字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:劉柏緯
研究生英文姓名:Liu, Bo-Wei
中文論文名稱:以磁控濺鍍Hf–Si–N鍍層之機械性質及抗氧化性研究
英文論文名稱:Mechanical Properties and Oxidation Resistance of Hf–Si–N Coatings by Magnetron Sputtering
指導教授姓名:陳永逸
口試委員中文姓名:教授︰吳芳賓
教授︰張奇龍
副教授︰張麗君
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學號:10555007
請選擇論文與海洋研究相關度:無相關
請選擇論文為:學術型
畢業年度:107
畢業學年度:106
學期:
語文別:中文
論文頁數:111
中文關鍵詞:磁控濺鍍Hf–Si–N機械性質抗氧化性熱處理
英文關鍵字:magnetron sputtering, , , ,Hf–Si–Nmechanical propertiesoxidation resistanceheat treatment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:4
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
本實驗利用反應式直流磁控濺鍍系統沉積Hf–Si–N奈米複合膜。第一部分固定氮氣分壓N2/(Ar+N2)為0.4、工作壓力3 mTorr、Hf靶功率為250 W、改變Si靶功率0–150 W,以沉積不同Si含量之Hf–Si–N硬質鍍層於Si晶片上,目標為製備Si含量從0–20 at. %之間的硬質複合膜;第二部分固定氮氣分壓N2/(Ar+N2)為0.4、工作壓力3 mTorr、Si靶為250 W、改變Hf靶功率150–225 W,目標為製備Hf:Si含量比為1:1的硬質複合膜。利用場發射式電子微探儀(FE-EPMA)對鍍層做定量元素分析,場發射式掃描電子顯微鏡(FE–SEM)、X光繞射儀(XRD),對鍍層之微結構進行分析及確認。並以奈米壓痕儀(Nanoindenter)、原子力顯微鏡(AFM)量測薄膜硬度、楊氏係數及粗糙度。另外以氣氛為1% O2-99%Ar的混合氣於600°C下進行長時間熱處理,並觀察不同退火時間下鍍層之氧化行為及厚度變化,並使用化學分析電子能譜儀(XPS)進行元素鍵結分析。
Hf54N46鍍層為f.c.c.結構,而低Si含量(3 at. %)的鍍層表現出f.c.c.和非晶相的混合物。中Si含量(7 at. %)的鍍層以非晶為主,並摻雜著微量f.c.c.結構。高Si含量(12–27 at. %)鍍層呈現非晶相結構。Hf48Si3N49鍍層的奈米壓痕硬度顯示最大值為22.5 ± 0.8 GPa,隨著Si含量增加至7 at. %硬度值降低至15.3 ± 0.6 GPa,然後保持在15–16 GPa,Si含量持續增加至23–27 GPa時硬度由15.2 GPa持續上升至17.1 GPa。Hf54N46鍍層的殘留應力顯示最大值為–2.4 ± 0.1 GPa,隨著Si含量增加Hf48Si3N49鍍層降至–1.5 ± 0.1 GPa,而Si 7–27 at. %殘留應力則保持在–0.4至–0.7之間。Si含量大於19 at. %以上時,抗氧化能力明顯提升。
In this study, Hf–Si–N nanocomposite coatings were prepared by reactive DC magnetron sputtering system. The first part is to prepare coatings with different Si contents. Therefore, fixed nitrogen partial pressure N2/(Ar+N2) is 0.4, and the working pressure is 3 mTorr. Then fixed Hf target power is 250 W, and the Si target power is changed from 0 to 150 W. The Second part is to prepare a hard composite coating with a Hf:Si content ratio of 1:1. Fixed nitrogen partial pressure N2/(Ar+N2) is 0.4, and the working pressure is 3 mTorr. Then Si target power is fixed at 150 W, and the Hf target power is changed from 150 to 225 W. Chemical composition analysis was carried out with a field-emission electron probe microanalyzer (FE-EPMA, JXA-8500F, JEOL, Japan) on the surface of the samples. The thickness of coatings was evaluated by field emission scanning electron microscopy (FE-SEM, S4800, Hitachi, Japan). A conventional X-ray diffractometer (XRD, X'Pert PRO MPD, PANalytical, Netherlands) with Cu Kα radiation was adopted to identify the phases of the coatings. The surface nanohardness values of various Hf–Si–N coatings were measured with a nanoindentation tester (TI900 Triboindenter, Hysitron, USA). The Hf-Si-N coating is annealed at 600°C in a 1% O2–99% Ar atmosphere.The oxidation behavior and thickness variation of the coating under different annealing times were ecaluated. Elemental bond analysis was performed using a chemical analysis electron spectrometer (ESCA, PHI 5000 Versa Probe II, PHI, Japan).
The Hf54N46 coatings exhibited a face-centered cubic (f.c.c.) structure. The low Si content (3 at. %) coating exhibited a mixture of f.c.c. and amorphous phase. High Si content (12–27 at. %) coating exhibited an amorphous phase structure. The nanohardness of the Hf48Si3N49 coating exhibited a maximum of 22.5 ± 0.8 GPa. As Si content increases to 7 at. % hardness value decreases to 15.3 ± 0.6 GPa, then stays at 15–16 GPa. As the Si content continues to increase to 23–27 at. %, the hardness continue to increase from 15.2 GPa to 17.1 GPa. The residual stress of the Hf54N46 coating shows a maximum of –2.4 ± 0.1 GPa. The residual stress of the films with 7–27 at. % remains between –0.4 and –0.7. When the Si content is more than 19 at. %, the antioxidation ability is obviously improved.
摘要 I
Abstract II
目次 III
圖目錄 V
表目錄 IX
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1 反應性直流磁控濺鍍系統 3
2.1.1 磁控濺鍍系統 3
2.1.2 直流式磁控濺鍍系統 4
2.1.3 交流式磁控濺鍍系統 4
2.1.4 薄膜成長機制 5
2.1.5 反應性濺鍍 6
2.2 氮化鉿薄膜 7
2.2.1 氮化鉿薄膜性質 7
2.2.2 氮化鉿薄膜組成 7
2.3 氮化矽薄膜 9
2.4 過渡金屬氮化物添加矽的性質 10
2.5 氮化鉿矽薄膜 11
2.6 薄膜的結構與缺陷 12
2.7 薄膜的強化機制 13
2.8.1 尺寸效應(晶粒尺寸) 13
2.8.2 固溶強化[51] 14
2.8.3 多層膜結構 14
2.8.4 超晶格結構 15
2.8.5 奈米複合結構 15
第三章 實驗方法 17
3.1 實驗流程與簡介 17
3.2 實驗方法與步驟 21
3.2.1 基材試片規格與前處理 21
3.2.2 濺鍍設備 21
3.3 鍍膜製程 22
3.4 薄膜性質分析 23
3.5.1 成分分析實驗 23
3.5.2 表面與截面形貌分析 24
3.5.3 晶體結構與X光繞射分析 25
3.5.4 硬度分析實驗 26
3.5.5 殘留應力分析 27
3.5.6 表面粗糙度分析 28
3.5.7 微結構分析 29
3.5.8 化學鍵結分析 30
第四章 結果與討論 31
4.1 不同矽含量之Hf–Si–N鍍層性質分析 31
4.1.1 初鍍不同矽含量之Hf–Si–N鍍層 31
4.1.1.1 不同矽含量之Hf–Si–N鍍層之成分分析 31
4.1.1.2 不同矽含量之Hf–Si–N鍍層之結晶結構分析 33
4.1.1.3 不同矽含量之Hf–Si–N鍍層之橫截面形貌 34
4.1.1.4 不同矽含量之Hf–Si–N鍍層之機械性質及表面粗糙度 36
4.1.1.5 不同矽含量之Hf–Si–N鍍層之化學鍵結分析 38
4.1.2 不同矽含量之Hf–Si–N鍍層經1%O2-99%Ar 600°C熱處理 47
4.1.2.1 不同矽含量之Hf–Si–N鍍層經熱處理後之微結構分析 47
4.1.2.2 不同矽含量之Hf–Si–N鍍層熱處理後之橫截面形貌 51
4.1.2.3 不同矽含量之Hf–Si–N鍍層熱處理後之機械性質 58
4.1.2.4 不同矽含量之Hf–Si–N鍍層熱處理後之微結構分析 60
4.1.2.5 不同矽含量之Hf–Si–N鍍層熱處理後之化學鍵結 70
4.1.3 不同矽含量之Hf–Si–N鍍層討論 85
4.2 高矽含量之Hf–Si–N鍍層性質分析 86
4.2.1 初鍍高矽含量之Hf–Si–N鍍層 86
4.2.1.1 高矽含量之Hf–Si–N鍍層成分分析 86
4.2.1.2 高矽含量之Hf–Si–N鍍層微結構分析 88
4.2.1.3 高矽含量之Hf–Si–N鍍層之橫截面形貌 89
4.2.2 高矽含量之Hf–Si–N鍍層經1%O2-99%Ar 600°C熱處理 90
4.2.2.1 高矽含量熱處理後之Hf–Si–N鍍層微結構分析 90
4.2.2.2 高矽含量熱處理後之Hf–Si–N鍍層之橫截面分析 94
4.2.2.3 高矽含量熱處理後之Hf–Si–N鍍層之機械性質及表面粗糙度 99
4.2.2.4 高矽含量熱處理後之Hf–Si–N鍍層之微結構分析 100
第五章 結論 101
參考文獻 102
附錄 105

[1] A. Niederhofer, P. Nesládek, H.D. Männling, K. Moto, S. Vepřek, M. Jı́lek, Surface and Coatings Technology, 120-121 (1999) 173-178.
[2] S. Vepřek, S. Reiprich, Thin Solid Films, 268 (1995) 64-71.
[3] S. Vepřek, A. Niederhofer, K. Moto, T. Bolom, H.D. Männling, P. Nesladek, G. Dollinger, A. Bergmaier, Surface and Coatings Technology, 133-134 (2000) 152-159.
[4] J.J. Jeong, S.K. Hwang, C. Lee, Materials Chemistry and Physics, 77 (2003) 27-33.
[5] D.M. Mattox, Handbook of physical vapor deposition (PVD) processing, William Andrew, 2010.
[6] P.J. Kelly, R.D. Arnell, Vacuum, 56 (2000) 159-172.
[7] M.T. Hosseinnejad, M. Ghoranneviss, G.R. Etaati, M. Shirazi, Z. Ghorannevis, Applied Surface Science, 257 (2011) 7653-7658.
[8] J.-W. He, C.-D. Bai, K.-W. Xu, N.-S. Hu, Surface and Coatings Technology, 74-75 (1995) 387-393.
[9] Y.-I. Chen, B.-L. Lin, Y.-C. Kuo, J.-C. Huang, L.-C. Chang, Y.-T. Lin, Applied Surface Science, 257 (2011) 6741-6749.
[10] H.O. Pierson, 11 - Interstitial Nitrides: Properties and General Characteristics, in: Handbook of Refractory Carbides and Nitrides, William Andrew Publishing, Westwood, NJ, 1996, pp. 181-208.
[11] C. Escobar, M. Villarreal, J.C. Caicedo, J. Esteve, P. Prieto, Surface Review and Letters, 20 (2013) 1350040.
[12] M.H. Staia, D.G. Bhat, E.S. Puchi-Cabrera, J. Bost, Wear, 261 (2006) 540-548.
[13] F. Monteverde, A. Bellosi, Journal of Materials Research, 19 (2004) 3576-3585.
[14] A.R. Shankar, U.K. Mudali, V. Chawla, R. Chandra, Ceramics International, 39 (2013) 5175-5184.
[15] M.M. Opeka, I.G. Talmy, E.J. Wuchina, J.A. Zaykoski, S.J. Causey, Journal of the European Ceramic Society, 19 (1999) 2405-2414.
[16] R. Nowak, C.L. Li, Thin Solid Films, 305 (1997) 297-303.
[17] D. Zhang, Z. Qi, B. Wei, H. Shen, Z. Wang, Ceramics International, (2018).
[18] R.A. Araujo, X. Zhang, H. Wang, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 26 (2008) 1871-1874.
[19] H.S. Han, D.H. Han, S. Ohmi, Electronics Letters, 49 (2013) 500-501.
[20] L. Lecordier, S. Herregods, S. Armini, Journal of Vacuum Science & Technology A, 36 (2018) 031605.
[21] W.S. Hwang, J. Chen, W.J. Yoo, V. Bliznetsov, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 23 (2005) 964-970.
[22] S. Karwal, B.L. Williams, J.P. Niemelä, M.A. Verheijen, W.M.M. Kessels, M. Creatore, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 35 (2017) 01B129.
[23] Y. Gotoh, S. Fujiwara, H. Tsuji, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 34 (2016) 031401.
[24] A.J. Perry, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4 (1986) 2670-2673.
[25] H.Y. Yu, H.F. Lim, J.H. Chen, M.F. Li, C.X. Zhu, D.L. Kwong, C.H. Tung, K.L. Bera, C.J. Leo, in: 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407), 2003, pp. 151-152.
[26] J. Lannon, C. Pace, S. Goodwin, S. Solomon, P. Bryant, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 22 (2004) 1730-1733.
[27] H.O. Pierson, 10 - Interstitial Nitrides: Structure and Composition, in: Handbook of Refractory Carbides and Nitrides, William Andrew Publishing, Westwood, NJ, 1996, pp. 163-180.
[28] B.O. Johansson, J.E. Sundgren, U. Helmersson, Journal of Applied Physics, 58 (1985) 3112-3117.
[29] R. Nowak, S. Maruno, Materials Science and Engineering: A, 202 (1995) 226-237.
[30] D.M. Hoffman, Polyhedron, 13 (1994) 1169-1179.
[31] H. Baker, ASM Handbook, ASM International, 1992.
[32] Y.H. Cheng, T. Browne, B. Heckerman, E.I. Meletis, Surface and Coatings Technology, 204 (2010) 2123-2129.
[33] Y. Dong, Y. Liu, J. Dai, G. Li, Applied Surface Science, 252 (2006) 5215-5219.
[34] Y. Dong, W. Zhao, Y. Li, G. Li, Applied Surface Science, 252 (2006) 5057-5062.
[35] H. Zhang, T.W. Guo, Z.X. Song, X.J. Wang, K.W. Xu, Surface and Coatings Technology, 201 (2007) 5637-5640.
[36] J.-H. Huang, Y.-Y. Hu, G.-P. Yu, Surface and Coatings Technology, 205 (2011) 5093-5102.
[37] S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Thin Solid Films, 476 (2005) 1-29.
[38] Z. Zhang, Y. Liang, X. Jiang, 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015), (2015).
[39] X. Tan, Y.Q. Li, X.J. Liu, D.G. Liu, Advanced Materials Research, 139-141 (2010) 22-25.
[40] X.M. Liu, X.H. Chen, Y.Q. Han, W.H. Ma, J.L. He, Y.Y. Xiao, J. Li, Materials Science Forum, 809-810 (2014) 583-588.
[41] G. Jin, X. Cui, J. Hao, E. Liu, S. Wei, T. Shao, Surface and Coatings Technology, 228 (2013) S449-S451.
[42] J. Musil, Surface and Coatings Technology, 125 (2000) 322-330.
[43] D. Rafaja, C. Wustefeld, M. Motylenko, C. Schimpf, T. Barsukova, M.R. Schwarz, E. Kroke, Chem Soc Rev, 41 (2012) 5081-5101.
[44] E.O. Hall, Proceedings of the Physical Society. Section B, 64 (1951) 747.
[45] R.F. Zhang, A.S. Argon, S. Veprek, Physical Review B, 81 (2010) 245418.
[46] H.H. Fu, D.J. Benson, M.A. Meyers, Acta Materialia, 49 (2001) 2567-2582.
[47] Z.T. Wu, Z.B. Qi, B.B. Wei, D.F. Zhang, Z.C. Wang, Journal of the European Ceramic Society, 36 (2016) 3329-3339.
[48] H. Conrad, J. Narayan, Scripta Materialia, 42 (2000) 1025-1030.
[49] C. Carlton, P.J. Ferreira, MRS Proceedings, 976 (2012) EE01-04.
[50] J. Schiøtz, F.D. Di Tolla, K.W. Jacobsen, Nature, 391 (1998) 561.
[51] C.R. Clayton, in, Elsevier, 1987.
[52] H. Holleck, V. Schier, Surface and Coatings Technology, 76-77 (1995) 328-336.
[53] M. Setoyama, M. Irie, H. Ohara, M. Tsujioka, Y. Takeda, T. Nomura, N. Kitagawa, Thin Solid Films, 341 (1999) 126-131.
[54] A.T. Meenaatci, R. Rajeswarapalanichamy, K. Iyakutti, Pressure induced phase transition of ZrN and HfN: A first principles study, 2013.
[55] J. F. Moulder, W. F. Stickle, P.E. Sobol, K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Perkin Elmer Corporation, 1995.
[56] J. Lindström, L.I. Johansson, P.E.S. Persson, A. Callens, D.S.L. Law, A.N. Christensen, Physical Review B, 39 (1989) 3599-3604.
[57] L. García-González, L. Zamora-Peredo, N. Flores-Ramírez, M.G. Garnica-Romo, J. Hernández-Torres, Journal of Materials Engineering and Performance, 24 (2015) 1558-1564.
[58] Y.C. Chan, H.W. Chen, J.G. Duh, J.W. Lee, International Journal of Applied Ceramic Technology, 11 (2013) 611-617.
[59] A. Arranz, Surface Science, 563 (2004) 1-12.
[60] W. Wang, T. Nabatame, Y. Shimogaki, Surface Science, 588 (2005) 108-116.
[61] J.A. Rothschild, M. Eizenberg, Microelectronic Engineering, 86 (2009) 1771-1773.
[62] L.-C. Chang, Y.-Z. Zheng, Y.-I. Chen, S.-C. Chang, B.-W. Liu, Coatings, 8 (2018).
[63] I. Bertóti, Surface and Coatings Technology, 151-152 (2002) 194-203.
(此全文20200730後開放外部瀏覽)
電子全文
全文檔開放日期:2020/07/30
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *