字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者&題名查詢臺灣博碩士以作者查詢全國書目
研究生中文姓名:黃威凱
研究生英文姓名:Huang, Wei-Kai
中文論文名稱:馬祖海域淡鹽骨藻硝酸鹽與磷酸鹽吸收相關基因表現量之日週變化
英文論文名稱:Diel expressions of nitrate and phosphate transporter genes in the diatom, Skeletonema subsalsum, in a coastal region near Matsu
指導教授姓名:張正
口試委員中文姓名:教授︰陳仲吉
教授︰蔣國平
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋生物研究所
學號:10534016
請選擇論文為:學術型
畢業年度:108
畢業學年度:107
學期:
語文別:中文
論文頁數:38
中文關鍵詞:骨藻日週變化硝酸鹽運輸基因磷酸鹽運輸基因褐藻素葉綠素結合蛋白基因TATA盒結合蛋白基因
英文關鍵字:Skeletonemadiel expressionnitrate transporter genesodium/phosphate cotransporter genefucoxanthin-chlorophyll protein geneTATA Box binding protein gene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:50
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
矽藻中含有硝酸根運輸蛋白 ( nitrate transporter,基因名稱Nrt2 ) 以及鈉磷共運輸蛋白 ( sodium phosphate cotransporter,基因名稱Npt2bl ),分別負責將細胞外的硝酸鹽和磷酸鹽吸收進入細胞內。因為兩者的代謝途徑皆與光合作用有關,於是猜測Nrt2和Npt2bl之mRNA表現量在自然環境中會具有日夜週期變化。本實驗利用2017年6月及7月航次,於馬祖沿海測站進行24小時連續採樣,並於兩個時間點進行營養鹽調控培養。針對矽藻Skeletonema subsalsum以定量聚合酶鎖鏈反應偵測Nrt2、Npt2bl、FcpB ( fucoxanthin-chlorophyll protein 之編碼基因)以及TBP ( TATA Box binding protein之編碼基因) 之表現量,並以餘弦函數進行迴歸分析,將Nrt2與Npt2bl的結果與FcpB和TBP的表現量以及一日內光照變化進行比較,藉以判別Nrt2以及Npt2bl是否具有日週變化。結果顯示,六月航次中FcpB表現量之回歸方程式在中午時段具有最大值,並在凌晨12點時達到最低值。迴歸分析後得到振幅為對數值1.32並且在統計上達到顯著水準 ( p < 0.05 ) ;七月的FcpB的表現量迴歸後振幅並非顯著,但是也在中午時段以及晚間11點左右分別具有明顯的最大值以及最低值。而TBP表現量雖然在迴歸分析的結果中顯示具有日週變化,但是振幅很小導致日週變化不明顯。相較之下,兩個航次的Nrt2及Npt2bl的表現量在一日內會有上下波動,但經迴歸分析後振幅均為不顯著。經由營養鹽調控培養,Nrt2表現量會受到環境中含氮營養鹽濃度的影響,而且改變幅度遠大於一日中現場表現量的變化幅度。同樣的,Npt2bl表現量會受到磷酸鹽濃度的影響,改變幅度也是遠大於一日中現場表現量的變化幅度。若將營養鹽調控培養的結果與現場測值相比,在六月和七月航次中Nrt2現場表現量都非常接近添加銨鹽培養組的測值,顯示馬祖海域中的骨藻並沒有積極製造Nrt2蛋白;在Npt2bl表現量的部分,測量結果顯示在六月航次中骨藻積極製造Npt2bl蛋白,而七月則是以中等的努力製造Npt2bl蛋白。
Diatom cells possess a distinctive nitrate transporter (encoded by Nrt2) and a sodium/phosphate cotransporter (encoded by Npt2bl), to enable the uptake of nitrate and phosphate from the environment. Since the metabolic pathways of nitrogen and phosphorus are both related to photosynthesis, the mRNA levels of Nrt2 and Npt2bl are assumed to have a diel variation in natural environments. In this study, research cruises were conducted in the coastal region rear Matsu Islands in June and July, 2017, respectively. During each cruise, a 24-h sampling program was established with additional nutrient-manipulative experiments performed at 2 time points. In a locally dominant diatom, Skeletonema subsalsum, RT-qPCR was used to measure the mRNA levels of the following genes, Nrt2, Npt2bl, FcpB (encoding fucoxanthin-chlorophyll protein), and TBP (encoding TATA Box binding protein). Next, nonlinear regression was applied to fit a cosine function to measured expression levels. The patterns of FcpB and TBP expressions were used as comparison standards to determine if diel variation existed in the expression patterns of Nrt2 and Npt2bl. Experimental results indicated that gene expression of FcpB reached the maximum at noontime and decreased to the minimum at midnight in June. Regression analysis generated a cosine function with an amplitude of 1.32 (logarithmic scale), which was statistically significant at p < 0.05. In July, the amplitude of FcpB regression equation was not statistically significant, but the maximum and minimum values still appeared at noontime and midnight. The amplitudes of TBP expressions were statistically significant in June and July, but the amplitudes were too small to properly reveal a diel change. In comparison, the gene expressions of Nrt2 and Npt2bl fluctuated in a day, but the amplitudes of regression curves were not statistically significant. In nutrient-manipulative experiments, the gene expressions of Nrt2 were mainly affected by the availability nitrogenous nutrients. Similarly, the gene expressions of Npt2bl were mainly affected by phosphate levels. For both genes, range of gene expression due to nutrient-manipulation was much wider than the range of variation in a day. Comparing the results of nutrient-manipulative experiments to those of in situ samples, the in situ expressions of Nrt2 were similar to ammonium-added treatments in June and July, indicating that S. subsalsum did not actively produce nitrate transporter. By contrast, gene expressions of Npt2bl revealed that S. subsalsum actively produced phosphate transporter in June, but the effort was moderate in July.
目次 IV
表次 VI
圖次 VII
前言 1
材料與方法 4
1. 探測航次與樣本採集 4
2. 船艙內的培養實驗 4
3. 浮游植物細胞計數 5
4. 確認馬祖海域矽藻之基因序列 5
4.1. 全體 RNA 萃取 5
4.2. 建構混合種類全轉錄體 5
4.3. 序列比對與分析 6
5. 測量目標基因之表現量 6
5.1. 製作 cDNA 6
5.2. RT-qPCR引子設計 6
5.3. 定量聚合酶連鎖反應 ( qPCR ) 7
5.4. 定量 PCR的計算與分析 7
6. 使用曲線迴歸偵測日週變化 8
結果 9
1. 水文資料概況 9
2. 浮游植物種類組成 9
3. 淡鹽骨藻各種基因表現量之日週變化 10
3.1 FcpB表現量日週變化 10
3.2 TBP表現量日週變化 10
3.3 Nrt2 表現量日週變化 10
3.4 Npt2bl表現量 11
4. FcpB基因在不同氮磷處理下的表現量 11
5. TBP基因在不同氮磷處理下的表現量 12
6. Nrt2基因在不同氮磷處理下的表現量 12
7. Npt2bl基因在不同氮磷處理下的表現量 13
討論 14
1. FcpB兩航次的日夜週期變化與營養鹽之調控 14
2. TBP日夜週期變化與營養鹽調控之比較 14
3. Nrt2日夜週期變化與營養鹽調控之比較 15
4. Nrt2bl日夜週期變化與營養鹽調控之比較 16
5. 結論 16
參考文獻 18
附錄 36
崔鳳修 (2010),肋紋骨藻 Skeletonema costatum體內硝酸與磷酸根運輸蛋白基因表現的日週變化,碩士論文,海洋生物研究所,國立臺灣海洋大學。
莊智宇 (2013),肋紋骨藻 Skeletonema costatum氮磷利用相關基因表現與環境中營養鹽濃度之關係,碩士論文,海洋生物研究所,國立臺灣海洋大學。
陳薏霜 (2013),肋紋骨藻中鹼性磷酸酶與磷酸鹽運輸蛋白基因之序列分析與功能評估,碩士論文,海洋生物研究所,國立臺灣海洋大學。
廖珮綺 (2017),利用單一群體定序確認馬祖海域骨藻數之種類組成及硝酸鹽運輸基因序列,碩士論文,海洋生物研究所,國立臺灣海洋大學。
Bao, S., An, L., Su, S., Zhou, Z., & Gan, Y. (2011). Expression patterns of nitrate, phosphate, and sulfate transporters in Arabidopsis roots exposed to different nutritional regimes. Botany, 89, 647-653.
Berdalet, E., Latasa, M., & Estrada, M. (1992). Variations in biochemical parameters of Heterocapsa sp. and Olisthodiscus luteus grown in 12: 12 light: dark cycles I. Cell cycle and nucleic acid composition. Hydrobiologia, 238, 139-147.
Berges, J. A., & Harrison, P. J. (1995). Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation: a revised assay and characterization of the enzyme in three species of marine phytoplankton. Limnology and Oceanography, 40, 82-93.
Brown, K. L., Twing, K. L. & Robertson, D. L. (2009). Unraveling the regulation of nitrogen assimilation in the marine diatom Thalassiosira Pseudonana(Bacillariophyceae): Diurnal variations in transcript levels for five genes involved in nitrogen assimilation. Journal of Phycology, 45, 413-426.
Bru, D., Martin-Laurent, F., & Philippot, L. (2008). Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S rRNA gene as an example. Applied and Environmental Microbiology, 74, 1660-1663.
Bot, J. L., & Kirkby, E. A. (1992). Diurnal uptake of nitrate and potassium during the vegetative growth of tomato plants. Journal of Plant Nutrition, 15, 247-264.
Chisholm, S. W., & Brand, L. E. (1981). Persistence of cell division phasing in marine phytoplankton in continuous light after entrainment to light: dark cycles. Journal of Experimental Marine Biology and Ecology, 51, 107-118.
Corredor, J. E., Wawrik, B., Paul, J. H., Tran, H., Kerkhof, L., Lopez, J. M., Dieppa, A. & Cardanas, O. (2004). Geochemical rate-RNA integration study: Ribulose-1,5-bisphosphate carboxylase/oxygenase gene transcription and photosynthetic capacity of planktonic photoautotrophs. Applied and Environmental Microbiology, 70, 5459-5468.
Cresswell, R. C., & Syrett, P. J. (1981). Uptake of nitrate by the diatom Phaeodactylum tricornutum. Journal of Experimental Botany, 32, 19-25.
Chisholm, S. W., & Stross, R. G. (1976). Phosphate uptake kinetics in Euglena gracilis (z)(euglenophyceae) grown on light/dark cycles.'I. Synchronized batch cultures. Journal of Phycology, 12, 210-217.
Chung, C. C., Hwang, S. P. L., & Chang, J. (2005). Cooccurrence of ScDSP gene expression, cell death, and DNA fragmentation in a marine diatom, Skeletonema costatum. Applied and Environmental Microbiology, 71, 8744-8751.
Edward, B. (1979). Introduction to mathematics for life scientists. Springer Science & Business Media, Germany.
Falkowski, P. G., Sukenik, A., & Herzig, R. (1989). Nitrogen limitation in Isochrysis galbana (haptophyceae). Ii. Relative abundance of chloroplast proteins. Journal of Phycology, 25, 471-478.
Filleur, S., Dorbe, M. F., Cerezo, M., Orsel, M., Granier, F., Gojon, A., & Daniel-Vedele, F. (2001). An Arabidopsis T‐DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS letters, 489, 220-224.
Fu, L. Y., Jia, H. L., Dong, Q. Z., Wu, J. C., Zhao, Y., Zhou, H. J. et al. (2009). Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses. BMC cancer, 9, 49.
Green, B. R., & Durnford, D. G. (1996). The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annual review of plant biology, 47, 685-714.
Grossman, A. R., Bhaya, D., Apt, K. E., & Kehoe, D. M. (1995). Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution. Annual review of genetics, 29, 231-288.
Guillard, R. R. (1975). Culture of phytoplankton for feeding marine invertebrates. In Culture of marine invertebrate animals (pp. 29-60). Springer, Boston, MA.
Tomas, C. R. (1996). Identifying marine diatoms and dinoflagellates. Academic Press, San Diego.
Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome research, 9, 868-877.
Iglesias-Rodriguez, M. D., Brown, C. W., Doney, S. C., Kleypas, J., Kolber, D., Kolber, Z., Hayes, P. K., & Falkowski, P. G. (2002). Representing key phytoplankton functional groups in ocean carbon cycle models: coccolithophorids. Global Biogeochemical Cycles, 16, 1100. doi: 10. 1029/2001GB001454.
Illumina (2017, October). TruSeq Stranded mRNA Reference Guide. Retrieved from https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/samplepreps_truseq/truseq-stranded-mrna-workflow/truseq-stranded-mrna-workflow-reference-1000000040498-00.pdf
Jansson, S. (1994). The light-harvesting chlorophyll ab-binding proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1184, 1-19.
John, D. E., Patterson, S. S., & Paul, J. H. (2007). Phytoplankton-group specific quantitative polymerase chain reaction assays for RuBisCO mRNA transcripts in seawater. Marine biotechnology, 9, 747-759.
Kang, L. K., Gong, G. C., Wu, Y. H., & Chang, J. (2015). The expression of nitrate transporter genes reveals different nitrogen statuses of dominant diatom groups in the southern East China Sea. Molecular Ecology, 24, 1374-1386.
Kang, L. K., Tsui, F. H., & Chang, J. (2012). Quantification of diatom gene expression in the sea by selecting uniformly transcribed mRNA as the basis for normalization. Applied and Environmental Microbiology, 78, 6051-6058.
Kang, L. K., Hwang, S. P. L., Gong, G. C., Lin, H. J., Chen, P. C., & Chang, J. (2007). Influences of nitrogen deficiency on the transcript levels of ammonium transporter, nitrate transporter and glutamine synthetase genes in Isochrysis galbana (Isochrysidales, Haptophyta). Phycologia, 46, 521-533.
Kang, L. K., Hwang, S. P. L., Lin, H. J., Chen, P. C., & Chang, J. (2009). Establishment of minimal and maximal transcript levels for nitrate transporter genes for detecting nitrogen deficiency in the marine phytoplankton Isochrysis galbana (prymnesiophyceae) and Thalassiosira pseudonana (bacillariophyceae). Journal of Phycology, 45, 864-872.
Kang, L. K., Wang, H. F., & Chang, J. (2011). Diversity of phytoplankton nitrate transporter sequences from isolated single cells and mixed samples from the East China Sea and mRNA quantification. Applied and Environmental Microbiology, 77, 122-130.
Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., Amaral-Zettler, L. A., ... & Beszteri, B. (2014). The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS biology, 12, e1001889.
Keeling, P. J., & Inagaki, Y. (2004). A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor 1α. Proceedings of the National Academy of Sciences, 101, 15380-15385.
Lejay, L., Tillard, P., Lepetit, M., Olive, F. D., Filleur, S., Daniel‐Vedele, F., & Gojon, A. (1999). Molecular and functional regulation of two NO3–uptake systems by N‐and C‐status of Arabidopsis plants. The Plant Journal, 18, 509-519.
Liu, X., Zhao, X., Zhang, L., Lu, W., Li, X., & Xiao, K. (2013). TaPht1; 4, a high-affinity phosphate transporter gene in wheat (Triticum aestivum), plays an important role in plant phosphate acquisition under phosphorus deprivation. Functional Plant Biology, 40, 329-341.
Martínez-Beamonte, R., Navarro, M. A., Larraga, A., Strunk, M., Barranquero, C., Acín, S., ... & Osada, J. (2011). Selection of reference genes for gene expression studies in rats. Journal of Biotechnology, 151, 325-334.
Metzker, M. L. (2010). Sequencing technologies—the next generation. Nature reviews genetics, 11, 31.
Needoba, J. A. & Harrison, P. J. 2004. Influence of low light and a light: Dark cycle on NO3- uptake, intracellular NO3-, and nitrogen isotope fractionation by marine phytoplankton. Journal of Phycology, 40, 505-516.
Oeltjen A, Marquardt J, Rhiel E. (2004). Differential circadian expressionof genes fcp2 and fcp6 in Cyclotella cryptica. International Microbiology 7,127–131.
Persson, B. L., Petersson, J., Fristedt, U., Weinander, R., Berhe, A., & Pattison, J. (1999). Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. Biochim Biophys Acta, 1422, 255-272.
Prézelin, B. B. (1992). Diel periodicity in phytoplankton productivity. In The Daily Growth Cycle of Phytoplankton (pp. 1-35). Springer, Dordrecht.
Radonić, A., Thulke, S., Bae, H. G., Müller, M. A., Siegert, W., & Nitsche, A. (2005). Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, Human Herpesvirus-6, Camelpox virus and Cytomegalovirus infections. Virology Journal, 2, 7.
Ransbotyn, V., & Reusch, T. B. (2006). Housekeeping gene selection for quantitative real‐time PCR assays in the seagrass Zostera marina subjected to heat stress. Limnology and Oceanography: Methods, 4, 367-373.
Shimogawara, K., Wykoff, D. D., Usuda, H. & Grossman, A. R. 1999. Chlamydomonas reinhardtii mutants abnormal in their responses to phosphorus deprivation. Plant Physiol. 120, 685-693.
Siaut, M., Heijde, M., Mangogna, M., Montsant, A., Coesel, S., Allen, A. et al. (2007). Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene, 406, 23-35.
Song, B., & Ward, B. B. (2007). Molecular cloning and characterization of high‐affinity nitrate transporters in marine phytoplankton. Journal of Phycology, 43, 542-552.
Sukhanova, I. N. (1978). Monographs on Oceanographic Methodology. In A. Sournia (Ed.), Phytoplankton manual. UNESCO, Paris.
Tomas, C. R. (Ed.). (1997). Identifying marine phytoplankton. Elsevier. Amsterdam.
Throndsen, J. (1978). Preservation and storage, In A. Sournia (Ed.), Phytoplankton Manual. UNESCO, Paris.
Turpin, D. H. 1991. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology, 27, 14-20.
Vergara, J. J., Berges, J. A. & Falkowski, P. G. (1998). Diel periodicity of nitrate reductase activity and protein levels in the diatom Thalassiosira weissflogii (Bacillariophyceae). Journal of Phycology, 34, 952-961.
Vincent, W. F. (1992). The daily pattern of nitrogen uptake by phytoplankton in dynamic mixed layer environments. In T. Berman, H. J. Gons, L. R. Mur (Eds.), The Daily Growth Cycle of Phytoplankton (37-52). Springer, Dordrecht.
Virkki, L. V., Biber, J., Murer, H., & Forster, I. C. (2007). Phosphate transporters: a tale of two solute carrier families. American Journal of Physiology-Renal Physiology, 293, F643-F654.
Vogel, J. M., Roth, B., Cigan, M., & Freeling, M. (1993). Expression of the two maize TATA binding protein genes and function of the encoded TBP proteins by complementation in yeast. The Plant Cell, 5, 1627-1638.
Wang, G. Y., Shi, J. L., Ng, G., Battle, S. L., Zhang, C., & Lu, H. (2011). Circadian clock-regulated phosphate transporter PHT4; 1 plays an important role in Arabidopsis defense. Molecular plant, 4, 516-526.
Warren, R. L., & Holt, R. A. (2011). Targeted assembly of short sequence reads. PloS one, 6(5), e19816.
Yang, Z. K., Zheng, J. W., Niu, Y. F., Yang, W. D., Liu, J. S., & Li, H. Y. (2014). Systems‐level analysis of the metabolic responses of the diatom Phaeodactylum tricornutum to phosphorus stress. Environmental Microbiology, 16, 1793-1807.
(此全文20220729後開放外部瀏覽)
電子全文
全文檔開放日期:2022/07/29
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *