字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:許念慈
研究生英文姓名:Xu, Nian-Cih
中文論文名稱:二氧化鈦-硫化鋅複合奈米柱之特性與氣體感測元件應用
英文論文名稱:Characterization and gas-sensing device application of TiO2-ZnS nanocomposite rods
指導教授姓名:梁元彰
口試委員中文姓名:副教授︰張高碩
助理教授︰郭承憲
副教授︰黃榮潭
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學號:10555009
請選擇論文為:學術型
畢業年度:107
畢業學年度:106
學期:
語文別:中文
論文頁數:79
中文關鍵詞:犧牲層複合材料硫化氣體感測
英文關鍵字:Sacrifical layerCompositesSulfidationGas-sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本研究使用ZnO作為犧牲層進行水熱反應合成了TiO2-ZnS核殼複合奈米柱。利用濺鍍法將不同厚度的ZnO薄膜沉積在TiO2奈米柱的表面進而當作水熱合成了TiO2-ZnS核殼奈米柱的模板。結構分析的結果顯示出複合奈米柱經過硫化後,所形成的晶體TiO2-ZnS複合奈米柱中並未發現有任何殘餘的ZnO相。本研究發現ZnO犧牲層的厚度影響了TiO2-ZnS複合奈米柱在水熱硫化反應所生長的ZnS晶體表面型態以及硫相關的表面缺陷密度。由於核-殼異質結構以及核層TiO2與殼層ZnS之間的異質作用,促使TiO2-ZnS核殼奈米柱在乙醇氣體感測的量測結果中優於純TiO2奈米柱。研究發現到在最佳厚度60 nm的ZnO犧牲層經過硫化後所獲得的TiO2-ZnS複合奈米柱具有令人滿意的氣體感測特性。本研究結果顯示出透過具有濺鍍沉積ZnO的犧牲殼層進行水熱衍生合成之TiO2-ZnS核殼複合奈米柱在氣體感測上應用是具有潛力的。
TiO2-ZnS core-shell composite nanorods were synthesized by using ZnO as a sacrificial shell layer in a hydrothermal reaction. ZnO thin films of different thicknesses were sputter-deposited onto the surfaces of TiO2nanorods as templates for hydrothermally synthesizing TiO2-ZnS core-shell nanorods. Structural analysis revealed that crystalline TiO2-ZnS composite nanorods were formed without any residual ZnO phase after hydrothermal sulfidation in the composite nanorods. The thickness of the ZnO sacrificial shell layer affected the surface morphology and sulfur-related surface defect density in hydrothermally grown ZnS crystallites of TiO2-ZnS composite nanorods. Due to the distinctively core-shell heterostructure and the heterojunction action between the TiO2 core and the ZnS shell, TiO2-ZnS core-shell nanorods exhibited ethanol gas-sensing performance superior to that of pristine TiO2nanorods. An optimal ZnO sacrificial shell layer thickness of approximately 60 nm was found to enable the synthesis of TiO2-ZnS composite nanorods with satisfactory gas-sensing performance through sulfidation. The results demonstrated that hydrothermally derived TiO2-ZnS core-shell composite nanorods with a sputter-deposited ZnO sacrificial shell layer are promising for applications in gas sensors.
目次
摘要.......................................................I
Abstract..................................................II
目次.....................................................III
表目錄.....................................................V
圖目錄....................................................VI
第一章 前言...............................................1
第二章 文獻回顧...........................................3
  2-1 二氧化鈦(TiO2)結構與特性............................3
  2-2硫化鋅(ZnS)結構與特性................................3
  2-3 低維度半導體奈米材料.................................4
  2-4 二氧化鈦 (TiO2)合成方式與應用........................5
   2-4-1 濺鍍法..........................................6
   2-4-2 熱蒸鍍法........................................6
   2-4-3 水熱法..........................................7
   2-4-4 溶膠-凝膠法.....................................8
   2-4-5靜電紡絲法.......................................8
  2-5 半導體材料之氣體感測元件應用.........................9
  2-6 異質結構提升氣體感測效應 ...........................11
第三章 實驗流程與方法.....................................26
  3-1 實驗流程...........................................26
  3-2 實驗藥品與設備.....................................26
   3-2-1 實驗藥品.......................................26
   3-2-2 實驗設備.......................................26
  3-3 材料製備程序.......................................27
   3-3-1 基板表面清潔...................................27
   3-3-2 水熱法製備二氧化鈦奈米柱........................28
   3-3-3 濺鍍法製備氧化鋅薄膜犧牲層......................28
   3-3-4 水熱法製備硫化鋅殼層............................29
3-4 材料分析...........................................30
   3-4-1 掃描式電子顯微鏡 (Scanning Electron Microscope,
SEM)......................................................30
   3-4-2 X光繞射分析 (X-ray diffractometer, XRD)......................................................31
   3-4-3 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)..........................................32
   3-4-4 高解析電子能譜儀 ((High resolution X-ray Photoelectron Spectrometer, RXPS) ........................32
   3-4-5氣體感測元件特性分析 (Gas sensing measurements)..33
第四章 結果與討論..........................................44
  4-1 顯微結構分析 ......................................44
  4-2 組成鍵結能分析.....................................46
  4-3 最佳化氣體感測操作溫度..............................47
  4-4 氣體感測特性分析...................................47
  4-5 氣體感測機制探討...................................48
  4-6 相關文獻所報導之二氧化鈦複合材氣體感測效能比較........49
第五章 總結論..............................................73
參考文獻..................................................74
參考文獻

[1]Y. C. Liang, N. C. Xu, C. C. Wang, D. H. Wei, Materials, 2017, 10, 778-790.
[2]Y. Li, H. Yang, J. Tian, X. Hu, H. Cui, RSC Adv., 2017, 7, 11503-11509.
[3]W. Zhou, H. Liu, R. I. Boughton, G. Du, J. Lin, J. Wang, D. Liu, J. Mater. Chem., 2010, 20, 5993-6008.
[4]W. H. Lee, C. W. Lai, S. B. A. Hamid, Materials, 2015, 8, 2139-2153.
[5]J. Li, X. Wang,Y. Shao, X. Lu, B. Chen, Materials, 2014, 7, 6865-6878.
[6]J. Tian, Z. Zhao, A. Kumar, R. I. Boughtonc, H. Liu, Chem. Soc. Rev., 2014, 43, 6920-6937
[7]Y. C. Liang, C. C. Wang, J. Alloy. Compd., 2018, 730, 333-341.
[8]G. Shen, P. C. Chen, Y. Bando, D.Golberg, C. Zhou, Chem. Mater., 2008, 20, 6779-6783.
[9]Y. C. Liang, S. L. Liu, Acta Mater., 2015, 88, 245-251.
[10]L. Liu, Y. Chen, T.Guo, Y. Zhu, Y. Su, C.Jia, M. Wei, Y. Cheng, ACS Appl. Mater. Interfaces, 2012, 4, 17-23.
[11]W. Zhang, S. Wang, Y. Wang, Z. Zhu, X. Gao, J. Yang, H.X. Zhang, RSC Adv., 2015, 5, 2620-2629.
[12]M. Graf, P. Vogl, physical review B, 1995, 51, 4940.
[13]C. Y. Yeh, Z. W. Lu, S. Froyen, A. Zunger, physical review B, 1992, 46, 10086.
[14]T. K. Tran, W. Park, W. Tong, M. M. Kyi, B. K. Wagner, C. J. Summers, Journal of Applied Physics, 1997, 81, 2803.
[15]H. Chen, D. Shi, J. Qi, J. Jia, B. Wang, Physics Letters A, 2009, 373, 371.
[16]X. Fang, L. Wu, L. Hu, Advanced Materials, 2011, 23, 585-598.
[17]K. Boldt, C. Ramanan, A. Chanaewa, M. Werheid, A. Eychmüller, The Journal of Physical Chemistry Letters, 2015, 6, 2590-2597.
[18]K. Virkki, S. Demir, H. Lemmetyinen, N. V. Tkachenko, The Journal of Physical Chemistry C, 2015, 31, 17561-17572.
[19]J. Baars, G. Brandt, Journal of Physics and Chemistry of Solids, 1973, 34, 905-909.
[20]X. Fang,T. Zhai, U. K. Gautam, L. Li , L. Wu, Y. Bando, D. Golberg, Progress in Materials Science, 2011, 56,175-287.
[21]Y. Chen, G. F. Huang, W. Q. Huang, L. L. Wang, Y. Tian, Z. L. Ma, Z. M. Yang, Marterials Letters, 2012, 75, 221.
[22]K. Ichino, K. Ueyama, M. Yamamoto, H. Kariya, H. Miyata, M. Misasa, M. Kitagawa, H. Kobayashi, Journal of Applied Physics, 2000, 87, 4249
[23]L. Wang, J. Dai, X. Liu, Z. Zhu, X Huang, P. Wu, Ceramics International, 2012, 38, 1873
[24]L. Dong, Y. Chu, Y, Zhang, Marterials Letters, 2007, 61, 4651
[25]Z. Yshabalala, D. Motaung, G. Mhlongo, O. Ntwaeaborwa, Sensors and Actuators B:Chemical, 2016, 224, 841-856
[26]L. Yu et al., Journal of Alloys and Compounds, 2016, 682, 352-356
[27]A. Esfandiar, S. Ghasemi, A. Irajizad, O. Akhavan, M. Gholami, International Journal of Hydeoden Energy, 2012, 37, 15423-15432
[28]H. Liu, W. Yang, M. Wang, L. Xiao, S. Liu, Sensors and Actuators B:Chemical, 2016, 236, 490-498
[29]D. V. Sidelev, Y. N. Yurjev, V. P. Krivobokov, E. V. Erofeev, O. V. Penkova, V. A. Novikov, Vacuum, 2016, 134, 29-32.
[30]J. Singh, S. A. Khan, J. Shah, R. K. Kotnala, S. Mohapatra, Applied Surface Science, 2017, 422, 953-961.
[31]M. Horprathum, P. Eiamchai, P. Chindaudom, A. Pokaipisit, P. Limsuwan, Materials Characterization, 2007, 58, 680–684.
[32]J. M. Wu, H. C. Shih, W. T. Wu, Y. K. Tseng, I. C. Chen, Journal of Crystal Growth, 2005, 281, 384–390.
[33]J. M. Wu, H. C Shih, W. T. Wu, Nanotechnology, 2006, 17, 105.
[34]L. Wang, et al., Ceramics International, 2012, 38, 1873-1878.
[35]X. Yan, E. Michael, S. Komarneni, J. R. Brownson, Z. F. Yan, Ceramics International, 2013, 39, 4757-4763.
[36]W. Yu, P. Fang, S. Wang, Applied Surface Science, 2009, 255, 5709-5713
[37]L. Murr, Z. Wang, Journal of Materials Research and Technology, 2018, 7, 7-13.
[38]Y. L. Wang, S. Tan, J. Wang, Z. J. Tan, Q. X. Wu, Z. Jiao, M. H. Wu, Chinese Chemical Letters, 2011, 22, 603-606.
[39]O. Alev, E. Şennik, N. Kılınç, Z. Z. Öztürk, Procedia Engineering, 2015, 120, 1162-1165.
[40]C. Leyva-Porras, et al., Journal of Alloys and Compounds, 2015, 647, 627-636.
[41]W. Chen, C. Takai, H. R. Khosroshahi, M. Fuji, T. Shirai, Ceramics International, 2016, 42, 559-568
[42]K. Muthukrishnan, et al., Journal of Alloys and Compounds, 2016, 673, 138-143
[43]H. Wang, et al., The Solid Films, 2016, 615, 19-24
[44]C. Sun, X. Su, F. Xiao, C. Niu, J. Wang, Sensors and Actuators B, 2000, 68, 189–196
[45]L. Yang, X. Li, Z. Wang, Y. Shen, M. Liu, Applied Surface Science, 2017, 420, 346-354.
[46]S. Suphankij, et al., Energy Procedia, 2013, 34, 751–756.
[47]J. Zhang, S. W. Choi, S. S. Kim, Journal of Solid State Chemistry, 2011, 184, 3008-3013.
[48]R. D. Ladhe, K. V. Gurav, S. M. Pawar, J. H. Kim, B. R. Sankapal, Journal of Alloys and Compounds, 2012, 515, 80.
[49]D. J. Yang, G. C. Whitfield, N. G. Cho, P. S. ChoM. Saltsburg, H. L. Tuller, Sensors and Actuators B:Chemical, 2012, 171-172, 1166.
[50]L. Wang, J. Deng, Z. Lou, T. Zhang, J. Mater. Chem. A, 2014, 2, 10022-10028.
[51]Y. Wang, S. Wang, H. Zhang, X. Gao, J. Yang, L. Wang, J. Mater. Chem. A, 2014, 2, 7935-7943.
[52]S. Zhang, P. Song, J. Zhang, Z. Li, Z. Yang, Q. Wang, RSC Adv., 2016, 6, 50423-50430.
[53]H. Zhang, S. Wang, Y. Wang, J. Yang, X. Gao, L. Wang, Phys. Chem. Chem. Phys., 2014, 16, 10830-10836.
[54]Y. Mun, S. Park, H. Ko, C. Lee, Journal of the Korean Physical Society, 2013, 63, 1595-1600.
[55]K. K. Kim, D. Kim, S. H. Kang, S. Park, Sensors and Actuators B, 2017, 248, 43-49.
[56]M. Li, W. Ren, R. Wu, M. Zhang, Sensors, 2017, 17, 1577.
[57]Y. C. Liang and C. C. Wang, RSC Adv., 2018, 8, 5063-5070.
[58]K. S. Ranjith, A. Senthamizhan, B. Balusamy, T. Uyar, Catal. Sci. Technol., 2017, 7, 1167-1180.
[59]A. Brayek, S. Chaguetmi, M. Ghoul, I. B.Assaker, A. Souissi, L. Mouton, P. Beaunier, S. Nowak, F. Mammeri, R. Chtourou, S. Ammar, RSC Adv., 2016, 6, 30919-30927.
[60]H. Wu, K.Kan, L. Wang, G. Zhang, Y. Yang, H. Li, L. Jing, P. Shen, L. Li, K. Shi, CrystEngComm, 2014, 16, 9116-9124.
[61]Y. C. Liang, C. M. Lee, Y. J. Lo, RSC Adv., 2017, 7, 4724-4734.
[62]Y. C. Liang, T. W. Lung, C. C. Wang, Nanoscale Res. Lett., 2016, 11, 505-510.
[63]Z. G. Chen, J. Zou, G. Liu, H. F. Lu, F. Li, G. Q. Lu, H. M. Cheng, Nanotechnology, 2008, 19, 055710.
[64]X. H. Liu, P. F. Yin, S. A. Kulinich, Y. Z. Zhou, J. Mao, T. Ling, X. W. Du, ACS Appl. Mater. Interfaces, 2017, 9, 602-609.
[65]S. Hussaina, T. Liua, M. S. Javedc, N. Aslame, W. Zeng, Sens. Actuator B-Chem., 2017, 239, 1243-1250.
[66]Y. J. Chen, G. Xiao, T. S. Wang, F. Zhang, Y. Ma, P. Gao, C. L. Zhu, E. Zhang, Z. Xu, Q. H. Li, Sens. Actuator B-Chem., 2011, 156, 867-874.
[67]C. L. Zhu, H. Long Yu, Y. Zhang, T. S. Wang, Q. Y. Ouyang, L. H. Qi, Y. J. Chen, X. Y. Xue, ACS Appl. Mater. Interfaces, 2012, 4, 665-671.
[68]G. J. Sun, H. Kheel, S. Park, S. Lee, S. E. Park, C. Lee, Ceram. Int., 2016, 42, 1063-1069.
(此全文限內部瀏覽)
電子全文
全文檔開放日期:不公開
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *