字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:張耿銘
研究生英文姓名:Chang, Keng-Ming,
中文論文名稱:用於量測管內微粒子水溶液流率之簡易雷射都卜勒測速儀系統開發
英文論文名稱:Development of a simple LDV system for tube micro particles flow rate measurement
指導教授姓名:李舒昇
口試委員中文姓名:教授︰吳文中
教授︰林致廷
助理教授︰許聿翔
助理教授︰李舒昇
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學號:10551018
請選擇論文與海洋研究相關度:無相關
請選擇論文為:應用型
畢業年度:107
畢業學年度:106
學期:
語文別:中文
論文頁數:47
中文關鍵詞:雷射都卜勒測速儀雷射二極體米氏散射快速傅立葉轉換都卜勒頻移
英文關鍵字:Laser Doppler Velocimetry (LDV)Laser diodesMie scatteringFast Fourier Transform (FFT)Doppler shift
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏收藏:0
雷射都卜勒測速儀(Laser Doppler Velocimetry,LDV)是目前光學檢測中的一種應用技術,發展至今已成為許多研究者重要的研究方向,其可以量測不同性質之流體,故此系統有很大的發展空間並將其適用於相關的實驗。在本研究工作中,已經將過去所開發的雷射都卜勒測速儀系統做修改,並將其應用於管內微粒子流率測量。在本系統中使用雷射二極體作為光源,光纖組件作為波導,以便更容易地將透射光聚焦到管流中。在本系統中會收集流體中之散射光、透射光並將其與參考光耦合以產生干涉光束。當微粒子流體流入管內時,干涉光束中會存在與流速相應的都卜勒頻移。在此會先利用高速光纖耦合器使光訊號轉變成電訊號,並使其在國家儀器中心所開發訊號擷取卡(DAQ card)得到數據,並使用快速傅里葉變換(FFT)算法來計算以取得都卜勒頻移並計算頻率與流速關係式來得到流速。管內流體存在微粒子,因此需要了解米氏散射現象。在實驗中,使用濃度為1:150,直徑為1微米聚苯乙烯懸浮液,並且使用蠕動幫浦推動5mm / s,10mm / s,20mm / s、30mm/s、40mm/s、50mm/s、60mm/s及70mm/s的速率,並使流管與探頭間夾角82度,取得速度分量,使其流動通過玻璃管流道。最後採用matlab編程的FFT算法獲取頻譜並從中得到頻率變化。測量結果證實微粒子流速與FFT分析的頻率成線性關係。在本研究中,已經建立了LDV系統,它可以透過都卜勒頻移之量測來取得管內微粒子的流率,且透過擷取數據時利用訊號擷取卡能夠有更多的存取點得到更好的訊雜比,並且可以在該過程中容易地操縱。
Laser Doppler Velocimetry (LDV) which is one of applied techniques in optical detection has become an important research direction for many researchers. It can measure fluids with different properties. Therefore, the system has lots of progress and applies it to relevant experiments. In this research work, the laser Doppler velocimetry system that developed in the past has been modified and applied to the flow rate measurement of microparticles in the tube. Laser diodes are used as the light source in this system, and the fiber optic components act as waveguides to focus the transmitted light into the tube flow more easily. In the system, scattered light, transmitted light in the fluid is collected and coupled with the reference light to generate an interference beam. When the particulate fluid flows into the tube, there will be a Doppler shift corresponding to the flow velocity in the interfering beam. High-speed fiber couplers are used to convert optical signals into electrical signals, and the data are acquired by the National Instruments DAQ cards and computed by the Fast Fourier Transform (FFT) algorithm to obtain the Doppler frequency shift. Consquently, the relationship between frequency and flow rate are developed and used to calibrate the measured flow rate. There are particles in the fluid in the tube, so it is necessary to understand the Mie scattering phenomenon. In the experiment, a polystyrene suspension with a concentration of 1:150 and a diameter of 1 micron meter was used, and the peristaltic pump was used to push the fluid at veloctities: 5 mm/s、10 mm/s、20 mm/s、30 mm/s、40 mm/s、50 mm/s、60mm/s and 70mm/s. The angle between the flow tube and the detecting direction is 82 degrees, and the velocity component along the observing direction is obtained. Finally, using the FFT algorithm programmed by matlab to obtain the frequency spectrum and obtain the frequency change from it. The measurement results confirm that the particle flow rate is linear with the frequency of the FFT analysis. In this study, an LDV system has been established, which can measure the flow rate of microparticles in the tube by Doppler shift measurement. The DAQ card is integrated to the system to access more points and increase the signal-to-noise ratio, so acquiring data also can be easier in the process.
摘要 I
Abstract III
目次 IV
圖目次 VI
表目次 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 1
1.3 論文架構 3
第二章 雷射都卜勒測速儀系統原理與應用 4
2.1 都卜勒效應基本原理 4
2.2 光學干涉基本原理[18] 6
2.2.1 雷射都卜勒測速儀光學干涉原理 7
2.3 散射原理[18] 8
2.3.1 米氏散射 9
2.4 快速傅立葉轉換(FFT)演算法基本原理 10
2.4.1 離散傅立葉變換(DFT)算法之基本原理[10] 11
2.4.2 快速傅立葉轉換(FFT) 基本原理[9] 11
2.5濾波器介紹[20] 13
第三章 系統設計與實驗架設 16
3.1 系統設計理念概述 16
3.2 實驗架構 17
3.2.1 雙探頭雷射都卜勒測速儀光路設計 17
3.2.2 實驗設計 18
3.3 實驗元件與光路調校 20
3.3.1 實驗元件-光學元件 20
3.3.2 實驗元件-訊號擷取卡(DAQ card) 22
3.3.3 實驗元件-功率計 23
3.3.4 實驗元件-蠕動幫浦 24
3.3.5 光路調校 25
第四章 實驗結果與討論 26
4.1 微粒子濃度量測 26
4.2 實驗系統穩定驗證 32
4.3 量測步驟與結果 32
4.4 結果討論 42
第五章 結論與未來展望 45
5.1 結論 45
5.2 未來展望 45
參考文獻 46

[1]黃文旭”雷射督普勒測速法”美國B&W公司高級研究工程師(1976)
[2] A. N. Obeid, N. J. Barnett, G. Dougherty, and G. Ward, “A critical review of laser Doppler flowmetry,” J. Med. Eng. &Technol. 14, pp. 178-181(1990).
[3] L. Duteil, J. C. Bernengo, and W. Schalla, “A double wavelength laser Doppler system to investigate skin microcirculation,” IEEE Trans. On Bioined. and Eng. 32, pp. 439-445(1985).
[4] M. D. Stern, D. L. Lappe, P. D. Bowen, J. E. Chimosky, GA. Holloway, JR., HR. Keiser, and R. L. Bowman, “Continuous measurement of tissue blood flow by laser-Doppler spectroscopy,” Am. J. Physiol. 232(4), H441-H448(1977).
[5] A. N. Obeid, “In vitro comparison of different signal processing algorithms used in laser Doppler Flowmetry,” Med.&Biol. Eng. & Comput. 31, pp. 43-52(1993).
[6] R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, pp. 13–19(1981).
[7] M. H. Koelink, F. F. M. de Mu, J. Gereve, R. Graaff, A. C. M. Dassel, and J.G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Optics 33, pp. 3549-3558(1994).
[8]Lockwood D.J., “Rayleigh and Mie Scattering,” In: Luo R. (eds) Encyclopedia of Color Science and Technology, Springer, Berlin, Heidelberg(2015).
[9] 林豪駸”利用快速傅立葉轉換系統分析自感測壓阻式微懸臂梁於凝血反應之監測”國立台灣大學,(2015)
[10] 黃磊,王登磊,耿紫星”FFT在數據採集中的應用”自動化技術與應用第26卷第12期,(2007)。
[11] Y. Yeh and H.Z. Cummins, ”Localized fluid flow measurements with a He-Ne laser spectrometer,” Applied Physics Letters 4, pp. 176-178(1964).
[12] Fredrik Laurantzon,”Flow Measuring Techniques in Steady and Pulsating Compressible Flows,” Technical Reports from Royal Institute of Technology KTH Mechanics SE-100 44 Stockholm, Sweden(2010)
[13] Mr. Bhupesh Doda” LDV - Laser Doppler Velocimetry”, from http://www.velocimetry.net/ldv_principles.htm(2008).
[14] Durst, F., A. Melling, and J. Whitelaw,” Principles and Practices of Laser-Doppler Anemometry.Academic Press”(1981).
[15] Mr. Bhupesh Doda” Particle Image Velocimetry”, from http://www.velocimetry.net/ldv_principles.htm(2008)
[16] David H. Evans, W. Norman McDicken, “Doppler Ultrasonic Physics, Instrumentation and Signal Processing Second Edition”, JOHN WILEY% SONS LTD(2000).
[17] Joseph J. Carr, John M. Brown, “Introduction to Biomedical Equipment Technology Fourth Edition”, Prentice Hall(2000).
[18]葉玉堂、饒建珍、肖峻”幾何光學”五南圖書出版社,(2008)。
[19] Alkholidi A G, Altowij K S. Free space optical communications-theory and practices[M]. Croatia, Intech(2014).
[20]楊東華”光子晶體電磁帶隙應用於低通濾波器設計”長庚大學電子工程研究所,(2009)。
[21] 陳明周”主動式濾波器簡介”元智大學,最佳化實驗室,(2002-09-12)。
[22] Y. NAKAYAMA, UKEditor R. F. BOUCHER” Introduction to Fluid Mechanics” AFS Image Setters Ltd, Glasgow(1999)。
[23] Richard F. Brodman, MDLaurie E. Hirsh, MDRosemary Frame, FNP, MS” Effect of radial artery harvest on collateral forearm blood flow and digital perfusion” The Journal of Thoracic and Cardiovascular Surgery (2002).
[24] Jaeuk U. Kim, Yu Jung Lee, Jeon Lee, and Jong Yeol Kim” Differences in the Properties of the Radial Artery between Cun, Guan, Chi, and Nearby SegmentsUsing Ultrasonographic Imaging: A Pilot Study on Arterial Depth, Diameter, and Blood Flow” Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume, Article ID 381634, 7 pages (2015).
(此全文20210805後開放外部瀏覽)
電子全文
全文檔開放日期:2021/08/05
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *