字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:陳人禾
研究生英文姓名:Chen, Jen-Ho
中文論文名稱:台灣東北海域頭足類砷之蓄積
英文論文名稱:The arsenic accumulation on cephalopods surrounding northeastern coast of Taiwan
指導教授姓名:鄭學淵
口試委員中文姓名:教授︰劉秉忠
教授︰賴弘智
教授︰鄭文騰
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學號:10631008
請選擇論文為:學術型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:59
中文關鍵詞:劍尖槍鎖管虎斑烏賊穩定同位素
英文關鍵字:Uroteuthis edulisSepia pharaonisarsenictissue accumulationstable isotope
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
採樣體長11.5-32.2 cm的劍尖槍鎖管(Uroteuthis edulis)、體長7.5-16.0 cm的野生虎斑烏賊(Sepia pharaonis)及體長8.3-17.0 cm的養殖虎斑烏賊(Sepia pharaonis),作為實驗對象進行碳氮同位素比、總砷分析和無機砷分離,並探討不同物種及環境中頭足類體內同位素與砷濃度;體長與體內總砷濃度的關係;以及不同物種各組織無機砷分布。
使用了兩種分析總砷濃度的方法,包括石墨式原子吸收光譜儀、氫化物產生法火焰式原子吸收光譜儀,取三種頭足類的肝、鰓、肌肉、胃及鞘組織進行砷分析,結果發現除了養殖虎斑烏賊和劍尖槍鎖管的胃,其他組織的總砷濃度皆與體長呈現顯著正相關(P < 0.05),隨機取同體型做比較後發現,野生的虎斑烏賊在各組織的總砷濃度皆高於劍尖槍鎖管,而劍尖槍鎖管各組織總砷濃度又高於養殖虎斑烏賊。
穩定同位素分析中,劍尖槍鎖管和虎斑烏賊的δ13C和δ15N有顯著差異(p < 0.05),養殖和野生的虎斑烏賊δ13C和δ15N有顯著差異(p < 0.05),虎斑烏賊δ13C和肌肉中總砷濃度有顯著正相關(p < 0.05),劍尖槍鎖管δ15N和總砷濃度有顯著正相關(p < 0.05),利用δ15N換算出營養位階,養殖虎斑烏賊、野生虎斑烏賊及劍尖槍鎖管之營養位階分別為4.62、4.30及3.81,營養位階受到體型及物種所影響。
劍尖槍鎖管、野生烏賊及養殖烏賊中的肌肉中無機砷濃度分別為0.89、0.61及0.58 μg/g,占總砷比例皆低於10%,與體長沒有相關性(p > 0.05)。
Uroteuthis edulis (7.5-16.0 cm), wild Sepia pharaonis (11.5-32.2 cm) and aquaculture Sepia pharaonis (8.3-17.0 cm) were the experience sampled. I used carbon and nitrogen stable, isotope ratios, total arsenic analysis, and inorganic arsenic isolation to investigate the isotope and arsenic content in tissues. I discussed the relationship between cephalopods and arsenic content in different body lengths and environment, and the distribution of inorganic arsenic in tissues to different species.
Two methods were used to analyze total arsenic content, including graphite furnace atomic absorption spectrometry and hydride generation flame atomic absorption spectrometry. I took arsenic analysis of the liver, gill, muscle, stomach and shell of the three individuals. It was found that in addition to the aquaculture sepia and squid in the stomach, the total arsenic content and body length of other tissues showed the significant regression (P < 0.05). I took the same type of body length randomly and compared it, which was found that the total arsenic content of the wild sepia in all tissues. Wild sepias contain the highest total arsenic content. On the other hand, total arsenic content of squids are higher than aquaculture sepias.
In the stable isotope analysis, the δ13C and δ15N of squid and sepia were significantly different (p < 0.05), and there was a significant difference in δ13C and δ15N between wild and aquaculture sepia (p < 0.05).There was a significant positive correlation between δ13C and muscle total arsenic content in the sepia (p < 0.05).There was a significant positive correlation between δ15N and muscle total arsenic content in the squid (p < 0.05).I used of δ15N calculated the trophic level. The consequence showed that aquaculture Sepia pharaonis is the highest (4.62). Wild Sepia pharaonis (4.30) is next to it, and the Uroteuthis edulis (3.81) is the last. Trophic levels are affected by size and species.
The content of inorganic arsenic in the muscle of the U. edulis, wild S. pharaonis and aquaculture S. pharaonis were 0.89, 0.61 and 0.58 μg/g respectively. The ratio of inorganic arsenic to total arsenic in muscle was less than 10%, and was not found to be correlated with body length(p > 0.05).
中文摘要………………………………………………………………………I
Abstract……………………………………………………………………II
謝辭………………………………………………………………………………III
目次………………………………………………………………………………IV
圖次………………………………………………………………………………V
表次………………………………………………………………………………VII
第一章 緒言…………………………………………………………1
第二章 前言…………………………………………………………3
第三章 材料方法………………………………………………9
第四章 結果…………………………………………………………13
第五章 討論…………………………………………………………17
第六章 結論…………………………………………………………23
表……………………………………………………………………………………24
圖……………………………………………………………………………………29
參考文獻………………………………………………………………………51
Adams, M. A., Bolger, P. M. and Gunderson, E. L. (1994) Dietary intake and hazards of arsenic. In: Chappell WR, Abernathy CO, Cothern CR, editors. Arsenic: exposure and health. Science and technology letters. Northwood, UK. p. 41-49.
Anninou, P. and Cave, R. R. (2009) How conservative is arsenic in coastal marine environments? A study in Irish coastal waters. Estuarine. Coastal. Shelf. Sci. 82, 515-524.
Antaman, K. H. (2001) Introduction: the history of arsenic trioxide in cancer therapy. Oncologist, 2, 1-2.
Asante, K. A., Agusa, T., Kubota, R., Mochizuki, H., Ramu, K., Nishida, S., Ohta, S., Yeh, H. M., Subramanian, A. and Tanabe, S. (2010) Trace elements and stable isotope ratios (δ13C and δ15N) in fish from deep-waters of the Sulu Sea and the Celebes Sea. Mar. Pollut. Bull. 60, 1560-1570.
Australia New Zealand Food Standards Code (2013) Standard 1.4.1 - Contaminants and natural toxicants. Fed. Reg. Leg. Ins.
Bebianno, M. J., Géret, F. and Hoarau, P. (2004) Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers, 9(4-5), 305-330.
Bond, A. L. (2010) Relationships between stable isotopes and metal contaminants in feathers are spurious and biologically uninformative. Environ. Pollut. 158, 1182-1184.
Borak, J. and Hosgood, H. D. (2007) Seafood arsenic: implications for human risk assessment. Regul. Toxicol. Pharmacol. 47, 204-212.
Boyle, P. R. and Boletzky, S. V. (1996) Celphalopod populations:definition and dynamics. Phil. Trans. R. Soc. Lond. B. 51, 985-1002.
Boyle, P. R. and Boletzky, S. V. (1996) Cephalopods:Ecology and Fisheries. Wiley, USA. 464pp.
Braman, R. S., Johnson, D. L., Foreback, C. C., Ammons, J. M. and Bricker, J. L. (1977) Separation and determination of nanogram amounts of inorganic arsenic and methylarsenic compounds. Analy. Chem. 49, 621-625.
Buat-Menard, P., Peterson, P. J., Peterson, P. J., Havas, M. and Steinnes, E. D. T. (1987) Group Report: Arsenic. Wiley, USA. p. 43-48.
Bustamante, P., González, A. F., Rocha, F., Miramand, P. and Guerra, A. (2008) Metal and metalloid concentrations in the giant squid Architeuthis dux from Iberian waters. Mar. Environ. Res. 66, 278-287.
Bustamante, P., Teyssie, J. L., Danis, B., Fowler, S. W., Miramand, F. and Cotret, O. (2004) Uptake, transfer and distribution of silver and cobalt in tissues of the common cuttlefish Sepia officinalis at different stages of its life cycle. Mar. Ecol. Prog. Ser. 269, 185-195.
Bustamante, P., Teyssié, J. L., Fowler, S. W., Cotret, O. B., Danis, P. and Warnau, M. (2002) Biokinetics of zinc and cadmium accumulation and depuration at different stages in the life cycle of the cuttlefish Sepia officinalis. Mar. Ecol. Prog. Ser. 231, 167-177.
Cabana, G. and Rasmussen, J. B. (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature, 372, 255-257.
Caut, S., Angulo, E. and Courchamp, F. (2009) Variation in discrimination factor: the effect of diet isotopic values and applications for diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 46, 443-453.
Choi, H., Park, S., Kim, D. and Kim, M. (2011) Determination of 6 arsenic species present in seaweed by solvent extraction, clean-up, and LC-ICP/MS. Food. Sci. Biotechnol. 20, 39-44.
Clarke, M. R. (1996) The role of cephaloplds in the world,s oceans. Phil. Trans. Biol. Sci. 351, 977-1112.
Clayton, D. (2003) Handbook of isotopes in the cosmos: Hydroden to gallium. Cambridge University Press. 91pp.
Clowes, L. A. and Francesconi, K. A. (2004) Current Perspectives in arsenic environmental and biological research. comp. Biochem. Phys. C. 137, 35-42.
Collins, M. A. and Pierce, G. J. (1996) Size selectivity in the diet of Loligo forbesi(Cephalopoda: Loliginidae). J. Mar. Biol. Assoc. 76, 1081-1090.
Crecelius, E. A., Bothner, M. H. and Carpenter, R. (1975) Geochemistries of arsenic, amtimony, mercury and related element sediments of Puget Sound. Environ. Sci. Techno. 9, 325-333.
DeNiro, M. L. and Epstein, S. (1978) Influence of diet on the distribution of carbon isotopes in animal. Geo. Cos. Acta. 42, 495-506.
DeNiro, M. L. and Epstein, S. (1981) Influence of diet on the distribution of nitrogen isotopes in animal. Geo. Cos. Acta. 45, 341-351.
Domingues, P. M., Sykes, A. and Andrade, J. P. (2001) The use of Artemia salina or mysids as food source for hatchlings of the cuttlefish (Sepia officinalis ): effects on growth and survival throughout the life cycle. Aquac. Int. 9, 319-331.
Duarte, F. A., Pereira, J. S., Barin, J. S., Mesko, M. F. and Dressler, V. L. (2009) Seafood digestion by microwave induced combustion for arsenic determination by atomic spectrometry techniques with hydride generation. Anal. At. Spectrom .24, 224-227.
Edmonds, J. and Francesconi, K. (2003) Organoarsenic compounds in the marine environment,organometallic. Compounds in the Environment. pp. 195-222.
Edmonds, J. S. and Francesconi, K. (1993) Arsenic in seafoods: human health aspects and regulations. Mar. Pollut. Bull. 26(12), 665-674.
Edmonds, J. S. and Francesconi, K. A. (1993) Arsenic in seafoods human health aspects and regulations. Mar. Pollut. Bull. 26 (12), 665-674.
Filipovic, V. and Raspor, B. (1988) Metallothionein and metal levels in cytosol of liver, kidney and brain relation to growth parameters of Mullus surmuletus and Liza aurata from the eastern Adriatic Sea. Water. Res. 13, 3253-3262.
Fontugne, M. R. and Duplessy, J. C. (1981) Organiccarbon isotopic fractionation by marine plankton in the temperature-range-1 to 31-degrees C. Oceanologica. Acta. 4(1), 85-90.
Francesconi, K. A. (2010) Arsenic species in seafood: origin and human health implications. Pure. Appl. Chem. 82, 373–381.
Francesconi, K. A. and Edmond, J. S. (1998) Behaviour of arsenic on the continental shelf off the Gironde estuary: Role of phytoplankton in vertical fluxes during spring bloom conditions. Croat. Chem. Acta. 71, 343-359.
Francesconi, K. A. and Edmonds, J. S. (1993) Arsenic in the sea, Oceanography and marine biology. An Annual Review. UCL Press, London. p. 111-151.
Francesconi, K. A. and Edmonds, J. S. (1997) Arsenic and marine organisms. Adv. Inorg. Chem. 44, 147-189.
Francesconi, K. A. and Edmonds, J. S. (1998) Arsenic species in marine samples. Croat. Chem. Acta. 71, 343-359.
Fry, B. (2006) Stable isotope ecology. Springer New York. 308pp.
Fry, B. and C. Arnold. (1982) Rapid 13C/12C turnover during growth of brown shrimp(Penaeus aztecus). Oecologia, 54, 200-204.
Gasalla, M. A. and Soares, L. S. H. (2001) Comenta´rios sobre os estudostro´ ficos de peixes marinhos no processo histo´ rico da cieˆncia pesqueirae modelagem ecolo´ gica. Boletim do Instituto de Pesca. 27, 243-259.
Groning, M. (2004) Inerational stable isotope reference materials. Handbook of Stable Isotope Anal. Tech. 1, 874-960.
Han, B. C., Jeng, W. L., Chen, R. Y., Fang, G. T., Hung, T. C. and Tseng, R. J. (1998) Estimation of target hazard quotients and potential health risk for metals by consumption of seafood in Taiwan. Arch. Environ. Contam. Toxicol. 35, 711-720.
Hanlon, R. T. and Messenger, J. B. (1996) Cephalopod behaviour. University Press, Cambridge. 232pp.
Harper, M. and Haswell, S. J. (1988) A comparison of copper, lead and arsenic extraction from polluted and unpolluted soils. Environ. Technol. Lett. 9, 1271-1280.
Heath, A. G. (2012) Water pollution and fish physiology. Second edition, Boca Raton, Fla. 384pp.
Hobson, K. A. (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia, 120(3), 314-326.
Hoekstra, P. F., O’Hara, T. M., Fisk, A. T., Borga, K., Solomon, K. R. and Muir, D. C. G. (2003). Trophic transfer of persistent organochlorine contaminants (OCs) within an in molluscs. Mar. Biol. Lett. 3, 187-201.
Hoekstra, P. F., O'Hara, T. M. and Fisk, A. T. (2003) Trophic transfer of persistent organochlorine contaminants (OCs) within an Arctic marine food web from the southern Beaufort–Chukchi Seas. Environ. Pollut. 124, 509-522.
Hong, S., Khim, J. S., Park, J., Son, H. S., Choi, S. D., Choi, K., Ryu, J. and Kim, C. Y. (2014) Species and tissue specific bioaccumulation of arsenicals in various aquatic organisms from a highly industrialized area in the Pohang City, Korea. Environ. Pollut. 192, 27-35.
Howard, A. G., Apte, S. C., Comber, S. D. W. and Morris, R. J. (1988) Biogeochemical control of the summer distribution and speciation of arsenic in the Tamar estuary. Estuarine. Coastal. Shelf. Sci. 27, 43-427.
Kaise, T., Hanaoka, K., Tagawa, S. and Hirayamas, T. (1988) Distribution of inorganic arsenic and methylated arsenic in marine organisms. Appl. Organomet. Chem. 2, 539-546.
Khromov, D. N., Lu, C. C., Guerra, A., Dong, Z. and Bolrtzky, S. V. (1998) A synopsis of Spiidae outsid Australian waters (Cephalopoda:Seioidea). System. Biogeo. Cephalopods. Smith Contri. Zool. 586, 77-158.
Kiljiunen, M., Grey, J., Sinisalo, T., Harrod, C., Immonen, H. and Jones, R. I. (2006) A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J. Appl. Ecol. 43, 1213-1222.
Kim, G. B., Kang, M. R. and Kim, J. W. (2008) Specific accumulation of heavy metals in squid collected from offshore Korean waters: preliminary results for offshore biomonitoring and food safety assessment. Fish. Sci. 74, 882-888.
Kirby, J., Maher, W., Charriton, A and Krikowa, F. (2002) Arsenic concentrations and speciation in a temperate mangrove ecosystem. Australia. Appl. Organometal. Chem. 16, 192-201.
Kojadinovica, J., Jackson, C. H., Cherel, Y., Jackson, G. D. and Bustamante, P. (2011) Multielemental concentrations in the tissues of the oceanic squid Todarodes filippovae from Tasmania and the southern Indian Ocean. Ecotoxicol. Environ. Saf. 74, 1238-1249.
Kojima, C., Sakurai, T., Ochiai, M., Kumata, H., Qu, W., Waalkes, M. P. and Fujiwara, K. (2002) Cytotoxicological aspects of the organic arsenic compound arsenobetaine in marine animals. Appl. Organometal. Chem.16, 421-426.
Koueta, N. and Boucaud-Camou, E. (2003) Combined effects of photoperiod and feeding frequency on survival and growth of juvenile cuttlefish Sepia officinalis in experimental rearing. J. Exp. Mar. Bio. Ecol . 296, 215-226.
Lee, P. G. (1994) Nutrition of cephalopods: fueling the system. Mar. Freshw. Behav. Physiol. 25, 35-51.
Leland, H. V. and Kuwabara, J. S. (1985) Fundamentals of Aquatic Toxicology. Hemisphere Publishing Corporation, New York, USA. 1148pp.
Lin, M. C. and Liao, C. M. (1999) Zn(Ⅱ) accumulation in the soft tissue and shell of abalone Haliotis diversicolor via the alga Gracilaria tenuistipitata var. liui and the ambient water. Aquaculture, 178, 89-101.
Lorenzana, R M., Yeow, A. Y., Colman, J. T., Chappell, L. L. and Choudhury, H. (2009) Arsenic in seafood: speciation issues for human health risk assessment. Hum. Ecol. Risk. Assess. 15, 185-200.
Lourenço, H. M., Anacleto, P., Afonso, C., Ferraria,V., Martins, M. F., Carvalho, M. L., Lino, A . R. and Nunes, M. L. (2009) Elemental composition of cephalopods from Portuguese continental waters. Food. Chem. 113, 1146-1153.
Maher, W. and Batley, G. (1990) Organometallics in the near shore marine environment of Australia. Appl. Organomet. Chem. 4, 419-437.
Maher, W. and Bulter E. (1988) Arsenic in the marine environment. Appl. Organomet. Chem. 2, 191-214.
Maher, W., Goessler, W., Kirby, J. and Raber, G. (1999) Arsenic concentrations and speciation in the tissues and blood of sea mullet (Mugil cephalus) from Lake Macquarie NSW, Australia. Mar. Chem. 68, 169-182.
Martin, J. and Flegal, A. (1975) High copper concentrations in squid livers in association with elevated levels of silver, cadmium, and zinc. Mar. Biol. 30, 51-55.
McSheehy, S., Pohl, P., Velez, D. and Szpunar, J. (2002) Multidimensional liquid chromatography with parallel ICP-MS and electrospray MS/MS detection as a tool for the characterization of arsenic species in algae. Anal. Bioanal. Chem. 372, 457-466.
Michener, R. H. and L. Kaufman. (2007) Stable isotope ratios as tracers in marine food webs: an update. Stable isotopes in ecology and environmental science. Wiley-Blackwell, USA. p. 238-282.
Ministry of Health of China. (2005) Maximum levels of contaminants in foods, GB2762-2005. Beijing: Ministry of Health of China.
Miramand, P. and Bentley, D. (1992) Concentration and distribution of heavy metals in tissues of two cephalopods, Eledone cirrhosa and Sepia officinalis, from the French coast of the English Models, method, and assumptions. Ecology, 83(3), 703-718.
Miramand, P., Bustamante, P., Bentley, D. and Koueta, N. (2006) Variation of heavy metal concentrations (Ag, Cd, Co, Cu, Fe, Pb, V, Zn) during the life cycle of the common cuttlefish Sepia officinalis. Sci. Total. 361, 132-143.
Narukawa, T., Kuroiwa, T., Inagaki, K., Takatsu, A. and Chiba, K. (2005) Arsenic speciation analysis by ion chromatography - A critical review of principles and applications. Appl. Organomet. Chem. 19, 239-245.
Narukawa, T., Kuroiwa, T., Narushima, I. and Chiba, K. (2008) Effect of the chemical species of arsenic on sensitivity in graphite furnace atomic absorption spectrometry. Anal. Sci. 24, 355-360.
National Program for Residue and Contaminant Control. (2012). Normative instruction number 11, Brasilia, section 1 p. 4-8.
Neff, J, M. (1997) Ecotoxicology of arsenic in the marine environment. Environ. Toxicol. Chem. 16(5), 27-917
Peterson, B. j., Howarth, R. W. and Garritt, R. H. (1985) Mutiple stable isotopes used to trace the flow of organic matterin estuarine food webs. Sci. 227(1692), 1361-1363.
Phillips, D. J. H. (1990) Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aquat. Toxicol. 16, 151-186.
Pierce, G. J., Stowasser, G., Hastie, L. C. and Bustamante, P. (2008)Geographic, seasonal and ontogenetic variation in cadmium and mercury concentrations in squid (Cephalopoda: Teuthoidea)from UK waters. Ecotoxicol. Environ. Saf. 70, 422-432.
Plant, J. A., Kinniburgh, D. G., Smedley, P. L., Fordyce, F. M. and Klinck, B. A. (2003) Arsenic and Selenium. Treatise on Geochemistry, Volume .Editor: Barbara Sherwood Lollar. Executive Editors: Heinrich D. Holland and Karl K. Turekian. p 612.
Post, D. M. (2002) Using stable isotopes to estimate trophic position. Researches. 23(4), 179-184.
Rahman, M. A., Hasegawa, H. and Lim, R. P. (2012) Bioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain. Environ. Res. 116, 35-118.
Rodhouse, P. G. and Nigmatullin C. M. (1996) Role as consumers. Phil Trans R. Soc. London. 351, 1003-1022.
Rodhouse, P. G. and Nigmatullin, C. M. (1996) Role as consumers. Phil. Trans. R. Soc. Lond. B. 351, 1003–1022.
Rubenstin, D. R. and Hobson, K. A. (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends. Ecol. Evol. 19(5), 256-263.
Ruiter, A. (1995) Contaminants in fish. In: Ruiter A (ed) Fish and Fishery products. Composition nutritive properties and stability. Wallingford, Cab International. p. 261–285
Seixas, S., Bustamante, P. and Pierce. G. J. (2005b). Interannual patterns of variation in concentrations of trace elements in arms of Octopus vulgaris. Chemosphere. 59, 1113-1124.
Seyler, P. and Martin, J. M. (1990) Distribution of arsenite and total dissolved arsenic in major French estuaries: dependence on biogeochemical processes and anthropogenic inputs. Mar. Chem. 29, 277-294.
Shah, S. L. and Altindag, A. (2005) Effects of heavy metal accumulation on the 96-hr LC50 values in Tench tinca L.,1958. Turk. J. Vet. Anim. Sci. 29, 139-144.
Simkiss, K. and Taylor, M. G. (1982) Metal detoxification and bioaccumulation in molluscs. Mar. Biol. Lett. 3, 187-201.
Sloth, J. J. and Julshamn, K. (2008) Survey of total and inorganic arsenic content in blue mussels (Mytilus edulis ) from Norwegian fiords: revelation of unusual high levels of inorganic arsenic. J. Agric. Food. Chem. 56, 1269–1273.
Storelli, M. M. (2005) Accumulation of mercury, cadmium, lead and arsenic in swordfish and Bluefin tuna from the Mediterranean Sea: A comparative study. Baseline. Mar. Pollut. Bull. 50, 993-1018.
Styblo, M., Hughes, M. F. and Thomas, D. J. (1996) Liberation and analysis of proteinbound arsenicals. J. Chromatogr. B. Biomed. Appl. 677, 161-166.
Tieszen, L., Boutton, T., Tesdahl, K. and Slade. N. (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecology. 57, 32-37.
Vanderklift, M. A. and Ponsard, S. (2003) Sources of variation in consumer-diet d15N enrichments: a meta-analysis. Oecologia, 136, 169-182.
Vélez, D. and Ybanez, N. (1996) Montoro monomethylarsonic and dimethylarsinic acid contents in seafood products. Agric. Food. Chem. 44, 859-864.
Wang, M. L. H., Geisel, J. and Chris, X. (2012) Enzyme digestion for speciation of arsenic. Reference module in chemistry, molecular sciences and chemical engineering. Comprehensive sampling and sample preparation. Analy. Tech. For. Scien. 3, 421-433.
Wanibuchi, H., Yamanoto, S., Chen, H., Yoshida, K., Endo, G., Hori, T. and Fukushima, S. (1996) Promoting effects of dimethylarsinic acid on N-butyl-N-(4-hydroxybutyl) nitrosamine-induced urinary bladder carcinogenesis in rats. Carcinogenesis. 17, 2435-2439.
Wetherbee, B. M., Gruber, S. H. and Cortes, E. (1990) Diet, feeding habits, digestion, and consumption in sharks, with special reference to the lemon shark, Negaprion brevirostris. NOAA Technical Report NMFS. 90, 29-47.
World Health Organization- International Agency for Research on Cancer (2011). Arsenic in Drinking Water.
World Health Organization. (1992) Inorganic arsenic compounds other than arsenic: health and safety guide.
World Health Organization. (2003) Arsenic in drinking-water. Background document for preparation of WHO. Guidelines for drinking-water quality.
Yamamoto, S., Konishi, Y., Matsuda, T., Murai, T., Shibata, M. and Matsui-Yuasa, I. (1995) Cancer induction by an organic arsenic compound, dimethylarsinic acid (cacodylic acid), in F344/DuCrj rats after pretreatment with five carcinogens. Cancer. Res. 55, 1271-1276.
王凱毅(2009) 臺灣東北部陸棚海域劍尖槍鎖管生活史之研究。國立臺灣海洋大學漁業研究所博士論文,50 頁。
吳全橙(2007) 大王魷與小鎖管。水試專訊第十七期22-25頁。
吳全橙、林雅民、陳春暉(2001) 台灣沿近海之所管種類、特性與分布。海洋漁業,10頁。
胡立剛、蔡勇(2009) 砷的生物地球化學,化學進展,第21卷,458-466。
董正之(1988) 中國動物志:軟體動物門頭足綱。科學出版社,1-30,105-121。

電子全文
全文檔開放日期:2020/07/18
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *