on the catch rate and longitudinal center of gravity of YFT globally had approximately 4–8-year coherence from 1986–1991 until the end of the 2010s. The interannual climate indices of Dipole Mode Index (DMI) and Oceanic Nino Index (ONI) were significantly correlated with the center of gravity of fishing grounds but in limited transoceanic areas. The DMI effected the longitudinal gravity center of fishing grounds in the Atlantic Ocean and the western Indian Ocean, and the ONI were effected in the eastern Indian Ocean, western Indian Ocean and the western Pacific Ocean. The interaction of decadal climatic indices (PDO and NPGO) were used to explained the insignificant periods with the catch rates of YFT. The catch rates were increased in the positive PDO and negative NPGO events globally, and suggested the increased bottom-up effects (primary production) driven by nutrient availability and top-down effects of predation for the habitat areas of YFT.
摘要 IV
ABSTRACT V
目錄 VI
表目錄 VIII
圖目錄 I
壹、前言 1
1-1氣候變遷之定義與對海洋環境影響 1
1-2氣候變遷對海洋生物與漁業生產之影響 2
1-3全球黃鰭鮪分佈與鮪釣概況 2
1-4 氣候變遷對鮪類族群豐度與分布影響 3
1-5研究目的 4
貳、研究資料與方法 5
2-1 漁獲資料蒐集與分析 5
2-2 氣候指數資料來源 6
2-3 複迴歸分析法 7
2-4 時間序列分析法 7
參、結果 10
3-1 三大洋黃鰭鮪之漁場概況 10
3-2 氣候變異因子對黃鰭鮪釣獲率之影響 11
3-3 氣候變異因子對黃鰭鮪漁獲重心之影響 12
3-4年代際氣候因子交互作用特性對黃鰭鮪釣獲率之跨洋區影響 12
肆、討論 14
4-1 年代際氣候變異因子對黃鰭鮪漁況之影響 14
4-2 年際氣候變異因子對黃鰭鮪分布之影響 14
4-3 氣候變異因子間交互作用下對黃鰭鮪豐度之影響 15
伍、結論與未來展望 17
5-1 結論 17
5-2 未來展望 17
Anonymous, 2008. Annual report of the Inter-American Tropical Tuna Commission for 2006. Inter-Amer. Trop. Tuna Comm.
Arrizabalaga, H., Dufour, F., Kell, L., Merino, G., Ibaibarriaga, L., Chust, G., Chifflet, M., 2015. Global habitat preferences of commercially valuable tuna. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 113, 102-112.
Bakun, A., 1990. Global climate change and intensification of coastal ocean upwelling. Science 247(4939), 198-201.
Beamish, R. J., Noakes, D. J., McFarlane, G. A., Klyashtorin, L., Ivanov, V. V., Kurashov, V., 1999. The regime concept and natural trends in the production of Pacific salmon. Can. J. Fish. Aquat. Sci. 56(3), 516-526.
Beaugrand, G., Conversi, A., Chiba, S., Edwards, M., Fonda-Umani, S., Greene, C., Stemmann, L., 2015. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Trans. R. Soc. B-Biol. Sci. 370(1659), 20130272.
Behera, S. K. and Yamagata, T., 2003. Impact of the Indian Ocean Dipole on the Southern Oscillation. J. Meteorol. Soc. Jpn. 81,169-177.
Blanchard, J. L., Jennings, S., Holmes, R., Harle, J., Merino, G., Allen, J. I., Barange, M., 2012. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos. T. R. Soc. B. 367(1605), 2979-2989.
Block, B. A., Keen, J. E., Castillo, B., Dewar, H., Freund, E. V., Marcinek, D. J., Farwell, C., 1997. Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range. Mar. Biol. 130(1), 119-132.
Brill, R. W., Block, B. A., Boggs, C. H., Bigelow, K. A., Freund, E. V., Marcinek, D. J., 1999. Horizontal movements and depth distribution of large adult yellowfin tuna (Thunnus albacares) near the Hawaiian Islands, recorded using ultrasonic telemetry: implications for the physiological ecology of pelagic fishes. Mar. Biol. 133(3), 395-408.
Bromhead, D., Scholey, V., Nicol, S., Margulies, D., Wexler, J., Stein, M., Ilyina, T., 2015. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep-Sea Res. Part II-Top. Stud. Oceanogr. 113, 268-279.
Cazelles, B., Stone, L., 2003. Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol. 72(6), 953-968.
Chavez, F. P., Messié, M., Pennington, J. T., 2010. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227-260.
Chai, F., Jiang, M., Barber, R. T., Dugdale, R. C., Chao, Y., 2003. Interdecadal variation of the transition zone chlorophyll front: A physical-biological model simulation between 1960 and 1990. J. Oceanogr. 59(4), 461-475.
Chen, I. C., Lee, P. F. and Tzeng, W. N., 2005. Distribution of albacore (Thunnus alaunga) in the Indian Ocean and its relation to environmental factors. Fish Oceanogr. 14(1), 71-80.
Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R. E. G., Zeller, D., Pauly, D., 2010. Large‐scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16(1), 24-35.
Chiba, S., Batten, S. D., Yoshiki, T., Sasaki, Y., Sasaoka, K., Sugisaki, H., Ichikawa, T., 2015. Temperature and zooplankton size structure: climate control and basin‐scale comparison in the North Pacific. Ecol. Evol. 5(4), 968-978.
Chiba, S., Batten, S., Martin, C. S., Ivory, S., Miloslavich, P., Weatherdon, L. V., 2018. Zooplankton monitoring to contribute towards addressing global biodiversity conservation challenges. J. Plankton Res. 40(5), 509-518.
Cloern, J. E., Hieb, K. A., Jacobson, T., Sansó, B., Di Lorenzo, E., Stacey, M. T., Winder, M., 2010. Biological communities in San Francisco Bay track large‐scale climate forcing over the North Pacific. Geophys. Res. Lett. 37(21).
De Anda-Montañez, J. A., Amador-Buenrostro, A., Martínez-Aguilar, S., Muhlia-Almazán, A., 2004. Spatial analysis of yellowfin tuna (Thunnus albacares) catch rate and its relation to El Niño and La Niña events in the eastern tropical Pacific. Deep-Sea Res. Part II-Top. Stud. Oceanogr. 51(6-9), 575-586.
Dell, J., Wilcox, C., Hobday, A.J., 2011. Estimation of yellowfin tuna (Thunnus albacares) habitat in waters adjacent to Australia’s East Coast: making the most of commercial catch data. Fish Oceanogr. 20, 383–396.
Debertin, A. J., Irvine, J. R., Holt, C. A., Oka, G., Trudel, M., 2016. Marine growth patterns of southern British Columbia chum salmon explained by interactions between density-dependent competition and changing climate. Can. J. Fish. Aquat. Sci. 74(7), 1077-1087.
Di Lorenzo, E., Combes, V., Keister, J. E., Strub, P. T., Thomas, A. C., Franks, P. J., Peterson, W. T., 2013. Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanogr. 26(4), 68-81.
Diaz, R. J., Rosenberg, R., 2008. Spreading dead zones and consequences for marine ecosystems. Science 321(5891), 926-929.
Dong, L., Zhou, T., 2014. The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO. J Geophys Res. 119(19), 11-272.
Duffy, L. M., Olson, R. J., Lennert-Cody, C. E., Galván-Magaña, F., Bocanegra-Castillo, N., Kuhnert, P. M., 2015. Foraging ecology of silky sharks, Carcharhinus falciformis, captured by the tuna purse-seine fishery in the eastern Pacific Ocean. Mar. Biol. 162(3), 571-593.
Duffy, L. M., Kuhnert, P. M., Pethybridge, H. R., Young, J. W., Olson, R. J., Logan, J. M., Abecassis, M., 2017. Global trophic ecology of yellowfin, bigeye, and albacore tunas: understanding predation on micronekton communities at ocean-basin scales. Deep-Sea Res. Part II-Top. Stud. Oceanogr.140, 55-73.
Durbin, J., Koopman, S. J., 2012. Time series analysis by state space methods. Oxford university press.
Fonteneau, A., Soubrier, P., 1996. Interactions between tuna fisheries: a global review with specific examples from the Atlantic Ocean. FAO Fisheries Technical Paper, 84-123.
Fonteneau, A., Hallier, J. P., 2015. Fifty years of dart tag recoveries for tropical tuna: a global comparison of results for the western Pacific, eastern Pacific, Atlantic, and Indian Oceans. Fish Res. 163, 7-22.
Francis RC, Hare SR, 1994. Decadal-scale regime shifts in the large marine ecosystems of the North-east Pacific:a case for historical science. Fish Oceanogr. 3(4):279–291.
Golet, W. J., Record, N. R., Lehuta, S., Lutcavage, M., Galuardi, B., Cooper, A. B., Pershing, A. J., 2015. The paradox of the pelagics: why bluefin tuna can go hungry in a sea of plenty. Mar. Ecol. Prog. Ser. 527, 181-192.
Grewe, P. M., Feutry, P., Hill, P. L., Gunasekera, R. M., Schaefer, K. M., Itano, D. G., Davies, C. R., 2015. Evidence of discrete yellowfin tuna (Thunnus albacares) populations demands rethink of management for this globally important resource. Sci Rep. 5, 16916.
Grinsted, A., Moore, J.C., Jeverejeva, S., 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Proc. Geophys. 11, 561–566.
Harris, V., Edwards, M., Olhede, S. C., 2014. Multidecadal Atlantic climate variability and its impact on marine pelagic communities. J. Mar. Syst. 133, 55-69.
Hartmann, D. L., 2015. Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett. 42(6), 1894-1902.
Henley, B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., Folland, C. K., 2015. A tripole index for the interdecadal Pacific oscillation. Clim. Dyn. 45(11-12), 3077-3090.
Huang, H. Y., 1996. National report on Taiwanese longline fisheries in the Indian Ocean in 1994. FAO IPTP Collective Volume, 9, 47-48.
Hsieh, C. H., Chen, C. H., Chiu, T. S., Lee, K. T., Shieh, F.J., Pan, J. Y., Lee, M. A., 2009. Time series analyses reveal transient relationships between abundance of larval anchovy and environmental variables in the coastal waters southwest of Taiwan. Fish. Oceanogr. 18(2):102–117
IOTC, 2009. Report of the Twelfth Session of the Scientific Committee of the IOTC. IOTC-2009-SC-R[E], 1-190.
Izumo, T., Vialard, J., Lengaigne, M., de Boyer Montegut, C., Behera, S. K., Luo, J. J., Yamagata, T., 2010. Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci. 3(3), 168.
Karl, T. R., Trenberth, K. E., 2003. Modern global climate change. Science, 302(5651), 1719-1723.
Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V., Aschan, M., 2015. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B-Biol. Sci. 282(1814), 20151546.
Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., Cane, M., 2006. Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314(5796), 115-119.
Krishnamurthy, L., & Krishnamurthy, V., 2014. Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Clim. Dyn. 42(9-10), 2397-2410.
Kröncke, I., Neumann, H., Dippner, J. W., Holbrook, S., Lamy, T., Miller, R., Satta, C. T., 2019. Comparison of biological and ecological long-term trends related to northern hemisphere climate in different marine ecosystems. Nature Conservation, 34, 311.
Lan, K. W., Lee, M. A., Lu, H. J., Shieh, W. J., Lin, W. K., Kao, S. C., 2011. Ocean variations associated with fishing conditions for yellowfin tuna (Thunnus albacares) in the equatorial Atlantic Ocean. ICES J. Mar. Sci. 68(6), 1063-1071.
Lan, K. W., Lee, M. A., Nishida, T., Lu, H. J., Weng, J. S., Chang, Y., 2012. Environmental effects on yellowfin tuna catch by the Taiwan longline fishery in the Arabian Sea. Int. J. Remote Sens. 33(23), 7491-7506.
Lan, K. W., Evans, K., Lee, M. A., 2013. Effects of climate variability on the distribution and fishing conditions of yellowfin tuna (Thunnus albacares) in the western Indian Ocean. Clim. Change. 119(1), 63-77.
Lan, K. W., Lee, M. A., Zhang, C. I., Wang, P. Y., Wu, L. J., Lee, K. T., 2014. Effects of climate variability and climate change on the fishing conditions for grey mullet (Mugil cephalus L.) in the Taiwan Strait. Clim. Change. 126(1-2), 189-202.
Lan, K.W., C.I. Zhang, H.J. Kang, L.J. Wu, L.J. Lian, 2017. Impact of fishing exploitation and climate change on the grey mullet (Mugil cephalus L.) stock in the Taiwan Strait. Mar. Coast. Fish. 9, 271-281.
Lehodey, P., Bertignac, M., Hampton, J., Lewis, A., Picaut, J., 1997. El Niño Southern Oscillation and tuna in the western Pacific. Nature, 389(6652), 715.
Lehodey, P., Andre, J. M., Bertignac, M., Hampton, J., Stoens, A., Menkès, C., Grima, N., 1998. Predicting skipjack tuna forage distributions in the equatorial Pacific using a coupled dynamical bio‐geochemical model. Fish Oceanogr. 7(3‐4), 317-325.
Lehodey, P., Chai, F., Hampton, J., 2003. Modelling climate‐related variability of tuna populations from a coupled ocean–biogeochemical‐populations dynamics model. Fish Oceanogr. 12(4‐5), 483-494.
Lehodey, P., Alheit. J., Barange.M., Baumgartner. T., Beaugrand. G., 2006. Climate
variability, fish, and fisheries. J Clim. 19:5009–5030.
Lehodey, P., Senina, I., Calmettes, B., Hampton, J., Nicol, S., Williams, P., Okamoto, S., 2011. SEAPODYM working progress and applications to Pacific skipjack tuna population and fisheries. In presented to the 7th meeting of the scientific committee of the Western and Central Pacific fisheries commission, 2011, 1-61.
Li, S. T., Chou, S. W., Pan, J. J., 2000. Multi-resolution spatio-temporal data mining for the study of air pollutant regionalization. 33rd Annual Hawaii International, HICSS-33.
Lu, H. J., Lee, K. T., Lin, H. L., Liao, C. H., 2001. Spatio-temporal distribution of yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus) in the Tropical Pacific Ocean in relation to large-scale temperature fluctuation during ENSO episodes. Fish. Sci. 67(6), 1046-1052.
Madhupratap, M., Kumar, S. P., Bhattathiri, P. M. A., Kumar, M. D., Raghukumar, S., Nair, K. K. C., Ramaiah, N., 1996. Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Nature. 384(6609), 549.
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., Francis, R. C., 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteorol. Soc. 78(6), 1069-1080.
Marsac, F., Le Blanc, J. L., 2000. ENSO cycle and purse seine tuna fisheries in the Indian Ocean with emphasis on the 1998-1999 La Niña. In IOTC Proceedings 3, 354-363.
Marsac, F., 2008. Outlook of ocean climate variability in the west tropical Indian Ocean, 1997–2008. Working document for IOTC Indian Ocean Tuna Commission.
Martinez, E., Antoine, D., D’Ortenzio, F., Gentili, B., 2009. Climate-driven basin-scale decadal oscillations of oceanic phytoplankton. Science, 326(5957), 1253-1256.
Megrey, B. A., Rose, K. A., Ito, S. I., Hay, D. E., Werner, F. E., Yamanaka, Y., Aita, M. N., 2007. North Pacific basin-scale differences in lower and higher trophic level marine ecosystem responses to climate impacts using a nutrient-phytoplankton–zooplankton model coupled to a fish bioenergetics model. Ecol. Model. 202(1-2), 196-210.
Ménard, F., Marsac, F., Bellier, E., Cazelles, B., 2007. Climatic oscillations and tuna catch rates in the Indian Ocean: a wavelet approach to time series analysis. Fish Oceanogr. 16(1), 95-104.
Merrifield, M. A., 2011. A shift in western tropical Pacific sea level trends during the 1990s. Journal of Climate, 24(15), 4126-4138.
Messié, M., Chavez, F., 2011. Global modes of sea surface temperature variability in relation to regional climate indices. J. Clim. 24(16), 4314-4331.
Meyers, G., McIntosh, P., Pigot, L., Pook, M., 2007. The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. J. Clim. 20(13), 2872-2880.
Michael, P. E., Tuck, G. N., Strutton, P., Hobday, A., 2015. Environmental associations
with broad‐scale Japanese and Taiwanese pelagic longline effort in the southern Indian and A tlantic O ceans. Fish Oceanogr. 24(5), 478-493.
Möllmann, C., Diekmann, R., 2012. Marine ecosystem regime shifts induced by climate and overfishing: a review for the Northern Hemisphere. Adv. Ecol. Res. 47, 303-347.
Monllor-Hurtado, A., Pennino, M. G., Sanchez-Lizaso, J. L., 2017. Shift in tuna catches due to ocean warming. PloS one, 12(6), e0178196.
Morlet, J., Arens, G.., Fourgeau, I., Giard, D., 1982. Wave propagation and sampling theory. Geophysic, 47, 203-236.
Nakagome, 1978. The study of relation between tuna and oceanography. Japanese Society of Fisheries Oceanography, 231-234.
Nishida, T., Mogri, M., Ioth, K. and Nakagome, J., 2005. Study of bathymetry effects on the nominal hooking rates of yellowfin tuna (Thunnus albacores) and bigeye tuna (Thunnus obesus) exploited by the Japanese tuna longline fisheries in the Indian Ocean. IOTC Proceedings, 4, 191-206.
Pecoraro, C., Zudaire, I., Bodin, N., Murua, H., Taconet, P., Diaz-Jaimes, P., Chassot, E., 2017. Putting all the pieces together: integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares). Rev. Fish. Biol. Fish. 27(4), 811-841.
Racault, M. F., Sathyendranath, S., Brewin, R. J., Raitsos, D. E., Jackson, T., Platt, T., 2017. Impact of El Nino variability on oceanic phytoplankton. Front. Mar. Sci. 4, 133.
Rivera, N. A., Ray, S., Jensen, J. L., Chan, A. K., Ayers, W. B., 2004. Detection of cyclic patterns using wavelets: An example study in the Ormskirk Sandstone, Irish Sea. Math. Geol. 36(5), 529-543.
Reygondeau, G., Maury, O., Beaugrand, G., Fromentin, J. M., Fonteneau, A., Cury, P., 2012. Biogeography of tuna and billfish communities. J. Biogeogr. 39(1), 114-129.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N., Yamagata, T., 1999. A dipole mode
in the tropical Indian Ocean. Nature, 401(6751), 360.
Sarma, V. V. S. S., 2006. The influence of Indian Ocean Dipole (IOD) on biogeochemistry of carbon in the Arabian Sea during 1997–1998. J. Earth Syst. Sci. 115(4), 433-450.
Sharp, G. D., 1992. Fishery catch records, El Niño/Southern Oscillation, and longer-term climate change as inferred from fish remains in marine sediments. El Nino: Historical and Paleoclimatic Aspects of the Southern Oscillation.
Stenseth, N.C., Ottersen, G., Hurrel, J.W., Belgrano, A., 2004. Marine Ecosystems and Climate Variation. New York: Oxford University Press, 266.
Sund, P. N., Blackburn, M., Williams, F., 1981. Tunas and their environment in the Pacific Ocean: a review. Oceanogr. Mar. Biol. Ann. Rev, 19, 443-512.
Syamsuddin, M. L., Saitoh, S. I., Hirawake, T., Bachri, S., Harto, A. B., 2013. Effects of El Niño–Southern Oscillation events on catches of Bigeye Tuna (Thunnus obesus) in the eastern Indian Ocean off Java. Fish. Bull. 111(2), 175-188.
Tian, Y., Kidokoro, H., Watanabe, T., Iguchi, N., 2008. The late 1980s regime shift in the ecosystem of Tsushima warm current in the Japan/East Sea: evidence from historical data and possible mechanisms. Prog. Oceanogr. 77(2-3), 127-145.
Torrence, C., Compo, G.P., 1998. A practical guide to wavelet analysis. Bull. Amer. Meteorol. Soc. 79, 61–78.
Torrence, C., and Webster, P. J., 1999. Interdecadal changes in the Enso-monsoon system. J. Clim. 12(8), 2679-2690.
Ullah, H., Nagelkerken, I., Goldenberg, S. U., Fordham, D. A., 2018. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS. Biol. 16(1), e2003446.
Ummenhofer, C. C., Biastoch, A., Böning, C. W., 2017. Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean dipole events. J. Clim. 30(5), 1739-1751.
Verdon, D. C., Franks, S. W., 2006. Long‐term behaviour of ENSO: Interactions with the PDO over the past 400 years inferred from paleoclimate records. Geophys. Res. Lett. 33(6).
Wang, S., Huang, J., He, Y., Guan, Y., 2014. Combined effects of the Pacific decadal oscillation and El Nino-southern oscillation on global land dry–wet changes. Sci Rep. 4, 6651.
Yasuda, I., Sugisaki, H., Watanabe, Y., MINOBE, S. S., Oozeki, Y., 1999. Interdecadal variations in Japanese sardine and ocean/climate. Fish Oceanogr. 8(1), 18-24.
Yasunari, T., Seki, Y., 1992. Role of the Asian monsoon on the interannual variability of the global climate system. J. Meteorol. Soc. Jpn. Ser. II, 70(1B), 177-189.
Yin, X., Zhou, L. T., 2019. An interdecadal change in the influence of the Central Pacific ENSO on the subsequent north tropical Atlantic spring SST variability around the mid-1980s. Clim. Dyn. 1-15.
Zhang, W., Leung, Y., Min, J., 2013. North Pacific Gyre Oscillation and the occurrence of western North Pacific tropical cyclones. Geophys. Res. Lett. 40(19), 5205-5211.
Zwolinski, J. P., Demer, D. A., 2013. Environmental and parental control of Pacific sardine (Sardinops sagax) recruitment. ICES J. Mar. Sci. 71(8), 2198-2207.
沈世傑,1993。臺灣魚類誌。國立臺灣大學動物系。
黃昭欽,2006。遠洋鮪漁業現況。臺灣區鮪魚公會,12pp。
許晃雄,周佳,吳宜昭,盧孟明,陳正達,陳永明, 2011。台灣氣候變遷的關鍵議題。 台灣醫學,16(5),459-470。
(此全文20210806後開放外部瀏覽)
電子全文
全文檔開放日期:2021/08/06
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *