字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:方美瑜
研究生英文姓名:Huong Mee Yii
中文論文名稱:水下載具聲音散射聲固耦合分析
英文論文名稱:Acoustic And Structure Coupling Analysis of Sound Scattered From Underwater Vehicle
指導教授姓名:許榮均
邱進東
口試委員中文姓名:教授︰王昭男
教授︰宋家驥
教授︰許榮均
教授︰邱進東
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學號:10551032
請選擇論文與海洋研究相關度:間接相關
請選擇論文為:學術型
畢業年度:107
畢業學年度:106
學期:
語文別:中文
論文頁數:47
中文關鍵詞:散射聲固耦合目標強度
英文關鍵字:ScatteringAMLacoustic-structure couplingtarget strength
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
本論文最主要的目的為利用有限元素聲學分析軟體來計算出在頻域之水下載具表面所引發的散射效應。首先以一個簡單幾何,即一個球體與一篇以時域的文獻做結果比對。透過這樣的數值模擬分析,並利用如今計算散射的新方法,即在船體表面建立一個AML層(Automatically Matched Layer),我們可以在更短的時間內求解出在不同的入射平面波比較出潛艦表面的散射情況, 並繪製出散射圖案。 然後進行聲固耦合的模擬,以水下載具表面考慮為固體與彈性體時,在一個流場內施予一頻率的聲源,從而比較出剛性體及耦合之後彈性體的聲壓差異。本論文最後將以目標強度來探討散射性能。結果顯示彈性體的目標強度較剛性體來的大, 在2000Hz時的目標強度最大。在計算出剛性體與彈性體的目標強度之後,能有效掌握辨識度,從而提升安全系數。
關鍵詞:散射;流固耦合;目標強度
This thesis investigates the scattering effect from the surface of underwater vehicle in frequency domain. Firstly, we compare the scattered effect with a literature which studies the effect using time domain iteration method with a simple geometry. Using the acoustics analysis software by finite element method, we can predict sound and noise performance. AML (Automatically Matched Layer), a latest technique, is used to approach to account for the radiation condition. Two different parts of simulation is being done in this thesis. A plane wave is given at four field points separately to calculate the pressure scattered on the submarine hull. Another comparison between scattering effect on rigid and elasticity body in acoustic-structure coupling is resulted in this thesis. Target strength is calculated to evaluate the scattering effect. The target strength of elasticity body is bigger than the rigid body from 1000Hz to 2000Hz, the value of target strength at 2000Hz is the largest. By knowing the target strength, we can identified the location of the underwater vehicle thereby the safety factor can be improved.
Keywords: Scattering; AML; acoustic-structure coupling; target strength
Acknowledgements I
Contents II
摘要 IV
Abstract V
List of Figures VI
Nomenclature IX
Chapter 1 1
1.1 Introduction 1
1.1.1 Underwater Acoustic 1
1.1.2 Scattered Effect 1
1.1.3 Automatically Matched Layer 1
1.2 Motivation and Study Objective 3
1.3 Literature survey 4
Chapter 2 Computational Methodology 5
2.1 Introduction to Acoustics 5
2.1.1 Mass Conservation - Continuity Equation 5
2.1.2 Conservation of Momentum - Euler’s Equation 6
2.1.3 Pressure–Density-Relation - State Equation 8
2.1.4 Linear Acoustic Wave Equation 9
2.2 Derivation of Model for Structure 12
2.3 Coupling of Solid-Structure 13
2.3.1 Structure Fluid Interface 13
2.3.2 Coupled Formulation 13
2.4 Target Strength 16
Chapter 3 Verification of Sound Scattered by a Solid Sphere 18
Chapter 4 Numerical Result 23
4.1 Sound Scattered From Zwaardvis Class Submarine 23
4.2 Plane Wave 25
4.3 Scattering Effect Between Rigid and Elasticity Body 32
Chapter 5 Conclusions and Future Research Works 42
References 44
Appendices 47

1. Collino, F. and P.B. Monk, Optimizing perfectly matched layer. Computational Methods in Applied Mechanics and Engineering. Vol. 164. 1998. p. 157-171.
2. Lighthill, M. J., On sound generated aerodynamically-general theory. Proceedings of the Royal Society, 1952. 211(1107): p. 564-587.
3. Hawkings, J.E.W., Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London, 1969. 264: p. 321-342.
4. Hanson, D.B., Near field frequency domain theory for propeller noise. AIAA Journal, 1985. 23: p. 499-504.
5. Farassat, F. and M.K. Myers, Extensions of Kirchoff's formula to radiation from moving surfaces. Journal of Sound and Vibration, 1988. 123: p. 451-460.
6. Gallman, J.M., M.K. Myers, and F. Farassat, Boundary integral approach to the scattering of nonplanar acoutic waves by rigid bodies. AIAA Journal, 1992. 29: p. 2038-2046.
7. Gennaretti, M. and C. Testa, A boundary integral formulation for sound scattered by elastic moving bodies. Journal Sound and Vibration, 2008. 314: p. 712-737.
8. Myers, M.K. and J.S. Hausmann, Computation of acoustic scattering from a moving rigid surface. Journal of the Acoustical Society of America, 1992. 91: p. 2594-2605.
9. Weilin, T., Calculation of acoustic scattering of a non-rigid surface using physical acoustic method. ACTA Acutica, 1993. 18: p. 45-52.
10. Berg, R. and H.G. Schneider, Acoustic scattering by a submarine: results from a benchmark target strength simulation workshop, in Tenth International Congress on Sound and Vibration. 2003. p. 1-8.
11. Kao, J.-H. and Young-Zehr-Kehr, Theoretical prediction of the marine propeller radiated blade rate noises-including the scattering effect due to ship hull, in Institute of Systems Engineering and Naval Architecture. 2004, Natoinal Taiwan Ocean University: Keelung, Taiwan. p. 137.
12. Jin, S. and Y. Wei, Scattering effect of submarine hull on propeller non-cavitation noise. Journal Sound and Vibration, 2016. 370: p. 319-335.
13. Burgholzer, L., Structure acoustic coupling. 2016: Austria.
14. Qi, D., Cai, J., Mao Y., and Gu Y., Direct evaluation of acoustic-intensity vector field around an impedance scattering body. AIAA Journal, 2015. 53: p. 1362-1371.
15. Yu-Kai, S. and Y. Ma, Experiments and analysis of acoustic scattering of elastic spheres in water, in Proc. 19th Conf. on Ocean Engineering in Republic of China. 1997. p. 641-648.
16. Lv, Y.-L., Sub-scaled underwater experiments on Rayleigh surface wave on elastic solid. 2007. p. 7-16.
17. JR., Faran. and James. J., Sound scattering by solid cylinders and spheres. The Journal of the Acoustical Society of America, 1951. 23: p. 405-418.
18. Francescantonio, P.d., The prediction of the sound scattered by moving bodies, in First AIAA/CEAS Aeroacoustics Conference. 1995. p. 95-112.
19. Doolittle, R.D., H. Uberall, and P. Ugincius, Sound scattering by elastic cylinders. The Journal of the Acoustical Society of America, 1968. 43,1: p. 1-14.
20. Lee, S. and K.S. Brentner, Acoustic scattering in the time domain using an equivalent source method. AIAA Journal, 2010. 48: p. 2772-2780.
21. Amini, S. and P.J. Harris, A comparison between various boundary integral formulation of the exterior acoustic problem. Computational Methods in Applied Mechanics and Engineering. Vol. 84. 1990. p. 59-75.
22. Rahimzadeh, S. and K. Rodriguez, Classical and quantum distinctions between weak and strong coupling. European Journal of Physics, 2016. 37(2): p. 1-15.
23. Wu, X.F. and A. Akay, Sound radiation from vibrating bodies in motion. The Journal of the Acoustical Society of America, 1992. 91(5): p. 2544-2555.
24. Zinoviev, A. and D.A. Bies, On acoustic radiation by a rigid object in a fluid flow. Journal of Sound and Vibration, 2004. 269(3-5): p. 535-548.
25. Pierce, A.D., Acoustics: An introduction to its physical principles and applications. Acoustical Society of America, 1989: p. 38-75.
26. Junger, M.C., Sound scattering by thin eElastic shells. The Journal of the Acoustical Society of America, 1952. 24: p. 366-373.
27. Colton, D. and R. Kress, Integral equation methods in scattering theory. 2013, New York: p. 150-172.
28. Amini, S. and D.T. Wilton, An investigation of boundary element methods for the exterior acoustic problem. Computer Methods in Applied Mechanics and Engineering, 1986. 54(1): p. 49-65.
29. Baynes, A.B. and O.A. Godin, Scattering of low frequency sound by shallow underwater targets. The Journal of the Acoustical Society of America, 2018. 143(1874): p. 1158-1166.
30. Karasalo, I., Modelling of acoustic scattering from a submarine. The Journal of the Acoustical Society of America, 2012. 17: p.617-625.
31. Karasalo, I., Exact finite elements for wave-propagation in range-independent fluid-solid media. Journal of Sound and Vibration, 1994. 172(5): p. 671-688.
32. Roux, P., Underwater Acoustics. 2007, Italy: p. 1-97.
(此全文20230801後開放外部瀏覽)
電子全文
全文檔開放日期:2023/08/01
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *