字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:王郁芬
研究生英文姓名:Wang, Yu-Fen
中文論文名稱:鯖魚油的萃取及利用基質輔助雷射脫附游離飛行時間質譜法對其三酸甘油酯的分析
英文論文名稱:Extraction of Mackerel Oil and Analysis of its Triacylglycerol by Matrix-assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry
指導教授姓名:陳泰源
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學號:10632056
請選擇論文為:學術型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:63
中文關鍵詞:鯖魚油溶劑萃取法索式萃取法微波輔助萃取MALDI-TOF MS分析條件三酸甘油酯磷脂醯膽鹼
英文關鍵字:mackerel oilBligh and Dyersoxhlet extractionmicrowave assisted extractionMALDI-TOF MSanalysis conditiontriacylglycerolphosphatidylcholine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:67
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
魚油對人類健康具重要性,常製成膳食補充劑,但市場上仍有摻偽現象。魚油容易因外在環境氧化裂解而導致標示不符。鯖魚分布廣、廣受人類喜愛,可製作為膳食補充劑。基質輔助雷射脫附游離-飛行時間質譜法具有樣品製備簡單、質譜分析過程快速的優點。本篇研究探討鯖魚油的不同萃取條件,使用溶劑萃取法、索式萃取法和微波輔助萃取法。微波輔助萃取鯖魚用乙醇做溶劑在微波功率時間 300 W/30 sec (14.3%) 時相對於傳統溶劑萃取 (10.3%) 和索式萃取 (3%) 有更高萃取率,取得油與極性萃取物。探討 MALDI-TOF MS 分析鯖魚油三酸甘油酯 (TAG) 時之最佳條件,使用不同基質、雷射強度、樣品基質比例和點樣次數,發現使用 2,5-dihydroxybenzoic acid 做基質、雷射強度比例 90%、樣品基質比例 (1/1, v/v) 和點樣三次時,可達到最佳的分析效果。使用 MALDI-TOF MS 分析鯖魚油之 TAG 將其質譜數據與線上資料庫 LIPID MAPS Online Tools 比對後,鑑別出鯖魚油中的 25 種 TAG 分子和推測出其中的脂肪酸組成,有 m/z 799.7 (C46:1, MPP1)、801.7 (C46:0, MPP)、813.6 (C48:8)、815.6 (C48:7, LM1D6/M1M1E5)、817.6 (C48:6, LP1E5/LLn3Ln3)、819.6 (C48:5, MME5)、825.7 (C48:2, MPL2/PP1P1)、827.7 (C48:1, PPP1/MPO1)、829.7 (C48:0, PPP)、839.6 (C50:9)、841.6 (C50:8, M1M1D6/LLn3E5)、843.6 (C50:7, LP1D6/M1P1E5)、845.7 (C50:6, MMD6/MP1E5)、849.7 (C50:4, ML2L2)、851.7 (C50:3, PPLn3/PP1L2)、853.7 (C50:2, PPL2/PP1O1)、867.6 (C52:9, LLn3D6/M1Ln3E5)、869.7 (C52:8, M1P1D6/MLn3E5)、875.7 (C52:5, PPE5/PL2Ln3)、877.7 (C52:4, PL2L2)、879.7 (C52:3, PO1L2)、889.6 (C54:12)、891.6 (C54:11, LE5D6/M1E5E5)、913.6 (C54:0)、915.6 (C56:13)。將其與鯡魚油和鱈魚肝油 之 TAG 對比,m/z 813.6、815.6、839.6、843.6、889.6、891.6 未存在於其中,m/z 799.7、825.7、827.7、829.7、845.7、849.7、853.7、869.7、875.7、877.7、879.7 為共同存在於鯡魚油和鱈魚肝油中。將其與大豆油、葵花油等植物油中共有的 TAG 對比具有顯著差異性。顯示測得之鯖魚油 TAG 分子對於鯖魚相關產品或研究做物種鑑定和鑑別在魚油或魚油飼料中加入較低價植物油的摻偽產品之潛力。同時,鯖魚油經 MALDI-TOF MS 分析後可測得其中的磷脂醯膽鹼 (PC),分別是 m/z 803.6、805.6、831.7、833.7,分子組成依序為 PC(18:2/20:5)、PC(16:0/22:6)、PC(18:1/22:6)、PC(20:1/22:6)。

Fish oil is used as a dietary supplement for human health, but it has often been adulterated on the market for years. Fish oil is easily degraded by the environmental factors, leading to mislabel or insecurity. Mackerel is widely distributed and its oil has been made into dietary supplements. Matrix-assisted laser desorption-time-of-flight mass spectrometry (MALDI-TOF MS) has the advantage of easy sample preparation and rapid mass spectrometry analysis. This study explores the optimum extraction conditions for mackerel oil using Bligh and Dyer, soxhlet extraction and microwave-assisted extraction. It was found that the use of microwave-assisted extraction of mackerel oil at a microwave power of 300 W for 30 sec (14.3%) has a higher extraction rate than solvent extraction (10.3%) and soxhlet extraction (3%). To explore conditions for the analysis of triacylglycerides (TAG) of mackerel oil by MALDI-TOF MS, using different matrix, laser intensity, sample to matrix ratio and deposited times. The optimum conditions are 2,5-dihydroxybenzoic acid as matrix and laser energy 90%, the sample to matrix ratio (1/1, v/v) and deposited three times, according to peak abundance and profile clarity in the spectrum. MALDI-TOF MS analysis on TAG is matched with the online database LIPID MAPS Online Tools to identify TAG in mackerel oil. The main TAG molecules and the assigned fatty acid compositions in mackerel oil are identified as 25 TAGs: m/z 799.7 (C46:1, MPP1), 801.7 (C46:0, MPP), 813.6 (C48:8), 815.6 (C48:7, LM1D6/M1M1E5), 817.6 (C48:6, LP1E5/LLn3Ln3), 819.6 (C48:5, MME5), 825.7 (C48:2, MPL2/PP1P1), 827.7 (C48:1, PPP1/MPO1), 829.7 (C48:0, PPP), 839.6 (C50:9), 841.6 (C50:8, M1M1D6/LLn3E5), 843.6 (C50:7, LP1D6/M1P1E5), 845.7 (C50:6, MMD6/MP1E5), 849.7 (C50:4, ML2L2), 851.7 (C50:3, PPLn3/PP1L2), 853.7 (C50:2, PPL2/PP1O1), 867.6 (C52:9, LLn3D6/M1Ln3E5), 869.7 (C52:8, M1P1D6/MLn3E5), 875.7 (C52:5, PPE5/PL2Ln3), 877.7 (C52:4, PL2L2), 879.7 (C52:3, PO1L2), 889.6 (C54:12), 891.6 (C54:11, LE5D6/M1E5E5), 913.6 (C54:0), 915.6 (C56:13).When comparing with the TAG of menhaden and cod liver oils, m/z 813.6, 815.6, 839.6, 843.6, 889.6, 891.6 are unique for mackerel oil, and m/z 799.7, 825.7, 827.7, 829.7, 845.7, 849.7, 853.7, 869.7, 875.7, 877.7, 879.7 are co-present in menhaden and cod liver oils. The TAG shared in vegetable oils of soybean oil and sunflower oil are apparently different from that of the mackerel oil . The TAG molecule of mackerel oil have potential power of discrimination for species identification and determination of adulterated products with lower priced vegetable oils in fish oil or fish oil feed. At the same time, the phosphatidylcholine (PC) of mackerel oil was analyzed by MALDI-TOF MS, which were m/z 803.6, 805.6, 831.7, 833.7, and the molecular composition was PC (18:2/20:5), PC (16:0/22:6), PC (18:1/22:6), PC (20:1/22:6).
目錄
第一章、前言 1
第二章、文獻回顧 2
第一節、魚油 2
1.1 簡介 2
1.2 魚油氧化性導致補充劑標示不符之影響、 2
1.3 魚油的摻假 3
1.4 魚油萃取方法 4
第二節、TAG 分析 6
2.1 食用油 TAG 種類分析 6
2.2 魚油的 TAG 種類分析 7
第三節、MALDI-TOF-MS 9
3.1 簡介 9
3.2 基質選擇和基質與分析物比例的影響 9
3.3 加成物 (adduct) 的影響 9
3.4 應用性 10
3.5 在食品油脂分析上的應用 10
第三章、實驗架構 13
第一節、魚油萃取 13
第二節、探討鯖魚油 TAG 的 MALDI-TOF-MS 之分析條件與鑑定 14
第四章、材料方法 15
第一節、實驗材料 15
第二節、實驗方法 17
2.1 鯖魚取肉前處理 17
2.2 萃油 17
2.3 油脂氧化程度測試 18
2.4 探討鯖魚油之 MALDI-TOF-MS 最適分析條件 19
2.5 MALDI-TOF-MS 之鯖魚油 TAG 種類分析鑑定 20
第五章、結果與討論 22
第一節、探討鯖魚油之不同萃取方式 22
1.1 溶劑萃取法和索式萃取法 22
1.2 微波輔助萃取法 22
第二節、探討鯖魚油之 MALDI-TOF-MS 分析條件 24
2.1 雷射強度與基質種類選擇 24
2.2 樣品基質比例選擇 25
第三節、MALDI-TOF-MS 之鯖魚油 TAG 定性分析 26
3.1 基質 (DHB) 的 MALDI-TOF-MS 訊號 26
3.2 Triolein 標準品 26
3.3 TAG 分子定性分析 26
第四節、MALDI-TOF-MS 之鯖魚油磷脂醯膽鹼 30
第六章、結論 32
第七章、參考文獻 33
表 38
圖 48
附錄 60


全球法規資料庫 (2007)。魚油健康食品規格標準。2018年8月21日,取自http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=L0040076。
臺灣質譜學會 (2015)。質譜分析技術原理與應用。新北市,全華。
臺灣漁業資料庫 (2019)。白腹鯖。2019年5月4日,取自http://fishdb.sinica.edu.tw/chi/species.php?id=382494。
侯佩妤 (2017)。薏仁中薏仁酯、油酸及亞麻油酸之萃取及分析。國立臺灣海洋大學食品科學系碩士論文。基隆,臺灣。
桂敏珊 (2017)。基質輔助雷射脫附游離飛行時間質譜分析食用油中三酸甘油酯。國立臺灣大學食品科學系碩士論文。臺北,臺灣。
彰化縣衛生局 (2015)。彰化縣衛生局抽驗市售魚油成分,8成不合格。2018年8月21日,取自 http://www.chshb.gov.tw/news/?mode=data&id=10146。
Abdullah, S., Mudalip, S. A., Shaarani, S. M., & Pi, N. C. (2010). Ultrasonic extraction of oil from Monopterus albus: Effects of different ultrasonic power, solvent volume and sonication time. Journal of Applied Sciences(Faisalabad), 10(21), 2713-2716.
Adeniyi, O. D., & Bawa, A. A. (2006). Mackerel (Scomber scrombrus) oil extraction and evaluation as raw materials for industrial utilization. Leonardo Journal of Sciences, 8, 33-42.
Afolabi, H. K., Mudalip, S. K. A., & Alara, O. R. (2018). Microwave-assisted extraction and characterization of fatty acid from eel fish (Monopterus albus). Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 465-470.
Albert, B. B., Derraik, J. G., Cameron-Smith, D., Hofman, P. L., Tumanov, S., Villas-Boas, S. G., & Cutfield, W. S. (2015). Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA. Scientific Reports, 5, 7928.
AOAC (1995). Official methods of analysis of AOAC international, Vol. 2 (16th ed.). Arlington, VA: AOAC.
AOCS (1996). Official Methods and Recommended Practices of the American Oil Chemists' Society: Physical and Chemical Characteristics of Oils, Fats and Waxes. AOCS Press.
Ayorinde, F. O., Keith Jr, Q. L., & Wan, L. W. (1999). Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry of cod liver oil and the effect of analyte/matrix concentration on signal intensities. Rapid Communications in Mass Spectrometry, 13(17), 1762-1769.
Bail, S., Stuebiger, G., Unterweger, H., Buchbauer, G., & Krist, S. (2009). Characterization of volatile compounds and triacylglycerol profiles of nut oils using SPME‐GC‐MS and MALDI‐TOF‐MS. European Journal of Lipid Science and Technology, 111(2), 170-182.
Beccaria, M., Costa, R., Sullini, G., Grasso, E., Cacciola, F., Dugo, P., & Mondello, L. (2015). Determination of the triacylglycerol fraction in fish oil by comprehensive liquid chromatography techniques with the support of gas chromatography and mass spectrometry data. Analytical and Bioanalytical Chemistry, 407(17), 5211-5225.
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917.
Calvano, C. D., Zambonin, C. G., Foti, C., Cassano, N., & Vena, G. A. (2008). A matrix assisted laser desorption ionization time-of-flight mass spectrometry investigation to assess the composition of cod liver oil based products which displayed a different in vivo allergenic power. Food and Chemical Toxicology, 46(12), 3580-3585.Chapagain, B. P., & Wiesman, Z. (2009). MALDI-TOF-MS fingerprinting of triacylglycerols (TAGs) in olive oils produced in the Israeli Negev desert. Journal of Agricultural and Food Chemistry, 57(4), 1135-1142.
Cao, G., Ruan, D., Chen, Z., Hong, Y., & Cai, Z. (2017). Recent developments and applications of mass spectrometry for the quality and safety assessment of cooking oil. TrAC Trends in Analytical Chemistry, 96, 201-211.
Celik, M. (2008). Seasonal changes in the proximate chemical compositions and fatty acids of chub mackerel (Scomber japonicus) and horse mackerel (Trachurus trachurus) from the north eastern Mediterranean Sea. International Journal of Food Science and Technology, 43(5), 933-938.
Cozzolino, R., & De Giulio, B. (2011). Application of ESI and MALDI‐TOF MS for triacylglycerols analysis in edible oils. European Journal of Lipid Science and Technology, 113(2), 160-167.
Danielewicz, M. A., Anderson, L. A., & Franz, A. K. (2011). Triacylglycerol profiling of marine microalgae by mass spectrometry. Journal of lipid research, 52(11), 2101-2108.
Dugo, P., Beccaria, M., Fawzy, N., Donato, P., Cacciola, F., & Mondello, L. (2012). Mass spectrometric elucidation of triacylglycerol content of Brevoortia tyrannus (menhaden) oil using non-aqueous reversed-phase liquid chromatography under ultra high pressure conditions. Journal of Chromatography A, 1259, 227-236.
Fahy, E., Sud, M., Cotter, D., & Subramaniam, S. (2007). LIPID MAPS online tools for lipid research. Nucleic Acids Research, 35, W606-W612.
Fasciotti, M., & Netto, A. D. P. (2010). Optimization and application of methods of triacylglycerol evaluation for characterization of olive oil adulteration by soybean oil with HPLC–APCI-MS–MS. Talanta, 81(3), 1116-1125.
Firestone, D. (2013). Physical and Chemical Characteristics of Oils, Fats, and Waxes (p. 56). Urbana, IL: AOCS press.
Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226(1), 497-509.
Galuch, M. B., Carbonera, F., Magon, T. F., Silveira, R. D., dos Santos, P. D., Pizzo, J. S., & Visentainer, J. V. (2018). Quality assessment of omega-3 supplements available in the Brazilian market. Journal of the Brazilian Chemical Society, 29(3), 631-638.
Gambang, A. C., Rajali, H. B., & Awang, D. A. U. D. (2003). Overview of biology and exploitation of the small pelagic fish resources of the EEZ of Sarawak, Malaysia. Fisheries Research Institute.
Ivanovs, K., & Blumberga, D. (2017). Extraction of fish oil using green extraction methods: a short review. Energy Procedia, 128, 477-483.
Jergović, A. M., Peršurić, Ž., Saftić, L., & Pavelić, S. K. (2017). Evaluation of MALDI-TOF-MS technology in olive oil adulteration. Journal of the American Oil Chemists' Society, 94(6), 749-757.
Hajduk, J., Matysiak, J., & Kokot, Z. J. (2016). Challenges in biomarker discovery with MALDI-TOF MS. Clinica Chimica Acta, 458, 84-98.
Kofroňová, E., Cvačka, J., Vrkoslav, V., Hanus, R., Jiroš, P., Kindl, J. & Valterová, I. (2009). A comparison of HPLC/APCI-MS and MALDI-MS for characterising triacylglycerols in insects: Species-specific composition of lipids in the fat bodies of bumblebee males. Journal of Chromatography B, 877(30), 3878-3884.
Linder, M., Belhaj, N., Sautot, P., & Tehrany, E. A. (2010). From Krill to Whale: an overview of marine fatty acids and lipid compositions. Oléagineux, Corps gras, Lipides, 17(4), 194-204.
Lingzhi, X., Fei, G., Zengling, Y., Lujia, H., & Xian, L. (2016). Discriminant analysis of terrestrial animal fat and oil adulteration in fish oil by infrared spectroscopy. International Journal of Agricultural and Biological Engineering, 9(3), 179-185.
Liu, P., Kerr, B. J., Chen, C., Weber, T. E., Johnston, L. J., & Shurson, G. C. (2014). Influence of thermally oxidized vegetable oils and animal fats on energy and nutrient digestibility in young pigs. Journal of Animal Science, 92(7), 2980-2986.
Nomura, F. (2015). Proteome-based bacterial identification using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF-MS): A revolutionary shift in clinical diagnostic microbiology. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1854(6), 528-537.
Ozogul, Y., Ucar, Y., Takadaş, F., Durmus, M., Köşker, A. R., & Polat, A. (2018). Comparision of Green and Conventional Extraction Methods on Lipid Yield and Fatty Acid Profiles of Fish Species. European Journal of Lipid Science and Technology, 120(12), 1800107.
Picariello, G., Sacchi, R., & Addeo, F. (2007). One‐step characterization of triacylglycerols from animal fat by MALDI‐TOF MS. European Journal of Lipid Science and Technology, 109(5), 511-524.
Picariello, G., Paduano, A., Sacchi, R., & Addeo, F. (2009). MALDI-TOF mass spectrometry profiling of polar and nonpolar fractions in heated vegetable oils. Journal of Agricultural and Food Chemistry, 57(12), 5391-5400.
Ramaley, L., Herrera, L. C., & Melanson, J. E. (2015). Quantitative Analysis of TAG in Oils Using Lithium Cationization and Direct‐Infusion ESI Tandem Mass Spectrometry. Journal of the American Oil Chemists' Society, 92(3), 323-334.
Ramalhosa, M. J., Paíga, P., Morais, S., Alves, M. R., Delerue-Matos, C., & Oliveira, M. B. P. P. (2012). Lipid content of frozen fish: Comparison of different extraction methods and variability during freezing storage. Food Chemistry, 131(1), 328-336.
Riediger, N. D., Othman, R. A., Suh, M., & Moghadasian, M. H. (2009). A systemic review of the roles of n-3 fatty acids in health and disease. Journal of the American Dietetic Association, 109(4), 668-679.
Rubio-Rodríguez, N., Sara, M., Beltrán, S., Jaime, I., Sanz, M. T., & Rovira, J. (2012). Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. Journal of Food Engineering, 109(2), 238-248.
Schiller, J., Süß, R., Arnhold, J., Fuchs, B., Lessig, J., Müller, M. & Arnold, K. (2004). Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Progress in Lipid Research, 43(5), 449-488.
Solaesa, Á. G., Bucio, S. L., Sanz, M. T., Beltrán, S., & Rebolleda, S. (2014). Characterization of triacylglycerol composition of fish oils by using chromatographic techniques. Journal of Oleo Science, 63(5), 449-460.
Thiex, N. J., Anderson, S., & Gildemeister, B. (2003). Crude fat, diethyl ether extraction, in feed, cereal grain, and forage (Randall/Soxtec/submersion method): collaborative study. Journal of AOAC International, 86(5), 888-898.
Vasantha Rupasinghe, H. P., Kathirvel, P., & Huber, G. M. (2011). Ultrasonication-assisted solvent extraction of quercetin glycosides from ‘Idared’apple peels. Molecules, 16(12), 9783-9791.
Winther, B., Hoem, N., Berge, K., & Reubsaet, L. (2011). Elucidation of phosphatidylcholine composition in krill oil extracted from Euphausia superba. Lipids, 46(1), 25-36.
Young, I. S., & McEneny, J. (2001). Lipoprotein oxidation and atherosclerosis. Biochemical Society Transactions, 29(2), 358–362.
Zeng, Y. X., Araujo, P., Du, Z. Y., Nguyen, T. T., Frøyland, L., & Grung, B. (2010). Elucidation of triacylglycerols in cod liver oil by liquid chromatography electrospray tandem ion-trap mass spectrometry. Talanta, 82(4), 1261-1270.
Zhang, Q., Saleh, A. S., Chen, J., & Shen, Q. (2012). Chemical alterations taken place during deep-fat frying based on certain reaction products: a review. Chemistry and Physics of Lipids, 165(6), 662-681.
Zhang, Q., Lin, S., Li, J., Liu, Y., Qin, W., & Shen, Q. (2016). Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the analysis of compounds in deep-fat frying oil. Food Analytical Methods, 9(8), 2352-2363.

(此全文20240812後開放外部瀏覽)
電子全文
全文檔開放日期:2024/08/12
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *