字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:蔡鑫讚
研究生英文姓名:Tsai, Shin-Zan
中文論文名稱:非線性三維黏性造波水槽沖激行為之研究
英文論文名稱:Study on the Nonlinear Sloshing Behavior of Three-dimensional Viscous Numerical Wave Tank
指導教授姓名:陳永爲
口試委員中文姓名:教授︰張建仁
業界委員︰張君名
副教授︰陳永爲
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:輪機工程學系
學號:10666001
請選擇論文為:學術型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:60
中文關鍵詞:計算流體力學數值水槽造波水槽邊界造波源項造波二項流
英文關鍵字:Computational Fluid DynamicWave TankNumerical TankBoundary WaveSource WaveTwo-phase Flow
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
對於海洋及海岸工程之研究,波浪的預測與模擬對於自然環境評估極為重要。對於現場調查與真實環流水槽在建置上必須耗費相當大的人力及物力成本。因此,數值水槽的發展提供了解決此一困難問題之技術。本文利用數值造波技巧進行研究,分別針對邊界造波法與源項造波法應用於船舶實務上之研究與探討。
針對邊界造波法與源項造波法,本論文利用目前較廣泛應用的商業計算流力軟體,進行非線性波浪模擬研究。其理論方法是基於雷諾平均Navier-Stokes方程(RANS)為控制方程,根據有限體積法為基礎,利用紊流模型中k-epsilon模式進行求解 ; 針對自由液面效應,分別使用體積流率法(Volume of Fluid, VOF)進行自由液面追蹤,並且通過求解Navier-Stokes方程來實現二階stokes波。為了實現不同波譜,本文利用UDF(User Define Function)程式碼實現了對邊界造波與源項造波法所給定的各種波譜等參數值。首先,本文內容將藉由二維數值水槽驗證方法之準確性,進一步以邊界造波及源項造波法進行數值造波,兩種造波法之波高分別與解析解進行比較其誤差及耗散性。根據三維數值水槽之建構,將標準船舶型號(DTMB5415)進行阻力與波浪影響估算。因三維的耗散性相較於二維來的高,造成阻力結果有些微的誤差,但其結果皆在合理的誤差範圍中。由本文結果顯示本文的計算結果與流程有助於海事工程應用與設計。
For marine and coastal engineering research, wave prediction and simulation are extremely important for natural environmental assessment. It takes a lot of human resources and material costs for the on-site investigation and the real circulation sink to be built. Therefore, the development of numerical sinks provides a technology to solve this difficult problem. This paper uses numerical wave making to research. The research and discussion on the ship practice method for the boundary wave method and the source wave method.
Aiming at the boundary wave method and the source wave method, this thesis uses the widely software of Computational Fluid Dynamics to conduct nonlinear wave simulation research. The theoretical method is based on the Reynolds average Navier-Stokes equation (RANS) as the governing equation. Based on the finite volume method, the k-epsilon model is used to solve the turbulence model. For the free surface effect, the free surface tracking is performed using the Volume of Fluid (VOF) method, and the second-order Stokes wave is realized by solving the Navier-Stokes equation. In order to achieve different spectra, in order to realize different spectra, this paper uses UDF (User Defined Function) code to realize various spectral values such as the boundary wave and source wave method. First of all, the content of this paper will be verified by the method of two-dimensional numerical water tank verification. Further, the wave is generated by the boundary wave and the source wave method, and the wave heights of the two wave methods are compared with the analytical solution to calculate the error and dissipative property. According to the construction of the three-dimensional numerical water tank, the standard ship model (DTMB5415) is used to estimate the resistance and wave effect. Because the three-dimensional dissipative is higher than the two-dimensional, the resistance result is slightly wrong, but the results are all in a reasonable error range. The results of this paper show that the calculation results and process of this paper contribute to maritime engineering application and design.
中文摘要 I
Abstract II
致謝 IV
表目錄 VIII
圖目錄 IX
符號說明 XII
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 本文概述 3
第2章 理論基礎 4
2.1 基本控制方程組 4
2.1.1 質量守恆定律 4
2.1.2 動量守恆方程 4
2.2 紊流模型方程 5
2.2.1 紊流模型比較 6
2.2.2 k-ε紊流模型差異分析 9
2.3 自由液面重構方法 11
2.4 初始條件和邊界條件 13
2.5 計算求解模式 14
2.6 網格離散方法 17
第3章 二維波浪理論 19
3.1 造波理論 19
3.1.1 邊界造波 19
3.1.2 源項造波 20
3.2 消波方式 21
3.3 水槽模型 22
3.3.1 邊界式造波邊界條件 23
3.3.2 源項造波邊界條件 24
3.4 網格劃分方法 26
3.4.1 邊界式造波 26
3.4.2 源項式造波 28
3.5 數值結果與驗證解析 30
3.5.1 邊界造波數值結果 30
3.5.2 源項造波數值結果 33
3.6 小結 37
第4章 三維波浪及其應用 38
4.1 三維水槽應用 38
4.2 三維造波水槽模型 38
4.3 三維模型網格劃分 40
4.4 數值結果與驗證解析 41
4.5 船體結構與水槽建構邊界條件 45
4.5.1 船體結構 45
4.5.2 水槽模型邊界條件 47
4.6 網格 48
4.7 數值結果與驗證解析 49
4.7.1 船體阻力 49
4.7.2 船體波浪結果 50
第5章 結論與未來展望 55
5.1 結論與未來展望 55
參考文獻 56
[1] 陳皇鈞,“流體力學”, 曉園出版社, 1992。
[2] Tu J., Yeoh G. H., Liu C. Q., “計算流體力-從實踐中學習”, 東北大學出版社, 2009。
[3] Launder B. E., Spalding D. B., “Lectures in mathematical models of turbulence”, London, New York : Academic Press, 1972.
[4] 任志安,郝點,謝紅傑, “幾種湍流模型及其在FLUENT中的應用”, 化工裝備技術, Vol.30(2), 2009。
[5] 王福軍, “計算流體動力學分析-CFD軟件原理與應用”, 北京:清華大學出版社, 2004。
[6] 王福軍, “流體機械旋轉湍流計算模型研究進展”, 農業機械學報, Vol.47(2), 2016。
[7] Strelets M., “Detached eddy simulation of massively separated flows”, Russian Scientific Center "Applied Chemistry", St.-Petersburg, 39th AIAA Aerospace Sciences Meeting and Exhibit, 2001.
[8] Boussinesq J., “Essai sur la théorie des eaux courantes”, Paris:Imprimerie Nationale, 1877.
[9] Debar B., “Fundamentals of the KRAKEN code”, 1974.
[10] Hirt C.W., Nichols B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries”, Journal of Computational Physics, Vol.39(1), Pages 201-225, 1981。
[11] ANSYS FLUENT 教材, 安世亞太科技(北京)有限公司, 2004。
[12] Rhie C. M., Chow W. L., “A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation”, 3rd Joint Thermophysics, Fluids, Plasma and Heat Transfer Conference, Vol.21(11), 1983.
[13] Patankar S. V., Spalding D. B., “A calculation procedure for heat mass and momentum transfer in three-dimensional parabolic flows”, International Journal of Heat and Mass Transfer, Vol.15(10), Pages 1787-1806, 1972.
[14] Grilli S. T., Svendsen I. A., Subramanya R., “Breaking criterion and characteristics for solitary waves on slopes”, Journal of Waterway, Vol.123(3),1997.
[15] Grilli S. T., Watts P., “Modeling of waves generated by a moving submerged body. Applications to underwater landslides”, Engineering Analysis with Boundary Elements, Pages 645-656, 1999.
[16] Grilli S. T., Vogelmann S., Watts P., “Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides”, Engineering Analysis with Boundary Elements, Vol. 26(4), Pages 301-313, 2002.
[17] Ha T., Lin P., Cho Y.S., “Generation of 3D regular and irregular waves using Navier–Stokes equations model with an internal wave maker”, Coastal Engineering, Vol.76, Pages 55-67, 2013.
[18] 沈永明,唐軍,鄭永紅,邱大洪,“基於拋物型緩坡方程模擬近岸波流場”, 水利學報, Vol.37(3), 2006。
[19] Lee C., Cho Y. S., Yum K., “Internal generation of waves for extended Boussinesq equations”, Coastal Engineering, Vol.42(2), Pages 155-162, 2001.
[20] Suh K. D., Lee C., Park Y. H., Lee T. H., “Experimental verification of horizontal two-dimensional modified mild-slope equation model”, Coastal Engineering, Vol.44(1), Pages 1-12, 2001.
[21] Beji S., Nadaoka K., “A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth”, Ocean Engineering, Vol.23(8), Pages 691-704, 1996.

[22] Lin P., Liu P. L. F., “A numerical study of breaking waves in the surf zone”, Journal of Fluid Mechanics, Vol.359, Pages 239-264, 1998.
[23] Dong C. M., Huang C. J., “Generation and propagation of water waves in a two-dimensional numerical viscous wave flume”, Journal of Waterway, Vol.130(3), 2004.
[24] Lin, P., Liu P. L. F., “Internal wave-maker for Navier-Stokes equations models”, Journal of Waterway, Vol.125(4),1999.
[25] Lin P., Liu P. L. F., “A numerical study of breaking waves in the surf zone”, Journal of Fluid Mechanics, Vol.359, Pages 239-264,1998.
[26] 楊靖培, “基於CFX的波浪水槽數質模擬”, 2006。
[27] Cao H. J., Wan D. C., “Development of multidirectional nonlinear numerical wave tank by Naoe-FOAM-SJTU solver”, 2014.
[28] 曹洪建, 萬德成, “基于Naoe-FOAM-SJTU求解器建構三维数值波浪水池”, 上海交通大學船舶海洋與建築工程學院, 2013。
[29] 相昌盛, “三維數質波浪水槽的建構及其應用研究”, 2013。
[30] 董志, “ VOF方法的非線性波數值模擬及工程應用”,中山大學工學院, 2009。
[31] Stoehr L. P., “Development of CFD models for the purposes of exploring free surface wave phenomena”, Western Michigan University, 2013.
[32] 董志, 詹杰民, “基於VOF方法的數質波浪水槽以及造波、消波方法研究”,水動力學研究與進展, Vol.24(1),2009。
[33] Passandideh-Fard M., Moghiman M., Anbarsooz M., “Fully nonlinear viscous wave generation in numerical wave tanks”, Ocean Engineering, Vol.59, Pages 73-85, 2013.
[34] Liu H. W., “Numerical modelling of the propagation of ocean waves”, school of Wollongong, 2001.
[35] Pierson Jr W. J., Neumann G., James R. W., “Practical methods for observing and forecasting ocean waves by means of wave spectra and statistics”, Literary Licensing, LLC, 2012.
[36] Horko M., “CFD optimisation of an oscillating water column wave energy converter”, The University of Western Australia, 2007.
[37] 李宏偉, “數值水池造波方法研究”, 哈爾濱工程大學, 2009。
[38] Liu X., Tham L.G., Wang D., “Numerical simulation of second-order stokes based on wave-generation method of defining inlet boundary conditions”, Journal of Liaoning Technical University (Natural Science), Vol.29, Pages 107-111, 2010.
[39] Ling L. I., Lin Z.W., You Y. X., “The numerical wave flume of the viscous fluid based on the momentum source method”, Journal of Hydrodynamics, Vol.22, Pages 76-82, 2007.
[40] Reynders R., “Numerical study of the hydrodynamic behavior of a wave energy converter based on overtopping”, 2007-2008.
[41] Lee H., “Water wave generation with source function in the level set finite element framework”, Journal of Mechanical Science and Technology, Vol. 29(9), Pages 3699-3706, 2015.
[42] Chen Y. L., Hsiao S. C., “Generation of 3D water waves using mass source wavemaker applied to Navier–Stokes model”, Coastal Engineering, Vol.109, Pages 76-95,2016.
[43] 姜海, 郭海燕, 張林, 王偉, “基於FLUENT的內孤立波質量源造波方法”,海洋與湖沼, Vol.47(6), Pages 1101-1106, 2016。
[44] 田正林, 孫昭晨, 梁書秀, “淺水中質量源造波方法”, 水道港口, Vol.4, 2017。
[45] Shih T. H., Liou W. W., Shabbir A., Yang Z., Zhu J., “A new k-epsilon eddy-viscosity model for high Reynolds number turbulent flows”, Computers & Fluids, Vol.24(3), Pages 227-238, 1995.
[46] Reynolds W. C., “Fundamentals of turbulence for turbulence modeling and simulation”, 1987.
[47] Troch P., “Partim hydraulische randvoorwaarden”, 2005.
[48] 張君名, “黏性數值造波水槽之研究” ,第35屆海工研討會論文集, 2013。
[49] 馬娟,萬德成, “典型標準水面船型阻力和黏性流場的計算”,中國科學, Vol.41(2), Pages 178-193, 2011。
(此全文限內部瀏覽)
電子全文
全文檔開放日期:不公開
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *